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Summary

In this paper we derive general formulae for Bartlett corrections to likelihood ratio
statistics in a class of symmetric linear regression models. This is a wide class of
models that has the normal linear regression model as a special case and covers
other models with heavy tails. For instance, the t linear regression model, which
is commonly used as an alternative to the usual normal regression model when
the data contain extreme or outlying observations is another important special
case of this class. Simulation results show that the corrected tests perform much
better than their uncorrected counterparts in samples of small to moderate sizes.
A real data example is presented.
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metric distribution; ¢ distribution.

1 Introduction

In regression analyses it is a common practice to assume that the observati-
ons follow a normal distribution. However, it is well known that the normal
distribution is not always suitable for data containing extreme or outlying
observations. The t distribution provides a useful extension of the normal
distribution when a previous analysis of the data indicates the presence of
errors that follow a symmetric distribution with longer-than—normal tails.
Here, we consider a wide class of symmetric distributions that covers the
normal and the t distributions and has some other important distributions
as special cases.
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In this paper we present Bartlett corrections to likelihood ratio statis-
tics (Lawley, 1956) in linear regression models with errors that follow a
symmetric distribution. We generalize the results obtained by Ferrari and
Arellano—Valle (1996) who considered a t distribution for the errors. Bar-
tlett corrections for other important classes of regression models are found
in Cordeiro (1983, 1987), Cordeiro, Paula and Botter (1994) among others.

In Section 2, we define the class of linear regression models with a sym-
metric distribution for the errors and show how the maximum likelihood
estimates are obtained. It becomes clear that inferences for a number of
models in this class are robust in the sense that outlying observations have
less weight in the estimation process than the others. In Section 3, we
develop Bartlett corrections to likelihood ratio statistics and present some
special cases. In Section 4, simulation results are presented and, finally, in
Section 5, a real data example is discussed. Technical details are left for
an appendix.

2 Symmetric models and maximum likelihood es-
timation

Let y1,...,yn be n independent random variables, each y; having a con-
tinuous symmetric distribution with location parameter y € IR and scale
parameter ¢ > 0, and density function

2
w(yz;m,</>)=1h<<yl_“l> ) y € IR, (2.1)

¢ ¢

for some positive function h(.) (named generating density function), defined
onR", and [;° u~"/2h(u)du = 1. This condition guarantees that 7(-; s, ¢)
is a density function (Fang, Kotz and Ng, 1990). A number of important
distributions have density function (2.1) as it is shown in Table 1. This
table also shows the coefficient of kurtosis o for each distribution. It can
be seen that the class of distributions considered here covers distributions
with larger as well as smaller coefficients of kurtosis than the normal dis-
tribution'. The class of symmetric distributions defined in (2.1) has been
considered by several authors (Kelker, 1970; Chu, 1973; Cambanis, Huang
and Simons, 1981). The properties of these distributions have been explo-
red by Muirhead (1980, 1982), Berkane and Bentler (1986), Rao (1990) and
Fang, Kotz and Ng (1990). It is easy to find many properties of the sym-
metric distributions parallel to those of the normal distribution. A review

!Note that the coefficient of kurtosis of the generalized logistic distribution does not
depend on the parameter o. However, its variance equals 2¢)' (m)¢?/a which reduces to

¢ if a = /24 (m).
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of different areas in which symmetric distributions are applied is given by
Chmielewski (1981).

Table 1
Generating density functions and coefficients of kurtosis for some
symmetric distributions

DISTRIBUTION h(u) o
Normal h(u) = \/LTW exp{—u/2},u >0 3
Cauchy h(u) =11 +u)""u>0 -
pv/2 _ v+l
t h(u)zm[l/+u] 2 ,V>O, 3+—(UE4),
u>0,v>4
. o/ _r4l 6
Generalized t h(u) = m(s +u)” =, s5,7r>0, 3+ c=E
u>0r>4
Type 1 Logistic h(u) = cﬁ u > 0,c~ 1.484300029 2.385165
.. 67"1/2
Type II Logistic h(u) = Ty >0 4.2
B CE _ o e~V m 1/)”, (m)
Generalized Logistic ~ h(u) = Bomm) [(1+e—ﬂﬂ)2] , 3+ GotmD)
m>0,u>0,a>0
. 04—
Contaminated Normal fi(u) = (1 — &) 5= exp{—u/2} 3%

‘e exp{—u/(20%)},
u>0,0>00<e<L1
) r(804R) Y p( 14k
Power Exponential h(u) = C(k) exp {_%ul/(l+k)}7 ( F(Qs(lgk)() 2 )

-1<k<1Lu>0
where C(k)™' =T(1 + #)21“1%)/2

Note: B(.,.), I'(:) and 4(-) are the beta, gamma and digamma functions respectively.

We assume that the parameter vector pu = (u1,...,pun)  follows the
linear structure
§= X8, (2.2)

where X is an n X p matrix of known constants with rank(p) < n and
B=(B1,... ,ﬁp)T is a set of unknown regression parameters.
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Let L(0) be the total log-likelihood function for the regression model
defined by (2.1) and (2.2) given y1,...,y,, where # = (87, $)". We have

L(0) = —nlogd+ Y _ t(z), (2.3)
=1
where
t(z1) = log h(z7),
with .
u = W (2.4)

representing the standardized error for the [-th observation.

For obtaining the likelihood equations, the information matrix and the
Bartlett corrections, one needs to derive the log-likelihood function with
respect to the unknown parameters and compute some moments of such
derivatives. In the following, we assume that such derivatives and mo-
ments exist. Therefore, the symmetric distributions that do not satisfy
this condition will be excluded. For instance, for the double exponential
distribution, the first derivative of L(#) with respect to S does not exist for
all 8 € IR? and, hence, it will not be considered here. In other cases, the
derivatives of L(0) exist for all the values of the unknown parameters in
the parameter space only if the extra known parameter (for example, £ in
the power exponential distribution) belongs to a certain interval that will
be indicated whenever it is necessary.

The first derivative dL(0)/00 of the log-likelihood function given in
(2.3) is obtained from

OL(B) 1~ () OLO) _ n 1,
= —— t Ty and I~ - — 5 — t 21,
0B, %211 l o6 ¢ ¢;l l

where 2 is defined in (2.4) and tl(l) = dt(z)/dz, for | =1,...,n, assuming

(1)

that such derivative exists for all z; € IR. We have tzl = —zjw;, where

d
w; = wy(0) = —2a log h(u)\u:Z?. (2.5)

The maximum likelihood estimates of 5 and ¢ are obtained from the like-
lihood equations

B=(XTWX)"'XTWy
and

1 —~
$2 = _ATW/e\a
n
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where W = W () = Diag{i, ..., @, } with w; defined in (2.5) and & = (y—

X 3) is the vector of ordinary residuals. The likelihood equations are non—
linear in 3 and ¢? except for the normal model (w; = 1, for [ = 1,...,n)
and hence an iterative algorithm must be used. A simple iterative proce-

dure replaces the above equations by 3(r+1) = (XT/W(T)X)*IXT/W(,«)y and
¢%r-|—1) = n71€a+1)W(r+1)€(r+1), for r =0,1,2,..., where W(r) = W(Q(r))

and e,) = (y — XB\(T)) with é\(,n) = (B\(r),:ﬁ\(r)) representing the estima-
te of # in the r-th step. The procedure may be initialized by taking
By = (XTX)"'X Ty, the ordinary least squares estimate of 3, and

¢ =nl(y - Xﬁ(o))T(y — Xp(g))- Standard iterative algorithms, such
as the Newton-Raphson, Fisher scoring or EM algorithms, may also be
used. The EM algorithm is particularly useful for the t and generalized t
distributions (see Lange, Little and Taylor, 1989). The maximum likeliho-
od estimate of B are unbiased up to an error of order n~? (see Cordeiro,
Ferrari, Uribe-Opazo and Vasconcellos, 2000).

Note that w; may be regarded as the contribution of the [-th observation
for the estimation of the parameters. Table 2 shows the values of w for
some of the distributions given in Table 1. For the normal model all the
observations have the same weight in the estimation of # and ¢. For the
Cauchy, t, generalized t, type II logistic, generalized logistic, contaminated
normal and power exponential distributions, w; is a decreasing function
of |zy| = |yi — ;' B|/¢. Hence, the maximum likelihood estimates of S
and ¢ are robust in the sense that the observations with large |z| have
small weight w;. For the type I logistic distribution, the weights w; are
increasing functions of |z|. This was expected since this distribution has
shorter-than—normal tails.

The information matrix for (3',¢) (see Appendix) is block-diagonal
and is given by K = K(0) = Diag{Kp3 g, Ky 4} with

0(2,0,0,0,0) - T
Kpp=—p X X
and
n
Ky = kg = ?(5(2,0,0,0,2) - 1),
where

5(a,b,c,d,e) = E[t(l)a t(2)bt(3)ct(4)dze]a (2-6)

fora, b, ¢, d, e =0,1,2,3,4, with t(") = d"¢(z)/dz". Therefore, 5 and ¢ are
globally orthogonal parameters and their maximum likelihood estimates
are asymptotically uncorrelated.
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Table 2
w for some symmetric distributions
DISTRIBUTION w
Normal 1
Cauchy 2/(1+ 2?)
t (v +1)/(v +2%)
generalized t (r4+1)/(s + 2?)
Type I Logistic 2(11;7:::2_) = 2tanh(2%/2)
Type II logistic (el = 1)/(l2](1 +€#))

Generalized logistic am(eﬂ\Z\ —1)/(2](1 + ea\z\))
Contaminated normal £1(:*)/fo(="),
where f;(2%) = (1 —e)e > /2 + e(0?) /2>~ 2"12"

i=0,1.

Power exponential 1/[(1 + k) () OO for —1 < k < 1.

3 Likelihood ratio tests and Bartlett corrections

Consider the null hypothesis Hg : 1 = ﬁ§0) to be tested against the al-

ternative hypothesis Hy : 1 # 650), where 1 = (B1,.--8,) ", ¢ < p,

with B2 = (Bg41,---,8p) and ¢ representing nuisance parameters. The
likelihood ratio statistic for testing Hy against H; is

~ ~

LR = 2(L(B) — L(6)),

where L(0) is the log-likelihood function given in (2.3), = (Bﬁ, $)T and

~ T ~ ~ ~ ~
0= (8" B],$)7, with B and ¢ denoting the restricted maximum like-
lihood estimates for 8y and ¢ respectively.

It is well known that, under suitable regularity conditions, LR has a
XZ distribution asymptotically under the null hypothesis. However, for
small to moderate samples, the asymptotic distribution may deliver poor
approximations to the true sizes of the tests. This becomes clear in the
simulation results that will be presented later. For this reason, it is conve-
nient to define a modified likelihood ratio statistic whose null distribution
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is better approximated by the xﬁ distribution. This may be achieved by
using the Bartlett corrected likelihood ratio statistic (see Lawley, 1956)

LR*=LR (1 - %) , (3.1)

where d is given in the Appendix and is a function of some cumulants
of log-likelihood derivatives. For the class of symmetric linear regression
models considered here we obtain (see Appendix),

d 2p
d— ;“ho(xl,xg) tdy + < q) do, (3.2)
where
(0,0,0,1,0 mom 2ms +m2 +m m2
dO 4(§2 ’7)5 dl:_2223_ 323 4? d2:_233(33)
(2.0,0,0,0) my mi mi
with
=0(0,1,00,2) — 1, m2=4—10(0,0,1,03) — 6 (0,1,0,0,2):
= (6(0,0,1,0,1) T2 6(0,1,0,0,0))/9(2,0,0,0,0)1
my = (3(0,0,0,1,2) — 6 9(1,1,0,0,1))/(2,0,0,0,0)
and
ho(X1,X2) = pzz — pzy2y) (3.4)

with pz,7, = ntr(Z2q%24), pzz = ntr(Z4Z,). Here,
Z={zn}=XX"X)'X", Zy={zam}=X2(X] Xo) 'X;,

where the model matrix X is partitioned as X = (X, X9) with X; corres-
ponding to the first ¢ columns of X and X5 corresponding to the remaining
columns. Then Z and Zs are n X n matrices of ranks p and (p — q), res-
pectively. pr = q we set Zy = 0, where 0 denotes an n X n null matrix.

Note that Z¢24,,! (2:00,0,0) ° and Zy? (5 (2,0,0,0,0) r€ the asymptotic covariance

matrices of Xﬁ and X2ﬁ2, respectively. Also,
Zq = Diag{z11,...,2pn} and Zyq = Diag{zo11,...,20nn}

represent the diagonal matrices obtained from the diagonal elements of Z
and Zo, respectively.

Note that d is a linear combination of dy, d; and d9, which depend
on the distribution assumed for the data through the §’s, with coefficients



56 Brazilian Journal of Probability and Statistics, 15, 2001

that depend on the model matrix X (through ho(X1, X2)), the number of
regression parameters (p), the number of parameters of interest (¢) and the
sample size (n). A possible motivation for developing closed form formulae
for Bartlett corrections to the likelihood ratio statistics is that the formulae
usually reveal which aspects of the model contribute to the possible poor
reliability of the first order x? approximation. For example, the formula of
the Bartlett correction given in (3.2) reveals that the number of nuisance
parameters and the difference between the total sums of the squares of the
diagonal elements of the projection matrices Z and Zs have influence on
the goodness of the x? approximation to the likelihood ratio statistic.

We now examine some special linear structures that lead to simplifica-
tions in the formula for ho(X1, X2) given in (3.4). If the null hypothesis is
Hy : 8 = B we have p = q (Z» = 0) and hence ho(X1, X3) = pzz. In par-
ticular, if B is a scalar parameter (p = ¢ = 1) then ho (X1, Xo) = 54/3%, whe-
reS, = y.i , x¢/n, for a = 2,4 and for the i.i.d. case we have ho(X;, X3) =
1. For the hkehhood ratio test of homogeneity of the location parameters
in a one-way classification model, ho(X1,X2) = n).?_,(1/n;) — 1, whe-
re ni,...,ny are the number of observations in the p independent random

samplesand n = Y% _ n;. If ny = ny = --- = n, then ho(X;, Xo) = p>—1.
For the simple linear regression model, ho(X7, Xo) = §4/§§ + 2, where
So =301 (z; —T)%/n, for a = 2,4. Hence the approximation of the null
distribution of the likelihood ratio statistic by the x? distribution is sensi-
tive to changes in the sample kurtosis S, /?; of the covariate.

Suppose now that the null hypothesis Hy : ¢ = gb(o) is to be tested

against Hy : ¢ # #©), where 8 is the nuisance parameter and ¢ is a
specified value for the dispersion parameter ¢. The likelihood ratio statistic

is ~ ~
LR =2{L(B.¢) — L(B,¢“)}.
Under Hy, LR has a x? distribution with one degree of freedom. In the

Appendix we show that the Bartlett corrected likelihood ratio statistics of
Hj against H; is given by (3.1) with

d 2
d=ds+dp+ %, (3.5)

1

J
4(0(0,1,0,0,2) — 1)3{( (0,1,0,0,2)
5

5(65(0,1,0,0,2)+5(0,0,1,0,3)—4)2}- (3.6)

We note that the Bartlett correction does not depend on the model matrix
X and is a second degree polynomial in the number of regression parame-

ters (p).

— 1)(6(0,0,0,1,4) + 16 6(0,0,1,0,3)

+26(20(0,1,0,0,2) — 1)) —
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We now apply formulae (3.3) and (3.6) to some symmetric distributions.
(i) Normal: dy =0, dy =1, do=1, d3=1/3.
(ii) Cauchy: do = 3/4, dy =1/2, dy=1, d3=1/4.
(iii) t (v > 0 known):

p 3(v+2)(v+ 3)? 5= (v+2)(v+3) (2 +9v+2)
0 ww+ D) +5)w+7) ' vw+52w+T7)
5 - (v +3)(v+2)? g = (v +3)(v3 + 1402 + 14v + 25)
> T uw+n? T 3u(v+5)%(v + 7)

(iv) Generalized t (s, > 0 known):

d 3(r +2)(r +3)° g = (r+2)(r +3)(r2 +9r +2)
R G V[ G [ ) M R e ok O
d (r + 3)(r + 2)? dy — (r 4+ 3)(r3 4 1472 + 14r + 25)

r(r+5)2 7 3r(r +5)2(r +17)

(v) TypelIlogistic: do ~ 0.4879224, d; ~ 1.470555027, dy ~ 1.362652631,
dy ~ 0.481968387.

(vi) Type II logistic: dy = 3/20, d; =~ 0.985182, ds =~ 0.786756, d3 =~
0.22795.

(vii) Generalized logistic (m > 0 known);

p (2m +1)
0 4m(2m + 3)’
P (2m + 1)(d4m?2(m + 1)y’ (m) + 8m? — 2m — 1)
b 2(m + 1)2(2m2¢ (m) + 2m — 1)?
(2m + 1)(m2¢'(m) — 6m? — 3m — 1)
m(2m2y’' (m) + 2m — 1) ’
5 - (2m +1)3
27 202m2 (m) + 2m — 1)(m + 1)2°
d3 = (2m 4 1){6m3(m + 1)¢'(m)* + m*(m + 1)3"" (m)

—4m(26m> 4+ 41m? 4+ 15m + 3)¢' (m) — 52m?*(m + 1) + 21m
+9}/{2(2m + 3)(m + 1)(2m2' (m) + 2m — 1)?}

+5(2m 4 1)*(3m24' (m) + 2m — 1)?/{3(m + 1)*(2m?*¢)’ (m)
+2m — 1)},
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(viii) Power exponential (—1 < k < —1/2, known);

PG L R SR

- dy = ———.
8T (355)% E+1 7 3(k+1)

Note that the results of the t distribution depend only on the (known)
parameter v and agree with the results obtained by Ferrari and Arellano—
Valle (1996). When v — oo, dy and dy equal the corresponding d’s of the
normal distribution. The results for the generalized t distribution depend
only on the known parameter (r) and are equal to the corresponding re-
sults obtained for the t distribution with v replaced by r. The d's for the
power exponential distribution depend on the kurtosis parameters £ which
is assumed to be known. For the normal, Cauchy, type I and type II lo-
gistic distributions the d's are fixed constants. The d's for the generalized
logistic distribution depend only on the parameter m and converge to the
corresponding d's for the normal distribution when m — oo.

4 Simulation results

In this section we use Monte Carlo experiments to compare the size perfor-
mance of the likelihood ratio (LR) and Bartlett corrected likelihood ratio
(LR*) statistics for testing Hy : B2 =0 against Hy : B2 # 0 in the linear
regression model (2.1) and (2.2) with p = 7 (i.e. 7 components in the
regression parameter). We considered the following distributions for the
errors: Cauchy and t with v = 2 and 4 degrees of freedom. For the t
distribution v is assumed to be known. We also consider the case where v
is (wrongly) assumed to be equal to 4 but the data were generated from a
t distribution with 6 degrees of freedom.

The values for the covariates were selected as follows: z1 is a vector of
ones; T9, T3, T4, T5 and zg are random samples of the standard normal,
uniform in the (0,1) interval, Cauchy, F(8,6) and exponential (with mean
equal to 8) distributions, respectively, and z has its first n/2 components
equal to zero and the remaining components equal to 1. All results are
based on 10,000 Monte Carlo replications and are displayed in Table 3,
where all entries are percentages.

The figures in Table 3 reveal that the likelihood ratio test tends to be
quite oversized at least for the cases considered here. The size performance
of the corrected test is much better than that of its uncorrected counterpart
even for the Cauchy distribution and the t distribution with the number of
degrees of freedom wrongly assumed to be equal to 4 while the correct value
was 6 (a discussion of the use v = 4 when the true value of v is unknown
may be found in Lange, Little and Taylor, 1989, p.892). The effect of
the Bartlett correction to the likelihood ratio statistic is remarkable. For
example, for the t distribution with 2 degrees of freedom, n = 30 and a
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10% nominal size, the simulated size of the likelihood ratio test drops from
19.7% (almost two times the nominal size) to 10.4% when the correction
is used.

Table 3
Simulated sizes of the LR and corrected LR tests
Sample Nominal Cauchy to t4 te (v = 4)(*)
size size LR LR* LR LR* LR LR* LR LR*
20 5.0 25.0 5.7 149 3.8 11.7 4.3 125 4.7
10.0 33.8 21.2 223 82 186 85 19.8 94
30 5.0 175 3.9 119 53 10.0 4.7 108 5.8
10.0  26.2 87 19.7 104 16.0 10.0 17.8 11.3
40 5.0 128 48 89 48 84 53 88 54
10.0  20.6 9.9 15.7 9.6 15.0 10.3 15.3 10.9
50 5.0 103 49 80 48 74 50 80 55
10.0 17,5 9.7 14.6 10.0 13.4 10.2 13.9 10.7
60 5.0 9.1 47 72 48 6.6 49 75 55

10.0 16.0 9.7 13.2 10.0 124 9.8 13.6 10.7

(*) 1 is assumed to be equal to 4 while its correct value is 6.

5 A numerical example

As a numerical application of our results we consider a data set presented
by Draper and Stoneman (1966) (see Table 4). For these data we assume
that

Y :ﬁ[] +ﬁ1x1l +,32$2[ +¢Zla [ = 1321"'3103

where the errors z; are i.i.d. random variables. We first fitted the model
assuming a normal distribution for the errors. In Figure 1 we present a
plot of the usual Studentized deleted residuals against the fitted values.
These residuals have a t distribution with n — p — 2 degrees of freedom
if the errors follow a standard normal distribution. The plot reveals that
the first observation is an outlying case (its Studentized deleted residual
equals -3.25). This suggests that a distribution with longer-than-normal
tails may be more appropriate for modelling these data. In Table 5 we
present the maximum likelihood estimates of the parameters assuming the
following distributions for the errors: standard normal, t with v = 4,
power exponential with £ = 0.5 and generalized logistic with m = 0.4

and a = /2¢/(m).
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Table 4
Wood beam data

strenght specific gravity moisture content

(v) (1) (z2)
11.14 0.499 11.1
12.74 0.558 8.9
13.13 0.604 8.8
11.51 0.441 8.9
12.38 0.550 8.8
12.60 0.528 9.9
11.13 0.418 10.7
11.70 0.480 10.5
11.02 0.406 10.5
11.41 0.467 10.7

Table 5

Parameter estimates

Distribution Bo b1 Ba ¢
N@©O,1)  10.302 8495 -0.266  0.230
(1.583) (1.491) (0.103) (0.051)
ta 9.068 9.231 -0.175 0.159
(1.295) (1.219) (0.084) (0.047)
PE(k = 0.5) 9.368 9.095 -0.198 0.138
(1.682) (1.449) (0.113) (0.037)
GL(m =0.4) 9.104 9.226 -0.178 0.217
(1.345) (1.266) (0.087) (0.060)

Note: Standard errors are given in parentheses.

We now delete the first observation (outlying case) and re-fit the sa-
me models. Table 6 show the new parameter estimates. We note that
under the normal assumption, the deletion of a single observation has a
remarkable impact on the estimates while, under the assumption of longer-
than-normal-tailed distributions, the impact is IIIECh less pronounced. For
example, when the first observation is excluded, 8; becomes 21%, 7%, 8%
and 7% bigger under the normal, t4, PE(k = 0.5) and GL(m = 0.4) distri-
butions respectively. This suggests that the heavy-tailed distributions are,
in fact, more appropriate for this data set than the normal distribution.
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Table 6
Parameter estimates excluding the first observation
Distribution 5o b1 Ba ¢
N(0,1) 7.592  10.267 -0.073  0.140
(1.163)  (1.002) (0.078) (0.032)
tq 8.148 9.833  -0.109  0.106

(1.042) (0.898) (0.070) (0.037)
PE(k=0.5) 8028 9862 -0.098  0.087
(1.275)  (1.098) (0.085) (0.025)
GL(m=0.4) 8139 9844 -0.108 0.135
(0.986) (0.849) (0.066) (0.041)

Note: Standard errors are given in parentheses.

Table 7
LR and corrected LR statistics

Distribution LR LR*

N(0,1) 5.068  3.295
(0.024)  (0.047)
ty 3.205  1.955

(0.073)  (0.162)
GL(m=04) 3.666  2.139
(0.056)  (0.144)

Note: p-values are given in parentheses.

Table 8
LR and corrected LR statistics ezx-
cluding the first observation

Distribution LR LR*

N(0,1) 0.769  0.470
(0.381)  (0.493)
ty 2.074  1.162

(0.149)  (0.281)
GL(r=04) 2526  1.336
(0.112)  (0.247)

Note: p-values are given in parentheses.

61
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Plot of Studentized deleted residuals against fitted values

Tables 7 and 8 show the values of the likelihood ratio statistics and those of
their corrected versions for the test of Hy : fo = 0 against Hy : 89 # 0 cal-
culated with all the observations and without the first one, respectively?.
The figures in these tables show that deletion of the outlying observation
has an enormous impact on the p-values of all the tests under the normality
assumption. On the other hand, the changes in the p-values are much smal-
ler under the alternative models. In particular, for a 10% nominal level,
the corrected likelihood ratio test under longer-than-normal-tailed distri-
butions do not lead to the rejection of the null hypothesis whether or not
the first observation is eliminated. If the normal assumption is considered,
Hj is not rejected if the first observation is deleted and rejected otherwise.
This example suggests that the class of symmetric models studied in this
paper is robust in the presence of outlying observations.

6 Concluding remarks

In this paper we derived Bartlett corrections to likelihood ratio statistics
in a class of symmetric linear regression models that has the normal and

2The power exponential (k = 0.5) is not considered here because the Bartlett correc-
tion is valid only for —1 < k < —1/2.
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the t linear regression models as special cases and covers other models with
heavy tails. The Bartlett factor relative to tests concerning the regression
parameters depends on the distribution assumed for the data, in particular
on the coefficient of kurtosis of such distribution, and also on the model
matrix, the number of regression parameters, the number of nuisance pa-
rameters and the sample size. Besides, the Bartlett factor relative to tests
on the dispersion parameter depends on the same quantities except for the
model matrix which is irrelevant for determining the correction. Our simu-
lation results reveal that the likelihood ratio test tends to be quite oversized
and that the size performance of the corrected test is much better than that
of its uncorrected counterpart.

Appendix

Let L = L(6) be the total log-likelihood function given in (2.3). We
shall use the following notation for cumulants of log-likelihood derivati-
ves, where all suffices, except ¢, range from 1 to p: k.5 = E(9*L/083,0s),
Krst = E(33L/35r35335t) kpp = E(°L]0¢%), kry = E(°L/0B,0¢),
krs = E(OL/0p, OL/0Bs) and so on. Derivatives of such cumulants are
denoted by k\) = OE(0°L/0B,B,)/ 0B, 513 = OE(IL/0B,By) /0, r\s) =
O*E(OL/0PB,Bs)/0BtOPy, etc. Note that k, s and kg4 are elements of the
information matrix for (87, ¢) . The corresponding elements of its inverse

are denoted by k"% = —k"* and k?? = —k®®. From the first derivative of
the log-likelihood function given in Section 2, we have
0L 1 ot d") oz o150
= N g = N ¢ ,
96,05, ¢Z A Z d am 05,7 LN

n

0L )
o = ¢2Zl+2t 2+172 ),%(% ¢ZZ Vot ay,.

Assuming standard regularity conditions and taking expectations we get
o2 9(2,0,0,0,0) 0 0,0) n
Krs = — szms, Kgg = —g((s(m,o,m) — 1), firg =0,

where the §’s come from (2.6). From the above equations, it follows the in-
formation matrix for (87, ¢) " given in Section 3. Note that, from Bartlett
identities (Lawley, 1956), the §’s sastify some relations such as 6(0,170,071) =
0(1,0,0,000) = 05 9(0,0,0,1,0) = —9(1,0,1,0,0)s 9(1,1,0,0,1) t 9(0,0,1,0,1) = —9(0,1,0,0,0)s
0(0,1,0,0,2) = 2—0(2,0,0,0,2)5 9(4,0,0,0,0) = —30(2,1,0,0,0)» 9(1,1,0,0,3) = —39(0,1,0,0,2)
_5(0,0,1,0,3)1 5(0,1,0,0,0) :—5(2,0,0,0,0) and 25(0,0,1,0,1) = —5(0,0,0,1,2) —5(1,0,1,0,2)-
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Other cumulants of log-likelihood derivatives that will be needed for
obtaining the Bartlett correction to the likelihood ratio statistic are given
by

Krst = —% > E(tl(3))$1r$zs$1t =0,
Krstu = ¢4 Z E(t)”))xirwismm0, = gé (0,0,0,1,0) Z Ty TysTU Ty s
Kgrs = —¢3 (5(0,0,1,0,1) +20(0,1,0,0,0)) 2T T1s,  Kggr = 0,
Korst = 0, Kggrs = ¢4 (65 (0,1,0,0,0) T 63(0,0,1,0,1) + (0,0,0,1,2)) ET1r T,
Kgggr = 0, Kggp = ] (65 0,1,0,0,2) +0(0,0,1,0,3) — 4);
Koppp = %(5(0,0,0,1,4) +12010,0,1,0,3) T 3600,1,0,0,2) — 18)-

Suppose now that ¢ is known. The general expression for the coefficient
d (see eq. (3.1)) of the Bartlett correction to the likelihood ratio statistic

for testing Hqg : f1 = ﬁ§0) against H : 31 # ﬁ§0)

d= n <Z’(£r5tu — Lrstuvw) — Z”(ﬁrstu - Krstuvw)) (A.1)

q
where
A (’“‘—m — K )+H(S“)) (A.2)
rstu 4 Kyst rt )
Ksuw u Rsyw v
Urstuow = I {ﬁrtv (T - ’%gw)) + Krtu (T - ng?)
il ) + Rl | (A.3)

with 3> and 3" representing the summation over all the subscripts ranging
in {1,...,p} and {g+ 1,...,p} respectively (see Lawley, 1956). Plugging
the cumulants given above in (A.2) we get

500010
ththt it t
Z'érstu = % Z'n”m “ Z Tir 15Tt Tl
5(00010
)y tu
= Tl T —Z TPT ik
4¢4 Z Z IrZisk ( ltllu )

6(0,0,0,1,0) s 0(0,00,1,0)

152 20T g
49(2,0,0.0.0) 49(2,0,0.0.0)

tr(ZqZq).
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Note that Z'Erstm,w vanishes because all the cumulants that appear in

Lrstuvw are equal to zero. Now, if ¢ is known the coefficient d comes from
(A.1) as

d
d= EOhO(Xl,Xg) (A.4),

where dy and ho(X1, X2) are given in (3.3) and (3.4) respectively.
Now, suppose that ¢ is unknown. It is convenient to write d as

d=dg+dgg,

where dg is given by (A.4) and dg¢ is given by (A.1) with the summations
replaced by Z,M and ng, These summations indicate that the subscripts

range in {1,...,p, ¢} and {¢+ 1,...,p, ¢} respectively with at least one
subscript equal to ¢. From (A.2) and (A.3) and the cumulants given above,

we have
D _bobrstu = Loggy + (%) p (A.5)

and

> bolrstuvw = booposs + gimﬂgng’f’ sdms, | L, 1P ()

n mj nmi 2nmq 2my 2
where my, mo and mg are given in Section 3,
Loppps = 4n(5(270’:0’2) —1) {0(0,0,0,1,4) — 120(0,1,0,0,2) + 6}
and
bopposs = 7 . {§(65(0,1,0,0,2) +6(0,0,1,0.3) — 4)
n(5(0,1,0,0,2) —1)313

_16(5(0,1,0,0,2) - 1)(45(0,1,0,0,2) + (5(0,0,1,0,3) - 2)}

The summations 375, and } s, are given respectively by (A.5) and (A.6)
with p replaced by ¢. Now, it is easy to get equation (3.2).

If the hypothesis Hy : ¢ = ¢(0) is to be tested against the alternative
hypothesis Hy : ¢ = ¢$©, the coefficient d of the Bartlett correction is
given by (A.1) with ¢ replaced by 1 and with 3" and 3" representing the

summation over all the subscripts ranging in {1,...,p, ¢} and {1,...,p}
respectively. It is now clear that, in this case,

d=n Zlﬁ(t,(frstu - frstuvw)-

From (A.5) and (A.6) we get (3.5) after some algebra.
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