采用溶剂抽提法制备 3- 巯丙基三甲氧基硅烷自组装单层膜

刘正春¹,何农跃²,陈真诚¹,陆祖宏²

(1. 中南大学 信息物理工程学院,湖南 长沙,410083;
 2. 东南大学 生物电子学国家重点实验室,江苏 南京,210096)

摘要:为提高硅烷自组装单层膜的质量,提出溶剂抽提制备的工艺。玻片在 5×10⁻³ mol/L 的巯基丙基三甲氧基硅烷(MPTS)苯溶液浸泡反应,依次用苯、丙酮、双蒸水回流抽提,得到 MPTS 的自组装膜。使用接触角、俄歇电子能谱及 X 射线光电子能谱等方法进行表征。研究结果表明:在惰性气体保护下,连续使用非极性溶剂和极性溶剂抽提,有效清除玻璃表面硅烷的物理吸附层,有效防止巯基硅烷的氧化,获得膜厚度为 0.8 nm、均匀的 MPTS 自组装单层膜。该工艺为制备稳定的硅烷自组装单层膜提供一种新方法。
关键词:单层自组装;多层自组装;硅烷;溶剂抽提
中图分类号: O647.11 文献标识码: A 文章编号: 1672-7207(2009)03-0608-05

Self-assembled monolayers of 3-mercaptopropyltrimethoxysilane by solvent-extracting

LIU Zheng-chun¹, HE Nong-yue², CHEN Zhen-cheng¹, LU Zu-hong²

School of Info-Physics and Geomatics Engineering, Central South University, Changsha 410083, China;
 State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China)

Abstract: A solvent-extracting technique was proposed to prepare self-assembled monolayers of silane with high quality. Self-assembly of mercaptopropyltrimethoxysilane (MPTS) on glass substrates was realized using immersion reaction of glass substrates in 5×10^{-3} mol/L of MPTS in benzene followed by solvent-extracting with benzene, acetone and double-distilled water. The obtained self-assembled monolayers were characterized with water contact angle goniometry, auger electron spectroscopy and X-ray photoelectron spectroscopy. The experimental results show that solvent-extractions with non-polar and polar solvents in inert gas atmosphere remove effectively the physiosorbed silane molecules and inhibit effectively the oxidation of mercapto groups. As a result, a homogeneous MPTS self-assembled monolayer is obtained with the thickness of 0.8 nm. This technique provides a novel avenue for the production of stable self-assembled monolayers with silane.

Key words: self-assembled monolayers; self-assembled multilayers; silane; solvent-extracting

自组装成膜技术经过 20 多年的发展,以其独特的 优势在很多领域引起了人们广泛兴趣,日益成为取代 LB 膜技术的一种强有力的分子有序组装技术^[1-2]。有 机硅衍生物自组装是一类非常重要的自组装膜制备技 术。其驱动力是聚硅氧化物的原位形成,并与表面的 硅羟基(—SiOH)通过硅氧键(Si—O—Si)连接。在氧化 硅、氧化铝、石英、玻璃、云母、硒化锌、氧化锗和 金等基底上成功获得单层膜已有报道^[3-5]。严格的反应

收稿日期: 2008-07-24; 修回日期: 2008-11-24

基金项目:国家自然科学基金资助项目(60801019);中南大学人才引进基金资助项目(761122090)

通信作者: 刘正春(1974-), 男, 湖南宁乡人, 博士, 副教授, 从事自组装化学、生物芯片及生物传感器研究; 电话: 0731-8836362; E-mail: liuzhengchunseu@126.com

条件诸如硅氧烷溶液的含水量、反应温度及反应时间 等的控制是获得高质量的硅烷单层膜的重要条件。若 反应条件控制不好,则硅烷自组装可能出现缺陷,或 者在基底表面出现硅烷多层堆积现象。

本文作者对有机硅烷分子巯基丙基三甲氧基硅烷 (MPTS)在玻璃基底表面自组装成膜进行研究。对常规 自组装工艺进行改进,在 MPTS 溶液与玻璃基片充分 反应后,增加溶剂抽提后处理工艺,得到自组装单层 膜。应用接触角仪、X 射线光电子能谱仪(XPS)和俄歇 电子能谱仪(AES)等手段研究了抽提工艺对自组装膜 的影响,并与常规工艺进行比较。

1 实 验

1.1 材料

材料为: 巯基丙基三甲氧基硅烷(MPTS), 为南京 曙光化工厂提供, 使用前经减压蒸馏处理; 玻璃, 为 市售载玻片; 甲醇、盐酸(37%)、硫酸(98%)、氯仿、 丙酮、乙醚、无水乙醇、苯,均为分析纯, 苯在使用 前用 0.4 nm 分子筛干燥 24 h。双蒸水为实验室自制。 1.2 玻璃表面自细装 MPTS

1.2 玻璃表面自组装 MPTS

玻璃片依次用 1:1(体积比)的 MeOH/HCI 溶液和 浓硫酸各浸泡 30 min,然后,用去离子水、双蒸水超 声洗涤,于氮气中干燥,得到玻璃片 I;将玻璃片 I 浸入 5×10⁻³ mol/L 的 MPTS 苯溶液中,在常温下反应 6 h,依次用氯仿、丙酮、乙醚、无水乙醇、双蒸水洗 涤,氮气下干燥,得到玻璃片 II;将玻璃片 II 依次用 苯、丙酮、双蒸水回流抽提各 2 h,于氮气中干燥,得 到玻璃片III;玻璃片 II 在氮气保护下依次用苯、丙酮、 双蒸水回流抽提各 2 h,于氮气中干燥,得到玻璃片Ⅳ; 玻璃片 II 在 120 ℃热处理 1 h,在氮气保护下依次用 苯、丙酮、双蒸水回流抽提各 2 h,于氮气中干燥,得 到玻璃片 V。

1.3 检 测

1.3.1 接触角的测定

在 Rame-Hart 100R 型接触角测定仪上测量双蒸 水与经硅烷化处理后的各玻璃基片的接触角 θ。用 1 μL 注射器点加液滴于玻片表面,待液滴形成后,于 10 s 内测定液滴在玻片表面所形成的横断面与液滴表 面的切线之间的夹角得到接触角。分别测量水与 5 个 样品的接触角,所得结果见表 1,表中所列数据均为 样品 5 个不同位点的平均值。

1.3.2 XPS 及 AES 检测

XPS 分析使用 Perkin-Elmer PHI5300 ESCA 光电

子光谱仪。X 射线源为 Mg K_a 射线,功率为 250 W, 所有键合能均以 C—C 键(285.0 eV)为基准进行校正, 光电子的接收角为 45°,操作真空度低于 1.33×10^{-6} Pa。AES 使用日本 AVELVA 公司的 AES-350 光谱仪 分析。电子束能量为 3 keV,采用 1.6 kV 光电倍增管。

2 结果与讨论

2.1 接触角分析

接触角是表征固体表面特性的最广泛的方法之 一^[6]。水在不同基片上显现出不同液滴形状,通过测 量接触角 θ,来表征基片表面的极性情况。θ 越小,表 明固体表面的极性越大。硅烷形成自组装膜的首要条 件是基底表面的羟基化。市售的玻璃载片由于各种原 因,其表面含有无机或者有机物等污物,造成表面羟 基被掩盖。因此,在进行自组装之前必须对其表面进 行预处理。Cras 等^[7]对玻璃载片的清洗进行了详细研 究,本研究采用文献[7]报道的工艺,依次用 1:1(体积 比)的甲醇和盐酸溶液、硫酸对玻璃载片进行清洗,然 后用去离子水和双蒸水超声洗涤,达到了对玻璃载片 表面彻底除污的效果,接触角测试结果见表 1。

表1 不同玻璃基片表面的接触角

Table 1 Water contact angle of glass substrates $\theta/($	Ű))		
---	---	---	---	--	--

1世 上	_	测量序号						
収力	1	2	3	4	5	干均阻		
Ι	3.5	3.2	3.4	3.5	3.2	3.4		
II	75.2	76.5	76.6	77.1	75.4	76.2		
III	65.5	66.2	66.5	65.6	66.5	66.1		
IV	69.1	69.5	69.4	68.8	69.6	69.3		
V	74.2	73.6	73.8	74.8	74.7	74.2		

与未经过硅烷自组装修饰基片 I 相比, MPTS 处 理后的基片表面极性大大降低,接触角与巯基化表面 MPTS 单层膜的 70°接触角相近^[8-9],说明玻璃表面已 经形成硅烷自组装膜。经过溶剂漂洗的基片 II 其表面 接触角比巯基化表面 MPTS 自组装膜的接触角要大 6° 左右,通过溶剂抽提处理的基片III的接触角低 4°左右。 在氦气保护下溶剂抽提所得的基片 IV 的接触角与理想 的 MPTS 单层膜接触角相一致。基片 V 也是在氦气保 护下抽提所得,只是在抽提之前进行了热处理,其接 触角比基片 II 的低。由此可见,在惰性气体保护下及 时进行溶剂抽提,可以获得比较理想的硅烷自组装单 分子膜。

2.2 XPS 分析

为了进一步揭示不同工艺对自组装成膜的影响, 对 MPTS 修饰的基片进行 XPS 检测,结果见表 2。XPS 是进行化学组成分析的重要手段,不仅可给出样品中 化合物的元素组成与含量,而且还可给出各元素的价 态、分子结构、化学键及电荷分布信息^[10-11]。从表 2 可以看出,反应后各种元素的相对浓度都发生了变化, 且出现了巯基硅烷 MPTS 分子中所拥有的各元素的光 电子信号,说明在基片上已经制备自组装膜。玻璃片 III和IV上的碳原子与硫原子的摩尔比约为 3.11:1,在 实验误差(-4%~4%)范围之内与自组装单分子层膜的 化学结构理论摩尔比 3:1 相符。而玻璃片 II 和V上碳 原子与硫原子的摩尔比与自组装单分子层膜的化学结 构理论值 3:1 相比则相差很大,意味着玻璃片 II 和V 上 MPTS 的组装未能形成比较理想的单分子层膜。

各基片上硫的 XPS 高分辨图谱见图 1。图 1(a)所 示为基片 II 上的 S 2p 扫描峰,结合能为 163.5 eV,为 巯基中的硫^[9, 12-14]。基片III与 II 的 XPS 相比(图 1(b) 和 1(a)),出现了 1 个高结合能的峰,结合能约为 168 eV,意味着硫的价态提高^[15],也就是存在着巯基氧化 的现象。一方面,表面溶剂抽提去除了表面硅烷的物 理吸附层,另外一方面,由于部分巯基氧化成为亲水 性的—SO₃H,导致基片III表面接触角的降低(见表 1)。 基片IV同样是基片 II 溶剂抽提所得,只是加了惰性气 体保护,结果其表面硫的价态与基片 II 相同(图 1(c)), 意味着在惰性气体保护下进行溶剂抽提,能有效地防 止巯基的氧化。与此同时,表面溶剂抽提有效去除了 表面硅烷的物理吸附层,从而得到比较理想硅烷单层 自组装膜,因此,其接触角与巯基化表面 MPTS 单层 膜的接触角(70°)相近。基片V是基片II 热处理后溶剂 抽提所得,硫的高分辩扫描峰(图 1(d))同样具有高氧 化态硫的结合能,这说明其表面同样生成了亲水性的 一SO₃H 等基团。可是,其接触角仍然与基片II 的接 近,这是因为热处理的过程中多层堆积的硅烷分子之 间发生聚合^[16-17],溶剂抽提不再对自组装膜表面的结 构发生作用。同时,由于热处理过程中发生了氧化, 使得亲水性略有提高,接触角比未进行溶剂抽提的基 片II 略低(见表 1)。

2.3 AES 分析

通过表面刻蚀的 AES 分析可以获得表面组成的 纵向信息。为了进一步分析基片表面自组膜的纵向组 成,对基片进行了俄歇电子能谱分析,使用的电子束 强度为1×10⁻⁹ A/cm²,刻蚀速率为1.6 nm/min。电子 束轰击 30 s 以后,基片IV的C峰消失,只剩下基片上 的 Si 峰,计算得出组装在基片IV表面的 MPTS 的厚度 为 0.8 nm,与 MPTS 分子的长度相一致。由此证明, 在基片IV表面上得到了自组装的 MPTS 单分子层。基 片III表面有着类似的性质。对于基片 II 和V,则电子 束至少要轰击 60 s 才能看到 C 峰完全消失,可见,在 基片 II 和V上组装或沉积了 2 个以上的 MPTS 分子 层。为了考察 MPTS 在基片IV生成的膜的均匀性,在 同一样品上随机取点进行 AES 分析,测得了元素谱峰

	摩尔分数/% -			XPS 高分辨数据						
玻片				С (C (1s)		Si (2p)		S (2p)	
	С	Si	0	S	$E_{\rm B}/{\rm eV}$	A/%	$E_{\rm B}/{\rm eV}$	A/%	$E_{\rm B}/{\rm eV}$	A/%
					285.0	71.16	102.7	85.6	163.5	100
II	50.8	10.5	31.5	7.2	286.4	19.42	103.6	14.4		
					288.2	9.42				
					285.0	70.47	102.7	83.4	163.8	81.7
III	36.2	14.1	38.2	11.5	286.2	19.85	103.5	16.6	168	9.3
					288.1	9.68				
					285.0	70.42	102.9	84.8	163.6	100
IV	36.1	14.8	37.5	11.6	286.5	20.31	103.5	15.2		
					288.3	9.27				
					285.0	70.58	102.8	83.9	163.7	95.1
V	50.2	10.1	32.8	6.9	286.3	20.05	103.6	16.1	168.2	4.9
					288.2	9.37				

表 2 不同玻璃基片上 XPS 的测量结果 **Table 2** XPS data of glass substrates

注: E_B为结合能; A 为分峰面积与总峰面积之比。

相同且各谱峰的强度相同,证明了该工艺制备自组装 单层膜的均匀性。

3 结 论

a. 提出了溶剂抽提制备硅烷自组装单层膜的新 工艺。玻片在 5×10⁻³ mol/L 的 MPTS 苯溶液浸泡反应 2 h,依次用苯、丙酮、双蒸水各回流抽提 2 h,得到 MPTS 的自组装膜。

b. 连续使用非极性溶剂和极性溶剂抽提,有效清除了玻璃表面硅烷的物理吸附层。通过惰性气体的保护,能有效防止巯基硅烷的氧化,最终获得膜厚为0.8 nm、均匀的 MPTS 自组装单层膜。

参考文献:

[1] 翟 怡, 张金利, 李韦华, 等. 自组装单层膜的制备与应用[J].

化学进展, 2004, 16(4): 476-483.

ZHAI Yi, ZHANG Jin-li, LI Wei-hua, et al. Preparation and application of the self-assembled monolayers[J]. Progress in Chemistry, 2004, 16(4): 476–483.

- [2] Naito M, Fujiki M. Polysilanes on surfaces[J]. Soft Matter, 2008, 4(2): 211–223.
- [3] Ulman A. Formation and structure of self-assembled monolayers[J]. Chemical Review, 1996, 96(4): 1533–1554.
- [4] Bierbaum K, Kinzler M, Woll C, et al. A near edge x-ray absorption fine structure spectroscopy and x-ray photoelectron spectroscopy study of the film properties of self-assembled monolayers of organosilanes on oxidized Si (100)[J]. Langmuir, 1995, 11(2): 512–518.
- [5] McGovern M E, Kallury K M R, Tomposon M. Role of solvent on the silanization of glass with octadecyltrichlorosilane[J]. Langmuir, 1994, 10(10): 3607–3614.
- [6] 王 晖,顾帼华,邱冠周. 接触角法测量高分子材料的表面 能[J]. 中南大学学报:自然科学版,2006,37(5):942-947.
 WANG Hui, GU Guo-hua, QIU Guan-zhou. Evaluation of

surface free energy of polymers by contact angle goniometry[J]. Journal of Central South University: Science and Technology, 2006, 37(5): 942–947.

- [7] Cras J J, Rowe-Taitt C A, Nivens D A, et al. Comparison of chemical cleaning methods of glass in preparation for silanization[J]. Biosensors and Bioelectronics, 1999, 14(8/9): 683–688.
- [8] Balachander N, Sukenik C N. Monolayer transformation by nucleophilic substitution: Applications to the creation of new monolayer assemblies[J]. Langmuir, 1990, 6(11): 1621–1627.
- [9] 白 涛,程先华. 3-巯丙基三甲氧基硅烷自组装膜的制备及其 摩擦学性能[J]. 上海交通大学学报,2007,41(2):293-296.
 BAI Tao, CHENG Xian-hua. Characterization and tribological investigation of self-assembled 3-mercaptopropyl trimethoxysilane deposited on glass substrates[J]. Journal of Shanghai Jiao Tong University, 2007, 41(2): 293-296.
- [10] 吴湘伟,陈振华,严红革,等.硬脂酸/钛酸四丁酯复合改性 剂处理掺锑二氧化锡纳米粉体[J].中南大学学报:自然科学版, 2006, 37(3): 444-449.

WU Xiang-wei, CHEN Zhen-hua, YAN Hong-ge, et al. Surface modification of antimony doped tin oxide powders using steric acid/tetrabutyl titanate compound agent[J]. Journal of Central South University: Science and Technology, 2006, 37(3): 444–449.

- [11] Xiao Z D, Gu J H, Huang D, et al. The deposition of TiO₂ thin films on self-assembly monolayers studied by X-ray photoelectron spectroscopy[J]. Applied Surface Science, 1998, 125(1/2): 85–92.
- [12] Lenigk R, Carles M, Ip NY, et al. Surface characterization of a silicon-chip based DNA microarray[J]. Langmuir, 2001, 17(8): 2497–2501.
- [13] Liu Z C, He Q G, Hou P, et al. Electroless plating of copper through successive pretreatment with silane and colloidal silver[J]. Colloids and Surfaces A: Physicochem Eng Aspects, 2005, 257/258: 283–286.
- [14] Liu Z C, He Q G, Xiao P F, et al. Self-assembly monolayer of mercaptopropyltrimethoxysilane for electroless deposition of Ag[J]. Materials Chemistry and Physics, 2003, 82(2): 301–305.
- [15] Laibinis P E, Whitesides G M, Allara D L, et al. Comparison of the structures and wetting properties of self-assembled monolayers of n-alkanethiols on the coinage metal surfaces, copper, silver, and gold[J]. Journal of the American Chemical Society, 1991, 113(19): 7152–7167.
- [16] Williams R A, Blanch H W. Covalent immobilization of protein monolayers for biosensor application[J]. Biosensors and Bioelectronics, 1994, 9(22): 159–167.
- [17] Kurth D G, Bein T. Surface reactions on thin layers of silane coupling agents[J]. Langmuir, 1993, 9(11): 2965–2973.