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50 Brazilian Journal of Probability and Statistis, 15, 2001In this paper we present Bartlett orretions to likelihood ratio statis-tis (Lawley, 1956) in linear regression models with errors that follow asymmetri distribution. We generalize the results obtained by Ferrari andArellano{Valle (1996) who onsidered a t distribution for the errors. Bar-tlett orretions for other important lasses of regression models are foundin Cordeiro (1983, 1987), Cordeiro, Paula and Botter (1994) among others.In Setion 2, we de�ne the lass of linear regression models with a sym-metri distribution for the errors and show how the maximum likelihoodestimates are obtained. It beomes lear that inferenes for a number ofmodels in this lass are robust in the sense that outlying observations haveless weight in the estimation proess than the others. In Setion 3, wedevelop Bartlett orretions to likelihood ratio statistis and present somespeial ases. In Setion 4, simulation results are presented and, �nally, inSetion 5, a real data example is disussed. Tehnial details are left foran appendix.2 Symmetri models and maximum likelihood es-timationLet y1; : : : ; yn be n independent random variables, eah yl having a on-tinuous symmetri distribution with loation parameter � 2 IR and saleparameter � > 0, and density funtion�(yl;�l; �) = 1� h �yl � �l� �2! ; y 2 IR; (2.1)for some positive funtion h(:) (named generating density funtion), de�nedon IR+, and R10 u�1=2h(u)du = 1. This ondition guarantees that �(�;�l; �)is a density funtion (Fang, Kotz and Ng, 1990). A number of importantdistributions have density funtion (2.1) as it is shown in Table 1. Thistable also shows the oeÆient of kurtosis 2 for eah distribution. It anbe seen that the lass of distributions onsidered here overs distributionswith larger as well as smaller oeÆients of kurtosis than the normal dis-tribution1. The lass of symmetri distributions de�ned in (2.1) has beenonsidered by several authors (Kelker, 1970; Chu, 1973; Cambanis, Huangand Simons, 1981). The properties of these distributions have been explo-red by Muirhead (1980, 1982), Berkane and Bentler (1986), Rao (1990) andFang, Kotz and Ng (1990). It is easy to �nd many properties of the sym-metri distributions parallel to those of the normal distribution. A review1Note that the oeÆient of kurtosis of the generalized logisti distribution does notdepend on the parameter �. However, its variane equals 2 0(m)�2=� whih redues to�2 if � =p2 0(m).



Ferrari and Uribe-Opazo: Correted likelihood ratio tests 51of di�erent areas in whih symmetri distributions are applied is given byChmielewski (1981).Table 1Generating density funtions and oeÆients of kurtosis for somesymmetri distributionsDISTRIBUTION h(u) 2Normal h(u) = 1p2� expf�u=2g; u > 0 3Cauhy h(u) = 1� (1 + u)�1; u > 0 -t h(u) = ��=2B(1=2;�=2) [� + u℄� �+12 ; � > 0, 3 + 6(��4) ;u > 0; � > 4Generalized t h(u) = sr=2B(1=2;r=2) (s+ u)� r+12 ; s; r > 0, 3 + 6(r�4) ;u > 0; r > 4Type I Logisti h(u) =  e�u(1+e�u)2 ; u > 0;  � 1:484300029 2.385165Type II Logisti h(u) = e�u1=2(1+e�u1=2 )2 ; u > 0 4.2Generalized Logisti h(u) = �B(m;m) h e��pu(1+e��pu)2 im ; 3 +  000 (m)(2 (m)2)m > 0; u > 0; � > 0Contaminated Normal h(u) = (1� ") 1p2� expf�u=2g 3 (1+"(�4�1))(1+"(�2�1))2+" 1p2�� expf�u=(2�2)g;u > 0; � > 0; 0 � " � 1Power Exponential h(u) = C(k) expn� 12u1=(1+k)o, �� 5(1+k)2 ��( 1+k2 )�� 3(1+k)2 �2�1 < k � 1; u > 0where C(k)�1 = �(1 + 1+k2 )21+(1+k)=2Note: B(:; :), �(�) and  (�) are the beta, gamma and digamma funtions respetively.We assume that the parameter vetor � = (�1; : : : ; �n)> follows thelinear struture � = X�; (2.2)where X is an n � p matrix of known onstants with rank(p) < n and� = (�1; : : : ; �p)> is a set of unknown regression parameters.



52 Brazilian Journal of Probability and Statistis, 15, 2001Let L(�) be the total log{likelihood funtion for the regression modelde�ned by (2.1) and (2.2) given y1; : : : ; yn, where � = (�>; �)>. We haveL(�) = �n log�+ nXl=1 t(zl); (2.3)where t(zl) = log h(z2l );with zl = yl � x>l �� (2.4)representing the standardized error for the l-th observation.For obtaining the likelihood equations, the information matrix and theBartlett orretions, one needs to derive the log{likelihood funtion withrespet to the unknown parameters and ompute some moments of suhderivatives. In the following, we assume that suh derivatives and mo-ments exist. Therefore, the symmetri distributions that do not satisfythis ondition will be exluded. For instane, for the double exponentialdistribution, the �rst derivative of L(�) with respet to � does not exist forall � 2 IRp and, hene, it will not be onsidered here. In other ases, thederivatives of L(�) exist for all the values of the unknown parameters inthe parameter spae only if the extra known parameter (for example, k inthe power exponential distribution) belongs to a ertain interval that willbe indiated whenever it is neessary.The �rst derivative �L(�)=�� of the log{likelihood funtion given in(2.3) is obtained from�L(�)��r = � 1� nXl=1 t(1)l xlr and �L(�)�� = �n� � 1� nXl=1 t(1)l zl;where zl is de�ned in (2.4) and t(1)l = dt(zl)=dzl; for l = 1; : : : ; n, assumingthat suh derivative exists for all zl 2 IR. We have t(1)l = �zlwl, wherewl = wl(�) = �2 ddu log h(u)ju=z2l : (2.5)The maximum likelihood estimates of � and � are obtained from the like-lihood equations b� = (X>WX)�1X>Wyand b�2 = 1nbe>Wbe;



Ferrari and Uribe-Opazo: Correted likelihood ratio tests 53whereW =W (b�) = Diagf bw1; : : : ; bwng with wl de�ned in (2.5) and be = (y�X b�) is the vetor of ordinary residuals. The likelihood equations are non{linear in b� and b�2 exept for the normal model (wl = 1, for l = 1; : : : ; n)and hene an iterative algorithm must be used. A simple iterative proe-dure replaes the above equations by b�(r+1) = (X>W(r)X)�1X>W(r)y andb�2(r+1) = n�1be>(r+1)W(r+1)be(r+1); for r = 0; 1; 2; : : :, where W(r) = W (b�(r))and be(r) = (y � X b�(r)) with b�(r) = (b�(r); b�(r)) representing the estima-te of � in the r-th step. The proedure may be initialized by takingb�(0) = (X>X)�1X>y, the ordinary least squares estimate of �, andb�2 = n�1(y � X b�(0))>(y � X b�(0)). Standard iterative algorithms, suhas the Newton-Raphson, Fisher soring or EM algorithms, may also beused. The EM algorithm is partiularly useful for the t and generalized tdistributions (see Lange, Little and Taylor, 1989). The maximum likeliho-od estimate of � are unbiased up to an error of order n�2 (see Cordeiro,Ferrari, Uribe{Opazo and Vasonellos, 2000).Note that wl may be regarded as the ontribution of the l-th observationfor the estimation of the parameters. Table 2 shows the values of w forsome of the distributions given in Table 1. For the normal model all theobservations have the same weight in the estimation of � and �. For theCauhy, t, generalized t, type II logisti, generalized logisti, ontaminatednormal and power exponential distributions, wl is a dereasing funtionof jzlj = jyl � x>l �j=�. Hene, the maximum likelihood estimates of �and � are robust in the sense that the observations with large jzlj havesmall weight wl. For the type I logisti distribution, the weights wl areinreasing funtions of jzlj. This was expeted sine this distribution hasshorter{than{normal tails.The information matrix for (�>; �) (see Appendix) is blok{diagonaland is given by K = K(�) = DiagfK�;� ;K�;�g withK�;� = Æ(2;0;0;0;0)�2 X>Xand K�;� = ��;� = n�2 (Æ(2;0;0;0;2) � 1);where Æ(a;b;;d;e) = E[t(1)at(2)b t(3)t(4)dze℄; (2.6)for a, b, , d, e = 0; 1; 2; 3; 4, with t(r) = drt(z)=dzr. Therefore, � and � areglobally orthogonal parameters and their maximum likelihood estimatesare asymptotially unorrelated.



54 Brazilian Journal of Probability and Statistis, 15, 2001Table 2w for some symmetri distributionsDISTRIBUTION wNormal 1Cauhy 2=(1 + z2)t (� + 1)=(� + z2)generalized t (r + 1)=(s+ z2)Type I Logisti 2(1 � e�z2)1 + e�z2 = 2tanh(z2=2)Type II logisti (ejzj � 1)=(jzj(1 + ejzj))Generalized logisti �m(e�jzj � 1)=(jzj(1 + e�jzj))Contaminated normal f1(z2)=f0(z2);where fi(z2) = (1� ")e�z2=2 + "(�2)�1=2�ie�z2=2�2 ,i = 0; 1:Power exponential 1=[(1 + k)(z2)k=(1+k)℄, for �1 < k < 1.3 Likelihood ratio tests and Bartlett orretionsConsider the null hypothesis H0 : �1 = �(0)1 to be tested against the al-ternative hypothesis H1 : �1 6= �(0)1 , where �1 = (�1; : : : �q)>, q � p,with �2 = (�q+1; : : : ; �p)> and � representing nuisane parameters. Thelikelihood ratio statisti for testing H0 against H1 isLR = 2(L(b�)� L(e�));where L(�) is the log{likelihood funtion given in (2.3), b� = (b�>; b�)> ande� = (�(0)>1 ; e�>2 ; e�)>, with e�2 and e� denoting the restrited maximum like-lihood estimates for �2 and � respetively.It is well known that, under suitable regularity onditions, LR has a�2q distribution asymptotially under the null hypothesis. However, forsmall to moderate samples, the asymptoti distribution may deliver poorapproximations to the true sizes of the tests. This beomes lear in thesimulation results that will be presented later. For this reason, it is onve-nient to de�ne a modi�ed likelihood ratio statisti whose null distribution



Ferrari and Uribe-Opazo: Correted likelihood ratio tests 55is better approximated by the �2q distribution. This may be ahieved byusing the Bartlett orreted likelihood ratio statisti (see Lawley, 1956)LR� = LR�1� dn� ; (3.1)where d is given in the Appendix and is a funtion of some umulantsof log-likelihood derivatives. For the lass of symmetri linear regressionmodels onsidered here we obtain (see Appendix),d = d0q h0(X1;X2) + d1 +�2p� q2 � d2; (3.2)whered0 = Æ(0;0;0;1;0)4Æ2(2;0;0;0;0) ; d1 = �m2m32m21 � 2m3 +m23 +m42m1 ; d2 = � m232m1 ; (3.3)with m1 = Æ(0;1;0;0;2) � 1; m2 = 4� Æ(0;0;1;0;3) � 6 Æ(0;1;0;0;2);m3 = (Æ(0;0;1;0;1) + 2 Æ(0;1;0;0;0))=Æ(2;0;0;0;0);m4 = (Æ(0;0;0;1;2) � 6 Æ(1;1;0;0;1))=Æ(2;0;0;0;0);and h0(X1;X2) = �ZZ � �Z2Z2 ; (3.4)with �Z2Z2 = ntr(Z2dZ2d), �ZZ = ntr(ZdZd). Here,Z = fzlmg = X(X>X)�1X>; Z2 = fz2lmg = X2(X>2 X2)�1X>2 ;where the model matrix X is partitioned as X = (X1;X2) with X1 orres-ponding to the �rst q olumns of X and X2 orresponding to the remainingolumns. Then Z and Z2 are n � n matries of ranks p and (p � q), res-petively. If p = q we set Z2 = 0, where 0 denotes an n � n null matrix.Note that Z�2Æ�1(2;0;0;0;0) and Z2�2Æ�1(2;0;0;0;0) are the asymptoti ovarianematries of X b� and X2e�2, respetively. Also,Zd = Diagfz11; : : : ; znng and Z2d = Diagfz211; : : : ; z2nngrepresent the diagonal matries obtained from the diagonal elements of Zand Z2, respetively.Note that d is a linear ombination of d0, d1 and d2, whih dependon the distribution assumed for the data through the Æ's, with oeÆients



56 Brazilian Journal of Probability and Statistis, 15, 2001that depend on the model matrix X (through h0(X1;X2)), the number ofregression parameters (p), the number of parameters of interest (q) and thesample size (n). A possible motivation for developing losed form formulaefor Bartlett orretions to the likelihood ratio statistis is that the formulaeusually reveal whih aspets of the model ontribute to the possible poorreliability of the �rst order �2 approximation. For example, the formula ofthe Bartlett orretion given in (3.2) reveals that the number of nuisaneparameters and the di�erene between the total sums of the squares of thediagonal elements of the projetion matries Z and Z2 have inuene onthe goodness of the �2 approximation to the likelihood ratio statisti.We now examine some speial linear strutures that lead to simpli�a-tions in the formula for h0(X1;X2) given in (3.4). If the null hypothesis isH0 : � = �(0) we have p = q (Z2 = 0) and hene h0(X1;X2) = �ZZ . In par-tiular, if � is a salar parameter (p = q = 1) then h0(X1;X2) = s4=s22, whe-re sa =Pni=1 xai =n, for a = 2; 4 and for the i.i.d. ase we have h0(X1;X2) =1. For the likelihood ratio test of homogeneity of the loation parametersin a one{way lassi�ation model, h0(X1;X2) = nPpi=1(1=ni) � 1, whe-re n1; : : : ; np are the number of observations in the p independent randomsamples and n =Ppi=1 ni. If n1 = n2 = � � � = np, then h0(X1;X2) = p2�1.For the simple linear regression model, h0(X1;X2) = S4=S22 + 2; whereSa =Pni=1 (xi � x)a=n; for a = 2; 4: Hene the approximation of the nulldistribution of the likelihood ratio statisti by the �21 distribution is sensi-tive to hanges in the sample kurtosis S4=S22 of the ovariate.Suppose now that the null hypothesis H0 : � = �(0) is to be testedagainst H1 : � 6= �(0), where � is the nuisane parameter and �(0) is aspei�ed value for the dispersion parameter �. The likelihood ratio statistiis LR = 2fL(b�; b�)� L(e�; �(0))g:Under H0, LR has a �2 distribution with one degree of freedom. In theAppendix we show that the Bartlett orreted likelihood ratio statistis ofH0 against H1 is given by (3.1) withd = d3 + d1p+ d2p22 ; (3.5)whered3 = 14(Æ(0;1;0;0;2) � 1)3 f(Æ(0;1;0;0;2) � 1)(Æ(0;0;0;1;4) + 16 Æ(0;0;1;0;3)+26(2Æ(0;1;0;0;2)�1))� 53(6Æ(0;1;0;0;2)+Æ(0;0;1;0;3)�4)2g: (3.6)We note that the Bartlett orretion does not depend on the model matrixX and is a seond degree polynomial in the number of regression parame-ters (p).



Ferrari and Uribe-Opazo: Correted likelihood ratio tests 57We now apply formulae (3.3) and (3.6) to some symmetri distributions.(i) Normal: d0 = 0; d1 = 1; d2 = 1; d3 = 1=3:(ii) Cauhy: d0 = 3=4; d1 = 1=2; d2 = 1; d3 = 1=4:(iii) t (� > 0 known):d0 = 3(� + 2)(� + 3)22�(� + 1)(� + 5)(� + 7) ; d1 = (�+2)(�+3)(�2+9�+2)�(� + 5)2(� + 7) ;d2 = (� + 3)(� + 2)2�(� + 5)2 ; d3 = (� + 3)(�3 + 14�2 + 14� + 25)3�(� + 5)2(� + 7) :(iv) Generalized t (s; r > 0 known):d0 = 3(r + 2)(r + 3)22r(r + 1)(r + 5)(r + 7) ; d1 = (r + 2)(r + 3)(r2 + 9r + 2)r(r + 5)2(r + 7) ;d2 = (r + 3)(r + 2)2r(r + 5)2 ; d3 = (r + 3)(r3 + 14r2 + 14r + 25)3r(r + 5)2(r + 7) :(v) Type I logisti: d0 � 0:4879224; d1 � 1:470555027; d2 � 1:362652631;d3 � 0:481968387:(vi) Type II logisti: d0 = 3=20; d1 � 0:985182; d2 � 0:786756; d3 �0:22795:(vii) Generalized logisti (m > 0 known);d0 = (2m+ 1)4m(2m+ 3) ;d1 = (2m+ 1)(4m2(m+ 1) 0(m) + 8m2 � 2m� 1)2(m+ 1)2(2m2 0(m) + 2m� 1)2+(2m+ 1)(m2 0(m)� 6m2 � 3m� 1)m(2m2 0(m) + 2m� 1) ;d2 = (2m+ 1)32(2m2 0(m) + 2m� 1)(m+ 1)2 ;d3 = (2m+ 1)f6m3(m+ 1) 0(m)2 +m3(m+ 1) 000(m)�4m(26m3 + 41m2 + 15m+ 3) 0(m)� 52m2(m+ 1) + 21m+9g=f2(2m + 3)(m+ 1)(2m2 0(m) + 2m� 1)2g+5(2m+ 1)3(3m2 0(m) + 2m� 1)2=f3(m + 1)2(2m2 0(m)+2m� 1)3g:



58 Brazilian Journal of Probability and Statistis, 15, 2001(viii) Power exponential (�1 < k < �1=2, known);d0 = k(1 � k)� � 1�3k2 �� �1+k2 �8� �3�k2 �2 ; d1 = d2 = 1k + 1 ; d3 = 13(k + 1) :Note that the results of the t distribution depend only on the (known)parameter � and agree with the results obtained by Ferrari and Arellano{Valle (1996). When � ! 1, d1 and d2 equal the orresponding d's of thenormal distribution. The results for the generalized t distribution dependonly on the known parameter (r) and are equal to the orresponding re-sults obtained for the t distribution with � replaed by r. The d0s for thepower exponential distribution depend on the kurtosis parameters k whihis assumed to be known. For the normal, Cauhy, type I and type II lo-gisti distributions the d0s are �xed onstants. The d0s for the generalizedlogisti distribution depend only on the parameter m and onverge to theorresponding d0s for the normal distribution when m!1.4 Simulation resultsIn this setion we use Monte Carlo experiments to ompare the size perfor-mane of the likelihood ratio (LR) and Bartlett orreted likelihood ratio(LR�) statistis for testing H0 : �2 = 0 against H1 : �2 6= 0 in the linearregression model (2.1) and (2.2) with p = 7 (i.e. 7 omponents in theregression parameter). We onsidered the following distributions for theerrors: Cauhy and t with � = 2 and 4 degrees of freedom. For the tdistribution � is assumed to be known. We also onsider the ase where �is (wrongly) assumed to be equal to 4 but the data were generated from at distribution with 6 degrees of freedom.The values for the ovariates were seleted as follows: x1 is a vetor ofones; x2; x3; x4; x5 and x6 are random samples of the standard normal,uniform in the (0,1) interval, Cauhy, F (8; 6) and exponential (with meanequal to 8) distributions, respetively, and x7 has its �rst n=2 omponentsequal to zero and the remaining omponents equal to 1. All results arebased on 10,000 Monte Carlo repliations and are displayed in Table 3,where all entries are perentages.The �gures in Table 3 reveal that the likelihood ratio test tends to bequite oversized at least for the ases onsidered here. The size performaneof the orreted test is muh better than that of its unorreted ounterparteven for the Cauhy distribution and the t distribution with the number ofdegrees of freedom wrongly assumed to be equal to 4 while the orret valuewas 6 (a disussion of the use � = 4 when the true value of � is unknownmay be found in Lange, Little and Taylor, 1989, p.892). The e�et ofthe Bartlett orretion to the likelihood ratio statisti is remarkable. Forexample, for the t distribution with 2 degrees of freedom, n = 30 and a



Ferrari and Uribe-Opazo: Correted likelihood ratio tests 5910% nominal size, the simulated size of the likelihood ratio test drops from19.7% (almost two times the nominal size) to 10.4% when the orretionis used. Table 3Simulated sizes of the LR and orreted LR testsSample Nominal Cauhy t2 t4 t6 (� = 4)(�)size size LR LR� LR LR� LR LR� LR LR�20 5.0 25.0 5.7 14.9 3.8 11.7 4.3 12.5 4.710.0 33.8 21.2 22.3 8.2 18.6 8.5 19.8 9.430 5.0 17.5 3.9 11.9 5.3 10.0 4.7 10.8 5.810.0 26.2 8.7 19.7 10.4 16.0 10.0 17.8 11.340 5.0 12.8 4.8 8.9 4.8 8.4 5.3 8.8 5.410.0 20.6 9.9 15.7 9.6 15.0 10.3 15.3 10.950 5.0 10.3 4.9 8.0 4.8 7.4 5.0 8.0 5.510.0 17.5 9.7 14.6 10.0 13.4 10.2 13.9 10.760 5.0 9.1 4.7 7.2 4.8 6.6 4.9 7.5 5.510.0 16.0 9.7 13.2 10.0 12.4 9.8 13.6 10.7(�) � is assumed to be equal to 4 while its orret value is 6.5 A numerial exampleAs a numerial appliation of our results we onsider a data set presentedby Draper and Stoneman (1966) (see Table 4). For these data we assumethat yl = �0 + �1x1l + �2x2l + �zl; l = 1; 2; : : : ; 10;where the errors zl are i.i.d. random variables. We �rst �tted the modelassuming a normal distribution for the errors. In Figure 1 we present aplot of the usual Studentized deleted residuals against the �tted values.These residuals have a t distribution with n � p � 2 degrees of freedomif the errors follow a standard normal distribution. The plot reveals thatthe �rst observation is an outlying ase (its Studentized deleted residualequals -3.25). This suggests that a distribution with longer-than-normaltails may be more appropriate for modelling these data. In Table 5 wepresent the maximum likelihood estimates of the parameters assuming thefollowing distributions for the errors: standard normal, t with � = 4,power exponential with k = 0:5 and generalized logisti with m = 0:4and � =p2 0(m):



60 Brazilian Journal of Probability and Statistis, 15, 2001Table 4Wood beam datastrenght spei� gravity moisture ontent(y) (x1) (x2)11.14 0.499 11.112.74 0.558 8.913.13 0.604 8.811.51 0.441 8.912.38 0.550 8.812.60 0.528 9.911.13 0.418 10.711.70 0.480 10.511.02 0.406 10.511.41 0.467 10.7Table 5Parameter estimatesDistribution b�0 b�1 b�2 b�N(0; 1) 10.302 8.495 -0.266 0.230(1.583) (1.491) (0.103) (0.051)t4 9.068 9.231 -0.175 0.159(1.295) (1.219) (0.084) (0.047)PE(k = 0:5) 9.368 9.095 -0.198 0.138(1.682) (1.449) (0.113) (0.037)GL(m = 0:4) 9.104 9.226 -0.178 0.217(1.345) (1.266) (0.087) (0.060)Note: Standard errors are given in parentheses.We now delete the �rst observation (outlying ase) and re-�t the sa-me models. Table 6 show the new parameter estimates. We note thatunder the normal assumption, the deletion of a single observation has aremarkable impat on the estimates while, under the assumption of longer-than-normal-tailed distributions, the impat is muh less pronouned. Forexample, when the �rst observation is exluded, b�1 beomes 21%, 7%, 8%and 7% bigger under the normal, t4, PE(k = 0:5) and GL(m = 0:4) distri-butions respetively. This suggests that the heavy-tailed distributions are,in fat, more appropriate for this data set than the normal distribution.



Ferrari and Uribe-Opazo: Correted likelihood ratio tests 61Table 6Parameter estimates exluding the �rst observationDistribution b�0 b�1 b�2 b�N(0; 1) 7.592 10.267 -0.073 0.140(1.163) (1.002) (0.078) (0.032)t4 8.148 9.833 -0.109 0.106(1.042) (0.898) (0.070) (0.037)PE(k = 0:5) 8.028 9.862 -0.098 0.087(1.275) (1.098) (0.085) (0.025)GL(m = 0:4) 8.139 9.844 -0.108 0.135(0.986) (0.849) (0.066) (0.041)Note: Standard errors are given in parentheses.Table 7LR and orreted LR statistisDistribution LR LR�N(0,1) 5.068 3.295(0.024) (0.047)t4 3.205 1.955(0.073) (0.162)GL(m = 0:4) 3.666 2.139(0.056) (0.144)Note: p-values are given in parentheses.Table 8LR and orreted LR statistis ex-luding the �rst observationDistribution LR LR�N(0,1) 0.769 0.470(0.381) (0.493)t4 2.074 1.162(0.149) (0.281)GL(� = 0:4) 2.526 1.336(0.112) (0.247)Note: p-values are given in parentheses.



62 Brazilian Journal of Probability and Statistis, 15, 2001

11.0 11.5 12.0 12.5 13.0

-4
-2

0
2

fitted value

S
tu

de
nt

iz
ed

 d
el

et
ed

 r
es

id
ua

l

1

Figure 1Plot of Studentized deleted residuals against �tted valuesTables 7 and 8 show the values of the likelihood ratio statistis and those oftheir orreted versions for the test of H0 : �2 = 0 against H1 : �2 6= 0 al-ulated with all the observations and without the �rst one, respetively2.The �gures in these tables show that deletion of the outlying observationhas an enormous impat on the p-values of all the tests under the normalityassumption. On the other hand, the hanges in the p-values are muh smal-ler under the alternative models. In partiular, for a 10% nominal level,the orreted likelihood ratio test under longer-than-normal-tailed distri-butions do not lead to the rejetion of the null hypothesis whether or notthe �rst observation is eliminated. If the normal assumption is onsidered,H0 is not rejeted if the �rst observation is deleted and rejeted otherwise.This example suggests that the lass of symmetri models studied in thispaper is robust in the presene of outlying observations.6 Conluding remarksIn this paper we derived Bartlett orretions to likelihood ratio statistisin a lass of symmetri linear regression models that has the normal and2The power exponential (k = 0:5) is not onsidered here beause the Bartlett orre-tion is valid only for �1 < k < �1=2.



Ferrari and Uribe-Opazo: Correted likelihood ratio tests 63the t linear regression models as speial ases and overs other models withheavy tails. The Bartlett fator relative to tests onerning the regressionparameters depends on the distribution assumed for the data, in partiularon the oeÆient of kurtosis of suh distribution, and also on the modelmatrix, the number of regression parameters, the number of nuisane pa-rameters and the sample size. Besides, the Bartlett fator relative to testson the dispersion parameter depends on the same quantities exept for themodel matrix whih is irrelevant for determining the orretion. Our simu-lation results reveal that the likelihood ratio test tends to be quite oversizedand that the size performane of the orreted test is muh better than thatof its unorreted ounterpart.AppendixLet L = L(�) be the total log-likelihood funtion given in (2.3). Weshall use the following notation for umulants of log-likelihood derivati-ves, where all suÆes, exept �, range from 1 to p: �rs = E(�2L=��r��s),�rst = E(�3L=��r��s��t), ��� = E(�2L=��2), �r� = E(�2L=��r��);�r;s = E(�L=��r �L=��s) and so on. Derivatives of suh umulants aredenoted by �(t)rs = �E(�2L=��r�s)=��t, �(�)rs = �E(�L=��r�s)=��; �(tu)rs =�2E(�L=��r�s)=��t��u; et. Note that �r;s and ��;� are elements of theinformation matrix for (�>; �)>. The orresponding elements of its inverseare denoted by �r;s = ��rs and ��;� = ����. From the �rst derivative ofthe log{likelihood funtion given in Setion 2, we have�2L��r��s = � 1�X �t(1)l��s xlr=� 1�X dt(1)ldzl �zl��l ��l��sxlr= 1�2X t(2)l xlrxls;�2L��2 = 1�2 nXl=1(1+2t(1)l zl+t(2)l z2l ); �2L(�)��r�� = 1�2 nXl=1(t(2)l zl+t(1)l )xlr:Assuming standard regularity onditions and taking expetations we get�rs = �Æ(2;0;0;0;0)�2 nXl=1 xlrxls; ��� = � n�2 (Æ(2;0;0;0;2) � 1); �r� = 0;where the Æ's ome from (2.6). From the above equations, it follows the in-formation matrix for (�>; �)> given in Setion 3. Note that, from Bartlettidentities (Lawley, 1956), the Æ's sastify some relations suh as Æ(0;1;0;0;1) =Æ(1;0;0;0;0) = 0, Æ(0;0;0;1;0) = �Æ(1;0;1;0;0), Æ(1;1;0;0;1) + Æ(0;0;1;0;1) = �Æ(0;1;0;0;0),Æ(0;1;0;0;2) = 2�Æ(2;0;0;0;2), Æ(4;0;0;0;0) = �3Æ(2;1;0;0;0), Æ(1;1;0;0;3) = �3Æ(0;1;0;0;2)�Æ(0;0;1;0;3), Æ(0;1;0;0;0)=�Æ(2;0;0;0;0) and 2Æ(0;0;1;0;1) = �Æ(0;0;0;1;2)�Æ(1;0;1;0;2).



64 Brazilian Journal of Probability and Statistis, 15, 2001Other umulants of log-likelihood derivatives that will be needed forobtaining the Bartlett orretion to the likelihood ratio statisti are givenby �rst = � 1�3 XE(t(3)l )xlrxlsxlt = 0;�rstu = 1�4 XE(t(4)l ))xlrxlsxltxlu = 1�4 Æ(0;0;0;1;0)X xlrxlsxltxlu;��rs = � 1�3 (Æ(0;0;1;0;1) + 2Æ(0;1;0;0;0))�xlrxls; ���r = 0;��rst = 0; ���rs = 1�4 (6Æ(0;1;0;0;0) + 6Æ(0;0;1;0;1) + Æ(0;0;0;1;2))�xlrxls;����r = 0; ���� = � n�3 (6Æ(0;1;0;0;2) + Æ(0;0;1;0;3) � 4);����� = n�4 (Æ(0;0;0;1;4) + 12Æ(0;0;1;0;3) + 36Æ(0;1;0;0;2) � 18):Suppose now that � is known. The general expression for the oeÆientd (see eq. (3.1)) of the Bartlett orretion to the likelihood ratio statistifor testing H0 : �1 = �(0)1 against H : �1 6= �(0)1 isd = nq �X 0(`rstu � `rstuvw)�X 00(`rstu � `rstuvw)� (A:1)where `rstu = �rs�tu ��rstu4 � �(u)rst + �(su)rt � ; (A:2)`rstuvw = �rs�tu�vw n�rtv ��suw6 � �(u)sw �+ �rtu ��svw4 � �(v)sw�+�(v)rt �(u)sw + �(u)rt �(v)swo (A.3)withP0 andP00 representing the summation over all the subsripts rangingin f1; : : : ; pg and fq + 1; : : : ; pg respetively (see Lawley, 1956). Pluggingthe umulants given above in (A.2) we getX 0`rstu = Æ(0;0;0;1;0)4�4 X 0�rs�tuX xlrxlsxltxlu= Æ(0;0;0;1;0)4�4 X(�X xlrxls�rs)(�X xltxlu�tu)= Æ(0;0;0;1;0)4Æ2(2;0;0;0;0) X z2ll = Æ(0;0;0;1;0)4Æ2(2;0;0;0;0) tr(ZdZd):



Ferrari and Uribe-Opazo: Correted likelihood ratio tests 65Note that P0 `rstuvw vanishes beause all the umulants that appear in`rstuvw are equal to zero. Now, if � is known the oeÆient d omes from(A.1) as d = d0q h0(X1;X2) (A:4);where d0 and h0(X1;X2) are given in (3.3) and (3.4) respetively.Now, suppose that � is unknown. It is onvenient to write d asd = d� + d��;where d� is given by (A.4) and d�� is given by (A.1) with the summationsreplaed byP0�� andP00��. These summations indiate that the subsriptsrange in f1; : : : ; p; �g and fq + 1; : : : ; p; �g respetively with at least onesubsript equal to �. From (A.2) and (A.3) and the umulants given above,we have X 0��`rstu = `���� +�6m3 �m42nm1 � p (A:5)andX 0��`rstuvw = `������+ 12nm2m3m21 p+ 4nm3m1 p+ 12nm23m1 p+ 12m23m1 p22 ; (A:6)where m1, m2 and m3 are given in Setion 3,`���� = 14n(Æ(2;0;0;0;2) � 1)2 fÆ(0;0;0;1;4) � 12Æ(0;1;0;0;2) + 6gand `������ = 14n(Æ(0;1;0;0;2) � 1)3n53(6Æ(0;1;0;0;2) + Æ(0;0;1;0;3) � 4)2�16(Æ(0;1;0;0;2) � 1)(4Æ(0;1;0;0;2) + Æ(0;0;1;0;3) � 2)o:The summationsP 00�� and P 00�� are given respetively by (A.5) and (A.6)with p replaed by q. Now, it is easy to get equation (3.2).If the hypothesis H0 : � = �(0) is to be tested against the alternativehypothesis H0 : � = �(0), the oeÆient d of the Bartlett orretion isgiven by (A.1) with q replaed by 1 and withP0 andP00 representing thesummation over all the subsripts ranging in f1; : : : ; p; �g and f1; : : : ; pgrespetively. It is now lear that, in this ase,d = nX 0��(`rstu � `rstuvw):From (A.5) and (A.6) we get (3.5) after some algebra.
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