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Summary

In a clinical trial, when there is a continuous flow of patients, response by a
patient may be delayed. Our object in the present investigation is to use the
Bayesian technique for studying the nature of such delay is the case of bivariate
response. Taking suitable priors, several posterior distributions of the probabili-
ties of response are obtained by using Gibbs sampler technique. The applicability
of the present approach for grouped data at different stages is also discussed.
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1 Introduction

For sequential monitoring of study subjects in a system one by one or batch
by batch a lot of works, under unvariate set-up, are available in the litera-
ture (see for example, in group sequential framework, Pocock (1977), Lan
and DeMets (1983), Jennison and Turnbull (1989), Bandyopadhyay and
Biswas (1995)). Bivariate responses are also very common in practice. For
example, in clinical trials, a particular drug may have effects simultaneously
on two diseases. Bivariate treatment responses are also considered by some
authors (see for example, Jennison and Turnbull (1993) and Bandyopad-
hyay and Biswas (1996a)). All these works are based on the assumption
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that the response of each subject is either immediate or it is obtained be-
fore the entrance of the next subject. But this may not occur in practice.
For example, in bivariate set-up, suppose a treatment is applied sequen-
tially to n subjects and, at the (n + 1)st stage, we see that some of the n
subjects fail to respond completely or partially. That is, there is a delay in
response. The phrase ‘delayed response’ is used to indicate that a subject’s
complete response is not obtained before the entrance of the next subject.
The paper by Tamura, Faires, Andersen and Heiligenstein (1994) describes
an actual clinical trial with delayed response.

Bandyopadhyay and Biswas (1996b), under univariate set up, incorpo-
rated the possibility of delayed response in their model for comparing two
treatments using a randomized play-the-winner rule for allocation. Some
decision rules were suggested there from the frequentist’s view point. Sev-
eral performance characteristics and properties of the proposed decision
rules were also studied. This problem was also revisited by Biswas (1999).

Here we investigate the nature of bivariate delayed response and the
associated probability model in the Bayesian framework. Taking different
priors the posterior distributions of the probabilities of getting complete re-
sponse and no response at different time lags are studied. The popular and
powerful Gibbs sampler technique (see Geman and Geman (1984), Gelfand
and Smith (1990), Gelfand et al. (1990)), whenever it is required, is used
to estimate the marginal posterior distributions of the response probabili-
ties. In the next section, taking general probability model, we consider the
probability of obtaining different kinds of responses at different time lags.
In Section 3, we concentrate on two different models for the response prob-
abilities. Numerical computations of posterior means, standard deviation
(s.d.’s) and modes are also given in different situations. Finally, in Section
4, we indicate a possible extension for grouped data.

2 General probability model

Suppose a treatment is applied sequentially to each of the n subjects un-
der study. At each stage only one subject is allocated and after the n-th
patient allocation there is a possibility that some of the n subjects will
fail to respond (in one component or both the components). This is called
delayed response. To study the behaviour of such delays in response we
first introduce the following indicator variables: ∈jn+1= 1 or 0 according
as the response of the first component of the j-th subject is obtained or
not after the allocation of the n-th subject (and before the allocation of
the (n + 1)st subject), j = 1(1)n, and ηjn+1 is a similar indicator variable
for the second component of the j-th subject. Then our observed data is
x ≡ (∈1n+1,∈2n+1, . . . ,∈nn+1 ; η1n+1, η2n+1, . . . , ηnn+1). We write,

πn+1−j = P {∈jn+1= 1, ηjn+1 = 1} , ωn+1−j = P {∈jn+1= 0, ηjn+1 = 0} ,

and hence P {∈jn+1=1, ηjn+1 =0}+P{∈jn+1=0, ηjn+1 =1} = 1−πn+1−j −
ωn+1−j, which are, respectively, the probabilities of getting the complete
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response, no response and the partial response of the j-th subject with a
time lag (n + 1 − j) before the entrance of the (n + 1)st subject. Clearly,
πt is non-decreasing and ωt is non-incresing in t, and we can safely assume
that as t → ∞, (i) πt → 1 and (ii) ωt → 0.

Denoting θ ≡ (π1, π2, . . . πn;ω1, ω2, . . . ωn), the conditional probability
of x given θ is

f(x|θ) =
n

∏

j=1

{

π
∈jn+1ηjn+1

n+1−j ω
(1−∈jn+1)(1−ηjn1

)
n+1−j

(1 − πn+1−j − ωn+1−j)
∈jn+1(1−ηjn+1)+(1−∈jn+1)ηjn+1

}

=
n

∏

j=1

[∈jn+1 ηjn+1πn+1−j + (1− ∈jn+1)(1 − ηjn+1)ωn+1−j

+{∈jn+1 (1−ηjn+1)+(1−∈jn+1)ηjn+1}(1−πn+1−j−ωn+1−j)]

=
n

∏

j=1

[aj + bjπj + cjωj] , (2.1)

where

aj = ∈n+1−j,n+1 (1 − ηn+1−j,n+1) + (1− ∈n+1−j,n+1)πn+1−j,n+1,

bj = 3 ∈n+1−j,n+1 ηn+1−j,n+1− ∈n+1−j,n+1 −ηn+1−j,n+1,

cj = 1 − 2 ∈n+1−j,n+1 −2ηn+1−j,n+1 + 3 ∈n+1−j,n+1 ηn+1−j,n+1.

At this stage, for the sake of simplicity, we consider the uniform prior:

g(θ) = constant,
0 < π1 < π2 < . . . < πn < 1
0 < ωn < ωn−1 < . . . < ω1 < 1
0 < πj + ωj < 1 ∀ j











(2.2)

Obviously, this prior being defined over a bounded domain is proper. Then
the joint distribution of x and θ is given by:

p(x, θ) = f(x|θ)g(θ) ∝
n

∏

j=1

[aj + bjπj + cjωj] . (2.3)

Then, integrating πj out, we get

p (x, πj , . . . , πj−1, πj+1, . . . , πn, ω1, . . . ωn)

∝









n
∏

j′=1
j′ 6=j

[

aj′ + bj′πj′ + cj′ωj′
]









.

∫ Aj

πj−1

(aj + bjπj + cjωj) dπj
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=









n
∏

j′=1
j′ 6=j

[

aj′ + bj′πj′ + cj′ωj′
]









.

{

(aj + cjωj) (Aj − πj−1) +
bj

2

(

A2
j − π2

j−1

)

}

, (2.4)

where Aj = min(πj+1, 1 − ωj). Then the conditional distribution of πj

given other πi’s, i 6= j, ωj’s and x can be easily obtained as:

p(πj|π1, . . . , πj−1, πj+1, . . . , πn, ω1, . . . , ωn, x)

=
aj + bjπj + cjωj

(aj + cjωj)(Aj − πj−1) +
bj

2 (A2
j − π2

j−1)
, (2.5)

πj−1 < πj < Aj , j = 1, 2, . . . , n,

with π0 = 0, πn+1 = 1. Similarly, the conditional distribution of ωj given
other ωi’s, i 6= j, πi’s and x can be easily obtained as

p(ωj|π1, . . . , πn, ω1, . . . , ωj−1, ωj+1, . . . , ωn, x)

=
aj + bjπj + cjωj

(aj + bjπj)(Bj − ωj+1) +
cj

2 (B2
j − ω2

j+1)
, (2.6)

ωj+1 < ωj < Bj, j = 1, 2, . . . , n,

with ω0 = 1, ωn+1 = 0 and Bj = min(ωj−1, 1 − πj). Using (2.5) and (2.6)
and taking help of the popular Gibbs sampler approach we can estimate
the marginal posterior distributions of πj’s and ωj’s.

In the above analysis, depending upon the situation, some other priors
can easily be used over the appropriate domain. Besides uniform prior one
can consider prior proportional to

(i) π1, the probability of complete response in a lag of unity,

(ii) ω1, the probability of no response in lag of unity,

and so on. In a different context, Chen (1994), in the case of only one set of
ordered parameters β1 ≤ . . . ≤ βn, (n = 10), used the prior proportional to
1s(β

∼
).p(βn), where 1s(β

∼
) = 1 if β

∼
ǫS =

{

(β1, . . . , βn)′ : 0 ≤ β1 ≤ β2 ≤ . . .

≤ βn, β
∼

ǫRn

}

, and 0 otherwise, and p(βn) is a normal distribution with

hyperparameters µn and σ2
n. See also Chen and Deely (1996) in this con-

nection. In our case, as πi’s are probabilities, it would be logical to consider
a beta prior over any such πi instead of normal prior. Beta priors for prob-
abilities are widely used in literature (see, for example, Berry (1972), Jones
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and Kandeel (1984)). Again, in Chen (1994) or in Chen and Deely (1996),
the most important parameter was βn, but in our case π1 (or ω1) is the
most important one (see model 1 of Section 3). So it would be logical
to assume a beta prior on π1 (or ω1). The uniform prior is, of course, a
special case of this. In the present context we take beta (2,1) on π1 or
beta (2,1) on ω1. In Table 1, the posterior means, standard deviations
(s.d.’s) and modes of different πj’s and ωj’s are also given. These compu-
tations are done using 30000 simulations and we have considered n = 5 and
∈
∼1

= (1, 0, 1, 0, 0), η
∼1

= (1, 0, 1, 0, 0), η
∼2

= (1, 1, 1, 1, 0). The three entries

in each cell corresponds to posterior mean, s.d. and mode respectively.

3 Modelling of πj’s and ωj’s: two different models

3.1 Model 1

Here we take

πj = 1 − (1 − π1)
j and ωj = ω

j
1. (3.1)

Thus θ reduces to (π1, ω1), and it is enough to concentrate on this θ only.
Under this model the number of parameters is reduced to 2 form 2n, and
the amount of computation is reduced considerably. Again the model is
logical in the sense that as time lag increases the probability of getting
responses from both the components increases and tends to 1 and, on the
other hand, the probability of getting no response decreases geometrically
and tends to 0. Also, it has some Markov Chain property. For example,
the probability of getting both responses after (j + 1) lags given that at
least one of the responses were not available after j lags is π1, same for
every j. Now f(x|θ) simplifies to

f(x|θ) =
n

∏

j=1

[

{

1−(1 − π1)
n+1−j

}∈jn+1ηjn+1
{

ω
n+1−j
1

}(1−∈jn+1)(1−ηjn+1)

·
{

(1 − π1)
n+1−jω

n+1−j
1

}∈jn+1(1−ηjn+1)+(1−∈jn+1)ηjn+1
]

.

=
n

∏

j=1

[

∈jn+1 ηjn+1

{

1 − (1 − π1)
n+1−j

}

+(1− ∈jn+1)(1 − ηjn+1)
{

ω
n+1−j
1

}

+ {∈jn+1 (1 − ηjn+1)

+(1− ∈jn+1)ηjn+1}
{

(1 − π1)
n+1−j − ω

n+1−j
1

}]

=
n

∏

j=1

(ej + djuj + cjvj) , (3.2)
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Table 1 Posterior mean, s.d. and mode for the general model.

π1 π2 π3 π4 π5

0.0976 0.2241 0.3933 0.5391 0.7413
0.0782 0.1198 0.1407 0.1489 0.1422
0.0100 0.1800 0.3600 0.5750 0.7950

(∈
∼1

, η
∼1

) ω1 ω2 ω3 ω4 ω5

0.7715 0.5906 0.4132 0.2790 0.1162
0.1342 0.1469 0.1418 0.1235 0.0880
0.8500 0.5600 0.3750 0.2400 0.0100

Uniform π1 π2 π3 π4 π5

Prior 0.0969 0.2095 0.3889 0.5203 0.7569
0.0771 0.1149 0.1442 0.1509 0.1472
0.0050 0.1650 0.3500 0.5200 0.8350

(∈
∼1

, η
∼2

) ω1 ω2 ω3 ω4 ω5

0.7156 0.4410 0.2949 0.1618 0.0771
0.1628 0.1567 0.1358 0.0964 0.0623
0.8450 0.4400 0.2250 0.1350 0.0200

π1 π2 π3 π4 π5

0.2414 0.3430 0.4758 0.6002 0.7723
0.1230 0.1291 0.1343 0.1357 0.1265
0.1200 0.3550 0.4500 0.5850 0.8100

(∈
∼1

, η
∼1

) ω1 ω2 ω3 ω4 ω5

0.6524 0.5043 0.3575 0.2430 0.1041
0.1368 0.1365 0.1272 0.1103 0.0783
0.6650 0.5000 0.3450 0.2050 0.0100

Prior π1 π2 π3 π4 π5

∝ π1 0.2227 0.3162 0.4598 0.5748 0.7814
0.1155 0.1250 0.1382 0.1408 0.1335
0.1200 0.3000 0.4600 0.5950 0.8350

(∈
∼1

, η
∼2

) ω1 ω2 ω3 ω4 ω5

0.6177 0.3846 0.2597 0.1441 0.0703
0.1553 0.1419 0.1218 0.0869 0.0562
0.6250 0.4050 0.2200 0.0800 0.0050
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π1 π2 π3 π4 π5

0.0742 0.1969 0.3564 0.5002 0.6944
0.1247 0.1342 0.1291 0.1177 0.1054
0.0050 0.1550 0.3400 0.5200 0.7450

(∈
∼1

, η
∼1

) ω1 ω2 ω3 ω4 ω5

0.8309 0.6847 0.5156 0.3303 0.1787
0.1169 0.1294 0.1286 0.1329 0.0921
0.8950 0.6900 0.5050 0.2900 0.1300

Prior π1 π2 π3 π4 π5

∝ ω1 0.0594 0.1637 0.3270 0.4776 0.6663
0.1322 0.1406 0.1501 0.1320 0.1178
0.0050 0.1150 0.3200 0.4950 0.7000

(∈
∼1

, η
∼2

) ω1 ω2 ω3 ω4 ω5

0.8040 0.6486 0.4738 0.2910 0.1429
0.1210 0.1314 0.1367 0.1126 0.1008
0.8700 0.7050 0.4950 0.2700 0.0950

where

ej = ∈jn+1 ηjn+1, dj =∈jn+1 +ηjn+1 − 3 ∈jn+1 ηjn+1,

uj = (1 − π1)
n+1−j and vj = ω

n+1−j
1 ,

and hence we can write

f(x|θ) =
5

∑

k=1

Akn, (3.3)

where

A1n =
n

∏

j=1

ej +
n

∏

j=1

djuj +
n

∏

j=1

cjvj ,

A2n =
n

∑

i=1

ei









n
∏

j=1
j 6=i

djuj +
n

∑

j=1
j 6=i

cjvj

∏

j′ 6=j,i

dj′uj′ +
n

∑

j1=1
j1 6=

n
∑

j2=1
j2 6=i





∏

j=j1,j2

cjvj









∏

j′ 6=j,i

dj′uj′



 + . . . +
n

∏

j=1
j 6=i

cjvj






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+
∑

i1 6=

n
∑

i2=1





∏

k=i1,i2

ek











n
∏

j=1
j 6=i1,i2

djuj +
n

∑

j=1
j 6=i1,i2

cjvj

∏

j′ 6=j,k

dj′uj′

+
n

∑

j1=1
j1 6=

n
∑

j2=1
j2 6=(i1,i2)





∏

j=j1,j2

cjvj









∏

j′ 6=j1,j2,i1,i2

dj′uj′





+. . .+
n

∏

j=1
j 6=i1,i2

cjvj






+. . .+

∑

i1 6=...

. . .

n
∑

6=in−2=1





∏

k=i1,...,in−2

ek









∏

j 6=(i1,...,in−2)

djuj +
∑

j1,j2 6=(i1,...,in−2)

dj1uj1cj2vj2 +
∏

j 6=(i1,...,in−2)

cjvj



 ,

A3n =
n

∑

i=1

diui







n
∏

j=1
j 6=i

ej +
n

∏

j=1
j 6=i

cjvj ,






, A4n =

n
∑

i=1

civi







n
∏

j=1
j 6=i

ej +
n

∏

j=1
j 6=i

djuj






,

A5n =
∑

i1 6=

∑

i2





∏

j=i1,i2

djuj





∏

j′ 6=(i1,i2)

cj′vj′+
∑

i1 6=

∑

i2 6=

∑

i3





∏

j=i1,i2,i3

djuj





∏

j′ 6=(i1,i2,i3)

cj′vj′+. . .+
∑

i1 6=...

. . .
∑

6=in−2





∏

j=i1,...,in−2

djuj





∏

j′ 6=j

cj′vj′ .

In the expression of Akn’s we replace

∏

jǫΩj

djuj =





∏

jǫΩj

dj



u

∑

jǫΩj

(n + 1 − j)

and

∏

jǫΩj

cjvj =





∏

jǫΩj

cj



 v

∑

jǫΩj

(n + 1 − j)

where u = 1 − π1, v = ω1. We consider the uniform prior:

g(θ) = k, 0 < v < u < 1, (3.4)

and employing the technique of Gibbs sampler we can estimate the poste-
rior marginals. Taking uniform prior and (∈

∼1
, η
∼1

) the posterior mean, s.d.

and mode of π1 are respectively 0.6556, 0.1631, 0.6750 and those of ω1 are
respectively 0.1921, 0.1539, 0.1350.
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3.2 Model 2

Here we have two pairs of random components (π1, ω1) and (πn, ωn). We
consider

πj = 1 − (1 − π1)
n−j

n−1 (1 − πn)
j−1
n−1 and ωj = ω

n−j

n−1

1 ω
j−1
n−1
n . (3.5)

Then the conditional distribution of x given θ is:

f(x|θ) =
n

∏

j=1

[

{

1 − (1 − π1)
n−j

n−1 (1 − πn)
j−1
n−1

}∈jn+1ηjn+1

{

ω
n−j

n−1

1 ω
j−1
n−1
n

}(1−∈jn+1)(1−ηjn+1) {

(1 − π1)
n−j

n−1 (1 − πn)
j−1
n−1

−ω
n−j

n−1

1 ω
j−1
n−1
n

}∈jn+1(1−ηjn+1)+(1−∈jn+1)ηjn−1
]

=
n

∏

j=1

(ej + djuj + cjvj), (3.6)

where

uj = (1 − π1)
n−j

n−1 (1 − πn)
j−1
n−1 and vj = ω

n−j

n−1

1 ω
j−1
n−1
n ,

and ej , dj , cj are as in Model 1. Then, making a similar expression as in
Model 1 we replace

∏

jǫΩj

djuj =





∏

jǫΩj

dj



 (1 − π1)

1
n−1

∑

jǫΩj

(n − j)

(1 − πn)

1
n−1

∑

jǫΩj

(j − 1)

,

∏

jǫΩj

cjvj =





∏

jǫΩj

cj



 ω

1
n−1

∑

jǫΩj

(n − j)

1 ω

1
n−1

∑

jǫΩj

(j − 1)

n .

Considering uniform prior :

g(θ) = k,

0 < π1 < πn < 1
0 < ωn < ω1 < 1
0 < πj + ωj < 1, j = 1(1)n











,

we have the different conditional distributions. For computation we use
Gibbs sampler technique. Some computations are in the following table.
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Table 2 Posterior mean, s.d. and modes of (π1, πn) and (ω1, ωn) for
n = 5 and uniform prior.

(∈
∼
, η
∼
) π1 πn ω1 ωn

0.6382 0.7896 0.2104 0.0723
(∈
∼1

, η
∼1

) 0.1266 0.1446 0.1524 0.1102

0.6550 0.8000 0.2050 0.1000

0.3019 0.4743 0.4976 0.3574
(∈
∼1

, η
∼2

) 0.1326 0.1345 0.1406 0.1412

0.3100 0.4900 0.5050 0.3350

4 Grouped data: a possible extension

Suppose, instead of one by one monitoring, subjects are assigned in gorups
at every state. Let si samples are allocated at the i-th stage, i = 1, 2, . . . , n.
Then,

n
∑

i=1

si = N

is the total sample size. Let us define as in Section 2, the following indicator
variables :

∈
(k)
in+1= 1 (or 0) according as the response (or non-response) of the first

component corresponding to the k-th unit of the i-th stage, k = 1(1)si,

i = 1(1)n and η
(k)
in+1 is a similar indicator for the second component. Then

(

∈
(k)
in+1, η

(k)
in+1

)

’s are independent pairs for all k. Suppose

P
(

∈
(k)
in+1= 1, η

(k)
in+1 = 1

)

= πn+1−i, P
(

∈
(k)
in+1= 0, η

(k)
in+1 = 0

)

= ωn+1−i,

are independent of k. Then, in the i-th stage, writing

ei =
si

∑

k=1

∈
(k)
in+1 η

(k)
in+1, ri =

si
∑

i=1

(1− ∈
(k)
in+1)(1 − η

(k)
in+1),

as the total number of responses and non-responses, we have (ei, ri) fol-
lows trinomial (si;πn+1−i, ωn+1−i) distribution. Our data here is obviously

x ≡
((

∈
(k)
in+1,∈

(k)
in+1

)

; k = 1, . . . , si, i = 1, . . . , n
)

. Then, with the earlier
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notations

f(x|θ) =
n

∏

j=1

{

sj!

ej !rj !(sj−ej−rj)!
π

ej

n+1−jω
rj

n+1−j(1−πn+1−j−ωn+1−j)
sj−ej−rj

}

, (4.1)

and

g(θ) = k,

0 < π1 < π2 < . . . < πn < 1
0 < ωn < ωn−1 < . . . < ω1 < 1
0 < πj + ωj < 1 ∀ j











, (4.2)

we get the different conditional p.d.f.’s as

p(πj |πi, . . . , πj−1, πj+1, . . . , πn, ω1, . . . , ωn, x)

= D−1
A (j)π

en+1−j

j ω
rn+1−j

j (1 − πj − ωj)
sn+1−j−en+1−j−rn+1−j ,

πj−1 < πj < Aj ,

and

p(ωj|πi, . . . , πn, ω1, . . . ωj−1, ωj+1 . . . , ωn, x)

= D−1
B (j)π

en+1−j

j ω
rn+1−j

j (1 − πj − ωj)
sn+1−j−en+1−j−rn+1−j ,

ωj+1 < ωj < Bj,

where

DA(j) =

τj
∑

i=0

(−1)i
(

τj

i

) i
∑

l=0

(

i

l

)

ω
rn+1−j+i−l
j (en+1−j + l + 1)−1

(

A
en+1−j+l+1
j − π

en+1−j+l+1
j−1

)

,

DB(j) =

τj
∑

i=0

(−1)i
(

τj

i

) i
∑

l=0

(

i

l

)

π
rn+1−j+l
j (rn+1−j + i − l + 1)−1

(

B
rn+1−j+l+1
j − ω

rn+1−j+i−l+1
j+1

)

,

with

τj = sn+1−j − en+1−j − rn+1−j, π = 0, πn+1 = 1, ωn+1 = 0, ω0 = 1,

Aj = min (πj+1, 1 − ωj) , Bj = min(ωj−1, 1 − πj).

Then, as in Section 2, a similar analysis can be performed.
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