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1. Introduction

MRC performances in fading channels have been of interest
for a long time, which can be seen by a numerous published
papers concerning this topic. Most of these papers are
concerned by Rayleigh, Nakagami-m, Hoyt (Nakagami-
q), Rice (Nakagami-n), and Weibull fading [1–5]. Beside
MRC, performances of selection combining, equal-gain
combining, hybrid combining, and switched combining
in fading channels have also been studied. Most of the
papers treating diversity combining have examined only
dual-branch combining because of the inability to obtain
closed-form expressions for evaluated parameters of diversity
system. Scenarios of correlated fading in combiner branches
have also been examined in numerous papers. Nevertheless,
depending on system used and combiner implementation,
one must take care of resources available at the receiver,
such as: space, frequency, and complexity. Moreover, fading
statistic does not necessary have to be the same in each
branch, for example, PDF can be the same, but with different
parameters (Nakagami-m fading in ith and jth branches,
with mi /=mj), or PDFs in different branches are different
(Nakagami-m fading in ith branch, and Rice fading in
jth branch). This paper treats MRC outage performances

in presence of κ-μ fading [6, 7]. This type of fading has
been chosen because it includes, as special cases, Nakagami-
m and Nakagami-n (Rice) fading, and their entire special
cases as well (e.g., Rayleigh and one-sided Gaussian fading).
It will be shown that the sum of κ-μ squares is κ-μ
square as well (but with different parameters), which is
an ideal choice for MRC analysis. Concerning this, in this
paper, we will present model for κ-μ distribution and
closed form expressions for outage probability, BEP and
SEP at the MRC output will be derived for a broad class
of modulation types. Based upon generic expressions for
BEP/SEP for coherent and noncoherent detection, BEP/SEP
will be evaluated in further analysis. Outage and BEP/SEP
performances will be presented for L-branch combining
via Monte Carlo simulations and theoretical expressions.
This paper is organized as follows. In Section 2, we review
physical model of the distribution. In Section 3, we examine
κ-μ MRC, and we show that the sum of κ-μ squares is
κ-μ square. Throughout Section 4 we analyze BEP/SEP for
κ-μ MRC based on generic expressions for BEP/SEP for
coherent and noncoherent detection types for various mod-
ulation techniques. Discussion and simulation results are
presented in Section 5, where some conclusions have been
drawn.
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Figure 1: Outage probability for κ = 0.55 and μ = 1.
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Figure 2: Outage probability for κ = 0.55 and μ = 2.

2. Physical Model of the κ-μ Distribution

Physical model and derivation of the κ-μ distribution is
described in [7]. Nevertheless, for the purpose of integrity
of this paper and apprehension of generality of this model
(as well as its applications to the MRC), it is necessary to
revise the basics of the κ-μ distribution physical model. The
fading model for the κ-μ distribution considers a signal
composed of clusters of multipath waves, propagating in a
nonhomogeneous environment. Within single cluster, the
phases of the scattered waves are random and have similar
delay times, with delay-time spreads of different clusters
being relatively large. It is assumed that the clusters of
multipath waves have scattered waves with identical powers,
and that each cluster has a dominant component with
arbitrary power. This distribution is well suited for line-
of-sight (LoS) applications, since every cluster of multipath
waves has a dominant component (with arbitrary power).

In special case, if we set all dominant components to zero,
then this distribution can very well describe nonline-of-
sight (NLoS) scenarios. Given the physical model for the κ-μ
distribution, envelope R and instantaneous power γ, can be
written in terms of the inphase and quadrature components
of the fading signal as

R2 = γ =
n∑

i=1

(
Xi + pi

)2
+

n∑

i=1

(
Yi + qi

)2
, (1)

where Xi and Yi are mutually independent Gaussian pro-

cesses with Xi = Yi = 0 and X2
i = Y 2

i = σ2. pi and qi are,
respectively, the mean values of the inphase and quadrature
components of the multipath waves of cluster i, and n is the
number of clusters of multipath.

By performing random variables (RVs) transformation,
in accordance to [7, Section 2.2], we obtain the instantaneous
power PDF of the κ-μ RV:

fγ(γ) = 1
2σ2

·
(
γ

d2

)(n−1)/2

× exp
(
− γ + d2

2σ2

)
· In−1

(
d
√
γ

σ2

)
,

(2)

where d2 =∑n
i=1 d

2
i . It can be seen that

Ω = R2 = γ = 2nσ2 + d2,

R4 = γ2 = 4nσ4 + 4σ2d2 + (2nσ2 + d2)2
.

(3)

Therefore,

Var(R2) = Var(γ) = 4nσ4 + 4σ2d2. (4)

Parameter κ is defined as κ = d2/2nσ2 and represents the
ratio between the total power of the dominant components
and the total power of the scattered waves. Although n can
be expressed in terms of continuous physical parameters
(mean-squared value of the power, the variance of the power,
and κ), it still has discrete nature. If these parameters are
to be obtained by field measurements, the value of the
parameter n would be a real number (not an integer). Several
reasons exist for this. One of them, and probably the most
meaningful, is that although the model proposed here is
general, it is in fact an approximate solution to the so-
called random phase problem (which has been extensively
elaborated in [7]), as are all the other well-known fading
models approximate solutions to the random phase problem.
The limitation of the model can be made less stringent
by defining μ to be the real extension of n. Noninteger
values of the parameter μmay account for: the non-Gaussian
nature of the inphase and quadrature components of each
cluster of the fading signal, nonzero correlation among
the clusters of multipath components, nonzero correlation
between inphase and quadrature components within each
cluster, and so forth. Noninteger values of clusters have been
found in practice, and are extensively reported in literature,
for example, [8].
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Figure 3: Outage probability for κ = 1 and μ = 1.

Now, using the definitions for parameters κ and μ, and
the considerations given above, the κ-μ power PDF can be
written from (2) as

fγ(γ) = μ(1 + κ)(μ+1)/2

κ(μ−1)/2 · exp(μκ) ·Ω(μ+1)/2 · γ(μ−1)/2

× exp
[
− μ(1 + κ)γ

Ω

]
· Iμ−1

[
2μ

√
κ(1 + κ)γ

Ω

]
.

(5)

From (5), κ-μ power CDF can be written in closed form as

Fγ(γ) =
∫ γ

0
fγ(x)dx = 1−Qμ

[√
2κμ,

√
2(κ + 1)μγ

Ω

]
,

(6)

where

Qν(a, b) = 1
aν−1

∫∞

b
xν · exp

(
− x2 + a2

2

)
· Iν−1(ax) · dx

(7)

is generalized Marcum Q function [9], as stated in [7].

3. κ-μ Maximal-Ratio Combiner

There are four principal types of combining techniques [10]
that depend essentially on the complexity restrictions put
on the communication system and amount of channel state
information (CSI) available at the receiver. As shown in
[10], in the absence of interference, MRC is the optimal
combining scheme, regardless of fading statistics, but most
complex since MRC requires knowledge of all channel
fading parameters (amplitudes, phases, and time delays).
Since knowledge of channel fading amplitudes is needed
for MRC, this scheme can be used in conjunction with
unequal energy signals, such as M-QAM or any other
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Figure 4: Outage probability for κ = 1 and μ = 2.
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Figure 5: Outage probability for κ = 2 and μ = 1.

amplitude/phase modulations. In this paper, we will treat
L-branch MRC receiver. As shown in [10] MRC receiver
is the optimal multichannel receiver, regardless of fading
statistics in various diversity branches since it results in an
ML receiver. For equally likely transmitted symbols, the total
SNR per symbol at the output of the MRC is given by [11]
γ = ∑L

j=1 γj , where γj is instantaneous SNR in ith branch of
L-branch MRC receiver. Repeating the same procedure as in
Section, previous relation can be written in terms of inphase
and quadrature components:

γ =
L∑

j=1

γi =
L∑

j=1

R2
i =

L∑

j=1

n∑

i=1

R2
i, j , (8)

where R2
i, j represents total power of the ith cluster manifested

in jth branch of the MRC receiver. Using (1) one can obtain

γ =
L∑

j=1

n∑

i=1

(
Xi, j + pi, j

)2
+
(
Yi, j + qi, j

)2
. (9)
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Repeating the same procedure as in [7, Section 2.2] one can
obtain Laplace transform of the PDF of the RV γ (SNR):

L
{
fγ(γ)

} =
L∏

j=1

L
{
fγj
(
γj
)} = exp

(− sd2/
(
1 + 2sσ2

))

(1 + 2sσ2
)L·n ,

(10)

where d2 =∑L
j=1 d

2
j . Inverse Laplace transform of (21) yields

to PDF of the RV γ:

fγ(γ) = Lμ(1 + κ)(Lμ+1)/2

κ(Lμ−1)/2 · exp(Lμκ) · (LΩ)(Lμ+1)/2 · γ(Lμ−1)/2

× exp
[
− μ(1 + κ)γ

Ω

]
· Iμ−1

[
2μ

√

L
κ(1 + κ)γ

Ω

]
.

(11)

Note, that sum of L squares of the κ-μ distributions is
κ-μ distribution with different parameters, which means
SNR at the output of the MRC receiver subdue to the κ-μ
distribution with parameters

μMRC = L · μ, κMRC = κ, ΩMRC = L ·Ω. (12)

Now, it is easy to obtain CDF

Fγ(γ) =
∫ γ

0
fγ(x)dx = 1−QLμ

[√
2Lκμ,

√
2(κ + 1)μγ

Ω

]
.

(13)

For fixed threshold, γth, outage probability is given by

Pout(γth) = Fγ(γth) =
∫ γth

0
fγ(x)dx

= 1−QLμ

[√
2Lκμ,

√
2(κ + 1)μγth

Ω

]
.

(14)

4. SEP for κ-μ Maximal-Ratio Combiner

When we analyze SEP, we must focus upon single modula-
tion format because different modulations result in different
SEPs. We must also consider type of detection (coherent or
noncoherent). Although coherent detection results in smaller
SEP than corresponding noncoherent detection for the same
SNR, sometimes it is suitable to perform noncoherent
detection depending on receiver structure complexity.

4.1. Noncoherent Detection. To obtain average SEP at MRC
output for κ-μ fading for noncoherent detection, we will use
generic expression for instantaneous SEP: SEP = a·exp(−b ·
γ), where γ represents instantaneous SNR at MRC output for
κ-μ fading, and nonnegative parameters a and b depend on
used modulation format (see Table 1).
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Figure 6: Outage probability for κ = 2 and μ = 2.
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Figure 9: BEP/SEP for noncoherent detection, no diversity.

Table 1: Values of a and b for some noncoherent modulations.

a
b

0.5 1

0.5 BFSK DBPSK

1 — —

(M − 1)/2 MFSK —

Average SEP can be obtained from

SEP =
∫ +∞

0
a · exp(−b · γ) · fγ(γ) · dγ

=
∫ +∞

0
a · Lμ(1 + κ)(Lμ+1)/2

κ(Lμ−1)/2 · exp(Lμκ) · (LΩ)(Lμ+1)/2 · γ(Lμ−1)/2

× exp
[
− γ
(
b +

μ(1 + κ)
Ω

)]

· ILμ−1

[
2μ

√

L
κ(1 + κ)γ

Ω

]
· dγ.

(15)

Using [9, equation (5), page 318] we obtain closed-form
expression for average SEP for noncoherent detection:

SEP = a ·
[

μ(1 + κ)
bΩ + μ(1 + κ)

· exp
( −bκΩ
bΩ + μ(1 + κ)

)]Lμ
.

(16)

4.2. Coherent Detection. To obtain average SEP at MRC
output for κ-μ fading for coherent detection, we will use

Symbol error probability for dual-branch MRC
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Figure 10: BEP/SEP for noncoherent detection, dual-branch
diversity.

Table 2: Values of a and b for some coherent modulations.

a
b

1 2 2sin2(π/M) 3/(M − 1)

1 BFSK BPSK — —

2 QPSK DBPSK MPSK —

4((
√
M − 1)/

√
M) — — — Rect. QAM

generic expression for instantaneous SEP: SEP = a ·
Q(
√
b · γ), where γ represents instantaneous SNR at MRC

output for κ-μ fading, Q(·) function is defined as

Q(x) = 1√
2π

∫ +∞

x
exp

(−t2
2

)
· dt (17)

and nonnegative parameters a and b depend on used
modulation format (see Table 2).

Average SEP can be obtained from

SEP =
∫ +∞

0
a ·Q

(√
b · γ

)
· fγ(γ) · dγ. (18)

Nevertheless, it is impossible to find closed-form solution for
(18). Because of that we have to find adequate approximation
of the Q function. Knowing the continued fraction represen-
tation of the Q function [12, equation (06.27.10.0001.01)],
and adopting the first-order approximation:

Q(x) ≈ 1
x
√

2π
· exp

(−x2

2

)
, (19)
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Figure 11: BEP/SEP for coherent detection, no diversity.

equation (18) now becomes

SEP ≈
∫ +∞

0

a√
2πb · γ

· exp
(−b · γ

2

)
· fγ(γ) · dγ

=
∫ +∞

0

a√
2πb

· Lμ(1+κ)(Lμ+1)/2

κ(Lμ−1)/2 · exp(Lμκ) · (LΩ)(Lμ+1)/2 ·γ(Lμ−2)/2

× exp
[
− γ
(
b

2
+
μ(1 + κ)

Ω

)]

· ILμ−1

[
2μ

√

L
κ(1 + κ)γ

Ω

]
· dγ.

(20)

Using [9, equation (5), page 318] we obtain closed-form
expression for average SEP for coherent detection:

SEP ≈ a · Γ(Lμ− 0.5)√
2πb · Γ(Lμ)

·
(
μ(1 + κ)
exp(κ)Ω

)Lμ

×
(
b

2
+
μ(1 + κ)

Ω

)0.5−Lμ

×1 F1

(
Lμ− 0.5;Lμ;

μ2Lκ(1 + κ)
bΩ/2 + μ(1 + κ)

)
,

(21)

where 1F1(· ; · ; ·) is the Kummer confluent hypergeometric
function defined in [12, equation (07.20.02.0001.01)].

5. Simulations and Discussion of the Results

As mentioned previously, MRC outage performances will
be examined via Monte Carlo simulations and theoretical
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Figure 12: BEP/SEP for coherent detection, dual-branch diversity.

expressions (14). Figures 1, 2, 3, 4, 5, 6, 7, and 8 show
theoretical and simulated outage probabilities as functions of
threshold level γth. γth ranges from −10 dB to 10 dB. Figures
1–8 clearly show that theoretical expressions used are correct
because theoretical results concur with simulations results
extremely well. Figures 1–6 show outage probability for L =
1, 2, 3, 4, κ = 0.55, 1, 2 and μ = 1, 2. For fixed values of κ
and μ outage probabilities have been compared for specified
numbers of combiners branches, L.

From Figures 1–6 it can be easily concluded that for fixed
values of κ and μ there is not much sense in increasing the
number of branches (in many cases it is not economically
or technically justified). We can also observe that the highest
gain is obtained between curves for L = 1 and L = 2
(situation with no combining and dual-branch combining).
Distribution parameters also have a significant impact on
outage probability. When κ is increasing, Pout is decreasing.
Namely, these results were expected because κ represents
ratio between total power of dominant components and
total power of scattered components. Parameter μ represents
fading severity parameter. As μ decreases, fading severity
increases and so does outage probability. From Figures 1–
6, for fixed κ, as μ increases so does the slope of the outage
curve. For dual-branch combining (L = 2), behavior of
Pout, for different values of parameters κ and μ, can be
observed in Figures 7 and 8. In Figure 7 parameter κ is fixed,
and parameter μ changes, and in Figure 8 we have inverse
situation (μ is fixed, and κ changes). We perceive existence
of the single intersection point (point where all curves
intersect), and it is determined with only one parameter (κ
or μ) and fixed number of branches L. In that point, outage
probability Pout, and threshold level γth, are the same for
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Symbol error probability for 3-branch MRC
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Figure 13: BEP/SEP for noncoherent detection, 3-branch diversity.
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Figure 14: BEP/SEP for coherent detection, 3-branch diversity.

all curves (Figures 7 and 8). This point is also an inflexion
point. If the threshold value is below the threshold value at
inflexion point, channel dynamic is dominant, and if the
threshold value is above the threshold value at inflexion
point, receiver sensitivity is dominant. Namely, for smaller κ
and μ, dynamic in channel is larger. If the threshold is set high

Symbol error probability for 3-branch MRC

SE
P

10−5

10−4

10−3

10−2

10−1

100

SNR

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

NC-BFSK, κ = 0.55, μ = 1
NC-BFSK, κ = 1, μ = 1
NC-BFSK, κ = 2, μ = 1
NC-BFSK-sim, κ = 0.55, μ = 1
NC-BFSK-sim, κ = 1, μ = 1
NC-BFSK-sim, κ = 2, μ = 1

Figure 15: BEP/SEP for noncoherent detection, 3-branch diversity.

Symbol error probability without diversity and for
L-branch MRC
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Figure 16: BEP/SEP for coherent detection, L = 1, 2, 3.

enough, then it is logical to have smaller outage probability
with larger channel dynamic apart from the case of smaller
channel dynamic. MRC BEP/SEP, for both coherent and
noncoherent detection, will be examined via Monte Carlo
simulations and theoretical expressions (16) and (21) as well.
In Figures 9–12 case of dual-branch combining has been
shown because the highest gain is obtained between outage
curves for L = 1 and L = 2 (situation with no combining
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Figure 17: BEP/SEP for coherent detection, L = 1, 2, 3.

Symbol error probability without diversity and for
L-branch MRC

SE
P

10−5

10−4

10−3

10−2

10−1

100

SNR

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

NC-BFSK, κ = 2, μ = 1, no diversity
NC-BFSK, κ = 2, μ = 1, 2-branch MRC
NC-BFSK, κ = 2, μ = 1, 3-branch MRC

Figure 18: BEP/SEP for noncoherent detection, L = 1, 2, 3.

and dual-branch combining). Figures 9–12 show theoretical
and simulated average BEP/SEP as functions of average
SNR Ω. Ω ranges from 0 dB to 15 dB. Figures 9–12 clearly
show that theoretical expressions used are correct because
theoretical results concur with simulations results extremely
well, but certain deviations of theory from simulation are
noticeable in Figures 11 and 12 for a low values of Ω. This
is a consequence of the approximation used for generic
expression for coherent detection (19). Figures 9 and 10 show
BEP/SEP for L = 1 and L = 2, respectively, for noncoherent

detection, and Figures 11 and 12 show BEP/SEP for L = 1
and L = 2, respectively, for coherent detection. By examining
Figures 9 and 10 we notice that if we use dual-branch MRC
we will gain 4 dB for the same BEP/SEP. The same goes for
Figures 11 and 12, but we will gain approximately 7 dB, which
is to be expected because there is approximately 3 dB gain
when we use coherent detection instead of noncoherent.

Figures 13, 14, and 15 show comparison between FSK
and PSK for 3-branch combining. For Figures 13–15 various
values of κ and μ have been used, for both coherent and
noncoherent detection. As we can observe, theoretical and
simulation results concur very well. We can also observe gain
obtained between no combining, dual-branch combining,
and 3-branch combining cases in Figures 16, 17, and 18.
As number of branches increases, BEP/SEP decreases, as
expected.
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