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Abstract. We consider generic Garbled Circuit (GC)-based techniques
for Secure Function Evaluation (SFE) in the semi-honest model.

We describe efficient GC constructions for addition, subtraction, mul-
tiplication, and comparison functions. Our circuits for subtraction and
comparison are approximately two times smaller (in terms of garbled
tables) than previous constructions. This implies corresponding compu-
tation and communication improvements in SFE of functions using the
above building blocks. The techniques rely on recently proposed “free
XOR” GC technique.

Further, we present concrete and detailed improved GC constructions
for the problem of secure integer comparison, and related problems of
auctions, minimum selection, and minimal distance. Performance im-
provement comes both from building on the above efficient basic blocks
and several problem-specific GC optimizations. We provide precise cost
evaluation of our constructions, which serves as a baseline for future
protocols.

Keywords: Secure Computation, Garbled Circuit, Millionaires Prob-
lem, Auctions, Minimum Distance

1 Introduction

We are motivated by secure function evaluation (SFE) of integer comparison,
and related problems such as auctions and biometric authentication. We pro-
pose new, more efficient SFE protocols for these functions. More specifically, we
propose improved constructions for subtraction, and comparison functions, and
demonstrate their advantages on the example of our motivating applications.

Comparison is a widely used basic primitive. In particular, it plays an espe-
cially important role in financial transactions, biometric authentication, database
mining applications, etc.

? Supported by EU FP6 project SPEED, EU FP7 project CACE and ECRYPT II.
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Auctions. With the growth of the Internet and its widespread acceptance as
the trusted medium for electronic commerce, online auctions continue to grow in
popularity. Additionally, many sellers consider the “name your price” model. For
example, sites such as priceline.com ask a buyer for a price he is willing to pay
for a product, and the deal is committed to if that price is greater than a certain
(secret) threshold. In many such situations, it is vital to maintain the privacy
of bids of the players. Indeed, revealing an item’s worth can result in artificially
high prices or low bids, specifically targeted for a particular buyer or seller.
While a winning bid or a committed deal may necessarily reveal the cost of the
transaction, it is highly desirable to keep all other information (e.g., unsuccessful
bids) secret. There has been a large stream of work dedicated to ensuring privacy
and security of online auctions and haggling (e.g., [Cre00,BK06,NPS99]). Our
work complements, extends, and builds on it.

Biometric authentication. Widespread adoption of biometric authentication
(e.g., fingerprint or face recognition) is causing strong concerns of privacy viola-
tions. Indeed, improper use of biometric information has far more implications
than “simple” collection of personal information. Adoption of privacy-preserving
biometric authentication is highly desired and will benefit the users and the ad-
ministrators of the systems alike. Because biometric images are never scanned
perfectly, the identity of the user is determined by proximity of the scanned
and stored biometrics. It is natural, therefore, that threshold comparisons are
frequently employed in such identification systems. Further, in some multi-user
systems, it may be desired to simply find the closest match in the database. In
such systems, secure comparison would be also extensively used.

Garbled Circuit (GC) and state of the art for secure comparison and
related algorithms. Starting with the original paper of Yao [Yao82], secure
comparison, also referred to as the “two Millionaires problem”, has attracted
much attention [Yao86,Fis01,MNPS04,Kol05]. A variety of techniques are em-
ployed in the many proposed solutions – homomorphic encryption, evaluation of
branching programs, Garbled Circuit (GC).

Today, in the standard computational setting, the most efficient protocol
is the simple evaluation of the generic GC. Indeed, the size of the comparison
circuit is quite small (linear in the size of the inputs), and its secure evaluation
is rather efficient (linear number of Oblivious Transfers (OT) and evaluations of
a cryptographic hash function, such as SHA-256).

Most popular alternative solutions are based on homomorphic encryptions.
For comparison, they offer a similar complexity compared to GC, as they still
must perform a linear (in the input) number of public key operations by both
players. However, GC offers more flexible and cheap programming possibilities,
due to its low cost of manipulation of boolean values. In contrast, homomorphic
encryptions are not suitable, e.g., for branching based on the encrypted value
which can be achieved only with much more expensive techniques than GC).

In sum, GC approach is a clear choice for integer comparison, its extensions,
such as auctions, simple integer manipulations (addition and even multiplica-
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tions) and a variety of other problems that have small circuit representation. We
build our solutions in this framework.

Our contributions. As justified above, our work is based on GC. We advance
the state of the art of SFE for subtraction and comparison functions, by con-
structing their more efficient GC representations. We work in the semi-honest
model.

More specifically, our optimizations take advantage of the recently proposed
method of GC construction [KS08], where XOR gates are evaluated essentially
for free (one XOR operation on keys, and no garbled table entries to generate or
transfer). We show how to compute comparison and other basic functions with
circuits consisting mostly of XOR gates. This results in reduction of the size
of GC (i.e., the size of garbled tables) by approximately half (see Table 2 for
detailed comparison). We note that the method of [KS08] (and thus our work)
requires the use of a weak form of Random Oracle, namely of correlation-robust
functions [IKNP03].

As an additional contribution, we then follow through, and discuss in de-
tail GC-based constructions for the Millionaires problem, computing first-price
auctions and minimum Hamming- or Euclidian distance. In addition to improve-
ments due to our new building blocks, our protocols benefit from a number of
GC-based optimizations. In addition to establishing a new performance base-
line for these problems, we aim to promote GC as a very efficient solution, and
prevent its frequent unfair dismissal as an “impractical generic approach”.

Related work. SFE (and in particular GC), and secure comparison has received
much attention in the literature, all of which we cannot possibly include here.
In this section we summarize relevant work to give the reader a perspective on
our results. We discuss additional related work (on which we improve) in the
individual sections of the paper.

Circuit-Based Secure Function Evaluation. GC technique of SFE was intro-
duced by Yao [Yao86], with a formal proof of security (in the semi-honest model)
given in [LP04]. Extensions of Yao’s garbled circuit protocol to security against
covert players were given in [AHL05,GMS08], and against malicious players in
[JS07,LP07,NO09]. Our constructions rely on the recent work of Kolesnikov and
Schneider [KS08]. In [KS08], a GC technique is proposed, where XOR gates can
be evaluated “for free”, i.e., with negligible computation and communication
costs. The authors of [KS08] present improved circuit constructions for multi-
plexer, addition and (in-)equality testing. Our main contribution – the building
block constructions further improve their proposals (e.g., the addition is im-
proved by a factor of two, and we propose the more general functionality of
comparison).

Secure Two-Party Comparison. The first secure two-party comparison proto-
col was proposed in [Yao82], and today GC is the most efficient solution to this
problem. Homomorphic encryption is another popular tool for comparison of
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`-bit strings. The protocol of Fischlin [Fis01] uses the Goldwasser-Micali XOR-
homomorphic encryption scheme [GM84] and has communication complexity
`T (κ+1), where κ is a statistical correctness parameter (e.g., κ = 40). The com-
parison protocol of [BK04] uses bitwise Paillier encryption and has communica-
tion complexity 4`T , where T is an asymmetric security parameter (e.g., size of
an RSA modulus). This protocol was improved in [DGK07,DGK08b,DGK08a] to
communication complexity 2`T by using a new homomorphic encryption scheme
with smaller ciphertext size. These two-party protocols were extended to com-
parisons in the multi-party setting with logarithmic and linear round complexity
in [GSV07].

Minimum Selection. A two-party protocol for finding k-Nearest Neighbors
was given in [SKK06], and improved from quadratic to linear communication
complexity in [QA08]. Our protocol for finding the nearest neighbor is a more
efficient protocol for the special case k = 1. A simple protocol to select the min-
imum of homomorphically encrypted values based on the multiplicative hiding
assumption was given in [Ker08] in the context of privacy-preserving bench-
marking. However, multiplicative blinding reveals some information about the
magnitude of the blinded value. Our minimum selection protocol can be used as
a provably secure replacement of this protocol. Finally, we note that in our min-
imum Hamming distance protocol we use several steps of the Hamming distance
protocol of [JP09].

Efficient circuits addition and multiplication. Boyar et al. [BP96,BPP00,BDP00]
considered multiplicative complexity3 of symmetric functions (i.e. functions only
dependent on the hamming weight of their inputs). As a corollary, Boyar et al.
describe circuits for addition (and thus multiplication, via Karatsuba-Ofman
method [KO62]). Their circuits have the same number of AND gates as our cir-
cuits for addition (resp. multiplication). We thank an anonymous reviewer of
CANS 2009 for pointing out this previous work.

2 Preliminaries

In this section, we summarize our conventions and setting in §2.1 and crypto-
graphic tools used in our constructions: oblivious transfer (OT) in §2.3, garbled
circuits (GC) with free XOR in §2.4, and additively homomorphic encryption
(HE) in §2.2. Reader familiar with the prerequisites may safely skip to §3.

2.1 Parameters, Notation and Model

We denote symmetric security parameter by t and the asymmetric security pa-
rameter, i.e., bitlength of RSA moduli, by T . Recommended parameters for
short-term security (until 2010) are for example t = 80 and T = 1024 [GQ09].
The bitlength of a garbled value is t′ := t+1 (cf. §2.4 for details). The statistical

3 Multiplicative complexity of a function measures the number of AND gates in its
circuit (and gives NOT and XOR gates for free).
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correctness parameter is denoted with κ (the probability of a protocol failure is
bounded by 2−κ) and the statistical security parameter with σ. In practice, one
can choose κ = σ = 80. The bitlength of protocol inputs is denoted with ` and
the number of inputs with n. We write x` to denote `-bit value x.

We work in the semi-honest model. We note that the method of [KS08] (and
thus our work) requires the use of a weak form of Random Oracle, namely of
correlation-robust functions [IKNP03].

2.2 Homomorphic Encryption (HE)

Some of our constructions make black-box usage of a semantically secure ho-
momorphic encryption scheme with plaintext space (P,+, 0), ciphertext space
(C, ∗, 1), and probabilistic polynomial-time algorithms (Gen,Enc,Dec).

An additively homomorphic encryption scheme allows addition under encryp-
tion as it satisfies ∀x, y ∈ P : Dec(Enc(x)∗Enc(y)) = x+y. It can be instantiated
with a variety of cryptosystems including [Pai99,DJ01], or the cryptosystem of
[DGK07,DGK08b,DGK08a] which is restricted to small plaintext space P – just
to name a few.

For the sake of completeness we mention, that the cryptosystem of [BGN05]
allows for an arbitrary number of additions and one multiplication and fully
homomorphic encryption schemes allow to evaluate an arbitrary number of ad-
ditions and multiplications on ciphertexts. Possible candidates are the cryptosys-
tem of [AS08] (size of ciphertexts grows exponentially in the number of multi-
plications) or the recently proposed scheme without such a restriction [Gen09].
However, the size of ciphertexts in these schemes is substantially larger than
that of the purely additively homomorphic schemes.

2.3 Oblivious Transfer (OT)

Parallel 1-out-of-2 Oblivious Transfer of m `-bit strings, denoted as OTm
` , is a

two-party protocol run between a chooser C and a sender S. For i = 1, . . . ,m, S
inputs a pair of `-bit strings s0

i , s
1
i ∈ {0, 1}` and C inputs m choice bits bi ∈ {0, 1}.

At the end of the protocol, C learns the chosen strings sbi
i , but nothing about

the unchosen strings s1−bi
i whereas S learns nothing about the choices bi.

Efficient OT protocols. We use OTm
` as a black-box primitive which can

be instantiated efficiently with different protocols [NP01,AIR01,Lip03,IKNP03].
For example the protocol of [AIR01] implemented over a suitably chosen ellip-
tic curve has communication complexity m(6(2t + 1)) + (2t + 1) ∼ 12mt bits
and is secure against malicious C and semi-honest S in the standard model as
described in §B. Similarly, the protocol of [NP01] implemented over a suitably
chosen elliptic curve has communication complexity m(2(2t+1)+2`) bits and is
secure against malicious C and semi-honest S in the random oracle model. Both
protocols require O(m) scalar point multiplications.

Extending OT efficiently. The extensions of [IKNP03] can be used to effi-
ciently reduce the number of computationally expensive public-key operations
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of OTm
` to be independent of m. Their transformation for semi-honest receiver

reduces OTm
` to OTt

t and a small additional overhead: one additional message,
2m(` + t) bits additional communication, and O(m) invocations of a correlation
robust hash function (2m for S and m for C) which is substantially cheaper than
O(m) asymmetric operations. Also a slightly less efficient extension for malicious
receiver is given in their paper.

2.4 Garbled Circuits (GC)

The most efficient method for secure evaluation of a boolean circuit C for com-
putationally bounded players is Yao’s garbled circuit approach [Yao86,LP04].
We briefly summarize the main ideas of this protocol in the following. The cir-
cuit constructor (server S) creates a garbled circuit C̃ with algorithm CreateGC:
for each wire Wi of the circuit, he randomly chooses two garbled values w̃0

i , w̃1
i ,

where w̃j
i is the garbled value of Wi’s value j. (Note: w̃j

i does not reveal j.) Fur-
ther, for each gate Gi, S creates a garbled table T̃i with the following property:
given a set of garbled values of Gi’s inputs, T̃i allows to recover the garbled value
of the corresponding Gi’s output, but nothing else. S sends these garbled tables,
called garbled circuit C̃ to the evaluator (client C). Additionally, C obliviously
obtains the garbled inputs w̃i corresponding to inputs of both parties (details
on how this can be done later in §2.4). Now, C can evaluate the garbled circuit
C̃ on the garbled inputs with algorithm EvalGC to obtain the garbled outputs
simply by evaluating the garbled circuit gate by gate, using the garbled tables
T̃i. Finally, C translates the garbled outputs into output values given for the
respective players (details below in §2.4). Correctness of GC follows from the
method of how garbled tables T̃i are constructed.

Improved Garbled Circuit with free XOR [KS08]. An efficient method
for creating garbled circuits which allows “free” evaluation of XOR gates was
presented in [KS08]. More specifically, a garbled XOR gate has no garbled ta-
ble (no communication) and its evaluation consists of XOR-ing its garbled input
values (negligible computation). The other gates, called non-XOR gates, are eval-
uated as in Yao’s GC construction [Yao86] with a point-and-permute technique
(as used in [MNPS04]) to speed up the implementation of the GC protocol: the
garbled values w̃i = 〈ki, πi〉 ∈ {0, 1}t′ consist of a symmetric key ki ∈ {0, 1}t

and a random permutation bit πi ∈ {0, 1} and hence have length t′ = t + 1 bits.
The permutation bit πi is used to select the right table entry for decryption
with the t-bit key ki (recall, t is the symmetric security parameter). The encryp-
tion of the garbled table entries is done with the symmetric encryption function
Encs

k1,...,kd
(m) = m ⊕ H(k1|| . . . ||kd||s), where d is the number of inputs of the

gate, s is a unique identifier for the specific row in the gate’s garbled table used
once, and H is a suitably chosen cryptographic hash function. Hence, creation
of the garbled table of a non-XOR d-input gate requires 2d invocations of H and
its evaluation needs one invocation, while XOR gates are “for free”.
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The main observation of [KS08] is, that the constructor S chooses a global
key difference ∆ ∈R {0, 1}t which remains unknown to evaluator C and relates
the garbled values as k0

i = k1
i ⊕ ∆. (This technique was subsequently extended

in the LEGO paper [NO09] which allows to compose garbled circuits dynami-
cally with security against malicious circuit constructor). Clearly, the usage of
such garbled values allows for free evaluation of XOR gates with input wires
W1,W2 and output wire W3 by computing w̃3 = w̃1 ⊕ w̃2 (no communication
and negligible computation). However, using related garbled values requires that
the hash function H used to create the garbled tables of non-XOR gates has to
be modeled to be correlation robust (as defined in [IKNP03]) which is stronger
than modeling H as a key-derivation function (standard model) but weaker than
modeling H as a random-oracle (ROM). In practice, H can be chosen from the
SHA-2 family.

Input/Output Conversion. In secure two-party computation protocols ex-
ecuted between circuit constructor S and circuit evaluator C, each of the in-
puts and outputs of the securely computed functionality can be given in dif-
ferent forms depending on the application scenario: privately known to one
party (§A.1), secret-shared between both parties (§A.2), or homomorphically
encrypted under the public key of the other party (§A.3). These inputs can be
converted from different forms to garbled inputs given to C. Afterwards, C eval-
uates the garbled circuit, obtains the garbled outputs, and converts them into
outputs in the needed form.

The resulting communication complexities of these input and output conver-
sion protocols for semi-honest parties are summarized in Table 1 and a detailed
description of these known techniques is given in §A.

Table 1. Communication complexity for converting `-bit inputs/outputs in different
forms to inputs/outputs of a garbled circuit (parameters defined in §2.1). SS: Secret-
Shared, HE: Homomorphically Encrypted.

Input Output

Private S (§A.1) `t′ bits ` bits

Private C (§A.1) OT`
t′ ` bits

SS (§A.2) OT`
t′ ` bits

HE (§A.3) 1 ciphertext + 5`t′ bits + OT`
t′ 1 ciphertext + 5(` + σ)t′ + ` bits

3 Building Blocks for GC

In this section we present our basic contribution – improved circuit construc-
tions for several frequently used primitives, such as integer subtraction (§3.1),
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comparison (§3.2), and selection of the minimum value and index (§3.3)4. As
summarized in Table 2, our improved circuit constructions are smaller than pre-
vious solutions by 33% to 50% (depending on the functionality) when used with
the GC of [KS08]. This reduction in size immediately translates into a corre-
sponding improvement in communication and computation complexity of any
GC protocol built from these blocks. The efficiency improvements are achieved
by modifying the underlying circuits, i.e., by carefully replacing larger (more
costly) non-XOR gates (e.g., a 3-input gate) with smaller non-XOR gates (e.g.,
a 2-input gate) and (free) XOR gates.

Table 2. Size of efficient circuit constructions for `-bit values and computing the
minimum value and index of n `-bit values (in table entries).

Circuit Standard GC [KS08] This Work (Improvement)

Multiplexer (§C) 8` 4`
Addition/Subtraction (§3.1) 16` 8` 4` (50%)
Multiplication (§3.1) 20`2 − 16` 12`2 − 8` 8`2 − 4` (33%)
Equality Test (§3.2) 8` 4`
Comparison (§3.2) 8` 4` (50%)
Minimum Value + Index (§3.3) ≈ 15`n [NPS99] 8`(n− 1) + 4(n + 1) (47%)

Multiplexer Circuit (MUX). In our constructions we use `-bit multiplexer cir-
cuits MUX to select one of the `-bit inputs x` or y` as output z`, depending
on the selection bit c. For MUX, we use the improved construction of [KS08]
summarized in §C.

3.1 Integer Addition, Subtraction and Multiplication

Addition circuits (ADD) to add two unsigned integer values x`,y` can be effi-
ciently composed from a chain of 1-bit adders (+), often called full-adders, as
shown in Fig. 1. (The first 1-bit adder has constant input c1 = 0 and can be
replaced by a smaller half-adder). Each 1-bit adder has as inputs the carry-in
bit ci from the previous 1-bit adder and the two input bits xi, yi. The outputs
are the carry-out bit ci+1 = (xi ∧ yi) ∨ (xi ∧ ci) ∨ (yi ∧ ci) and the sum bit
si = xi ⊕ yi ⊕ ci (the latter can be computed “for free” [KS08]). The efficient
construction of a 1-bit adder shown in Fig. 2 computes the carry-out bit as
ci+1 = ci ⊕ ((xi ⊕ ci) ∧ (yi ⊕ ci)). Overall, the efficient construction for a 1-bit
adder consists of four free XOR gates and a single 2-input AND gate which

4 As noted in §1, Boyar et al. [BPP00,BDP00] had previously proposed the same
circuits for addition and multiplication. Further, the circuits for subtraction and
comparison can be relatively naturally derived from the same ideas. We leave these
building blocks in our presentation for completeness and readability.
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has size 22 = 4 table entries. The overall size of the efficient addition circuit is∣∣∣ADD`
∣∣∣ = ` · |+| = 4` table entries.

x! y! x1 y1y2x2

s!+1 s! s2 s1

. . . +++ c2c3 0
ADD

Fig. 1. Addition Circuit (ADD)

ci+1 ∧

xi yi

ci

+
si

Fig. 2. Improved 1-bit Adder (+)

Subtraction in two’s complement representation is defined as x` − y` = x` +
ȳ` + 1. Hence, a subtraction circuit (SUB) can be constructed analogously to
the addition circuit from 1-bit subtractors (−) as shown in Fig. 3. Each 1-bit
subtractor computes the carry-out bit ci+1 = (xi ∧ ȳi) ∨ (xi ∧ ci) ∨ (ȳi ∧ ci) and
the difference bit di = xi⊕ ȳi⊕ ci. We instantiate the 1-bit subtractor efficiently
as shown in Fig. 4 to compute ci+1 = xi ⊕ ((xi ⊕ ci) ∧ (yi ⊕ ci)) with the same
size as the 1-bit adder.

x! y! x1 y1y2x2

d!+1 d! d2 d1

. . . −−− c2c3 1
SUB

Fig. 3. Subtraction Circuit (SUB)

ci+1 ∧

xi yi

ci

di

−

Fig. 4. Improved 1-bit Subtractor (−)

Multiplication circuits (MUL) to multiply two `-bit integers x`,y` can be
constructed according to the “school method” for multiplication, i.e., adding up
the bitwise multiplications of yi and x` shifted corresponding to the position: x` ·
y` =

∑`
i=1 2i−1(yi ·x`). This circuit is composed from `2 of 1-bit multipliers (2-

input AND gates) and (`−1) of `-bit adders. Using the efficient implementation
for adders, the size of the multiplication circuit is improved to 4`2 + 4`(`− 1) =
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8`2 − 4` table entries. Alternatively, for multiplication of large `-bit numbers, a
circuit based on Karatsuba-Ofman multiplication [KO62] of size approximately
O(`1.6) is more efficient.

3.2 Integer Comparison

We present improved circuit constructions for comparison of two `-bit integers
x` and y`, i.e.,

z =
[
x` > y`

]
:=

{
1 if x` > y`,
0 else.

Note that this functionality is more general than checking equality of `-bit in-
tegers x` and y`, i.e., z =

[
x` = y`

]
, for which an improved construction was

given in [KS08].
As shown in Fig. 5, a comparison circuit (CMP) can be composed from `

sequential 1-bit comparators (>). (The first 1-bit comparator has constant in-
put c1 = 0 and can be replaced by a smaller gate). Our improved instantiation
for a 1-bit comparator shown in Fig. 6 uses one 2-input AND gate with 4 table
entries and three free XOR gates. Note, this improved bit comparator is ex-
actly the improved bit subtractor shown in Fig. 4 restricted to the carry output:[
x` > y`

]
⇔

[
x` − y` − 1 ≥ 0

]
which coincides with an underflow in the corre-

sponding subtraction denoted by subtractor’s most significant output bit d`+1.
The size of this comparison circuit is

∣∣∣CMP`
∣∣∣ = ` · |>| = 4` table entries.

z

. . .

x! y! x1 y1y2x2

>>> c2c3 0
CMP

Fig. 5. Comparison Circuit (CMP)

xi yi

ci+1

ci∧
>

Fig. 6. Improved 1-bit Comparator (>)

Improved comparison circuits for
[
x` < y`

]
,
[
x` ≥ y`

]
, or

[
x` ≤ y`

]
can be

obtained from the improved circuit for
[
x` > y`

]
by interchanging x` with y`

and/or setting the initial carry to c1 = 1.

3.3 Minimum Value and Minimum Index

Finally, we show how the improved blocks presented above can be combined to
obtain an improved minimum circuit (MIN) which selects the minimum value
m` and minimum index i of a list of n `-bit values x`

0, . . . ,x
`
n−1, i.e., ∀j ∈
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{0, . . . , n − 1} : (m` < x`
j) ∨ (m` = x`

j ∧ i ≤ j). E.g., for the list 3, 2, 5, 2 the
outputs would be m` = 2 and i = 1 as the leftmost minimum value of 2 is at
position 1. W.l.o.g. we assume that n is a power of two, so the minimum index
can be represented with log n bits.

Performance improvement of MIN mainly comes from the improved building
blocks for integer comparison. We shave off an additive factor by carefully ar-
ranging tournament-style circuit so that some of the index wires can be reused
and eliminated. That is, at depth d of the resulting tree we keep track of the `-bit
minimum value m` of the sub-tree containing 2d values but store and propagate
only the d least significant bits idd of the minimum index.

More specifically, the minimum value and minimum index are selected pair-
wise in a tournament-like way using a tree of minimum blocks (min) as shown
in Fig. 7. As shown in Fig. 8, each minimum block at depth d gets as inputs
the minimum `-bit values m`

d,L and m`
d,R of its left and right subtrees TL, TR

and the d least significant bits of their minimum indices idd,L and idd,R, and
outputs the minimum `-bit value m`

d+1 and (d + 1)-bit minimum index id+1
d+1

of the tree. First, the two minimum values are compared with a comparison
circuit (cf. §3.2). If the minimum value of TL is bigger than that of TR (in
this case, the comparison circuit outputs value 1), m`

d+1 is chosen to be the
value of TR with an `-bit multiplexer block (cf. §C). In this case, the mini-
mum index id+1

d+1 is set to 1 concatenated with the minimum index of TR using
another d-bit multiplexer. Alternatively, if the comparison yields 0, the min-
imum value of TL and the value 0 concatenated with the minimum index of
TL are output. Overall, the size of the efficient minimum circuit is

∣∣∣MIN`,n
∣∣∣ =

(n− 1) · (
∣∣∣CMP`

∣∣∣+ ∣∣∣MUX`
∣∣∣)+

∑log n
j=1

n
2j

∣∣MUXj−1
∣∣ = 8`(n− 1)+4n

∑log n
j=1

j−1
2j <

8`(n− 1) + 4n(1 + 1
n ) = 8`(n− 1) + 4(n + 1).

Our method of putting the minimum blocks together in a tree (cf. Fig. 7)
is non-trivial: If the minimum blocks would have been arranged sequentially
(according to the standard selection algorithm to find the minimum), the size
of the circuit would have been (n − 1) · (

∣∣∣CMP`
∣∣∣ +

∣∣∣MUX`
∣∣∣ +

∣∣∣MUXlog n
∣∣∣) =

8`(n− 1) + 4(n− 1) log n table entries which is less efficient than the tree.
In previous work [NPS99], a circuit for computing first-price auctions (which

is functionally equivalent to computing the maximum value and index) with a
size of approximately 15`n table entries is mentioned over which our explicit
construction improves by a factor of approximately 15

8 .

4 Applications

We now describe how our efficient circuit constructions (§3) can be applied to
improve previous solutions for several applications. We note that constructions of
this section are not novel and may be folklore knowledge. We explicate them for
concreteness, and use them to demonstrate the usefulness of our building blocks
and to arrive at performance estimates to form a baseline for future protocols.
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4.1 Integer Comparison (Millionaires Problem)

The “Millionaires problem” was introduced by Yao in [Yao82] as motivation for
secure compuation: two millionaires want to securely compare their respective
private input values (e.g., their amount of money) without revealing more infor-
mation than the outcome of the comparison to the other party. More specifically,
client C holds a private `-bit value x` and server S holds a private `-bit value
y`. The output bit z = [x` > y`] should be revealed to both.

We obtain an efficient solution for the Millionaires problem simply by eval-
uating the comparison circuit of §3.2 with the GC protocol of [KS08] and an
efficient OT protocol. Our protocol, when executed without precomputation has
asymptotic communication complexity 5`t + OT`

t bit, where t is the symmetric
security parameter (cf. §2.1).

In many practical application scenarios it is beneficial to shift as much of the
computation and communication cost of a protocol into a setup (precomputa-
tion) phase, which is executed before the parties’ inputs are known, while the
parties’ workload is low. In the following we apply a folklore technique, which
demonstrates that GC protocols are ideally suited for precomputation as (in con-
trast to many protocols based on homomorphic encryption) almost their entire
cost can be shifted into the setup phase.

Millionaires with setup. GC protocols allow to move all expensive operations
(i.e., computationally expensive OT and creation of GC, as well as the transfer
of GC which dominates the communication complexity) into the setup phase.
The idea is to create and transfer the garbled circuit in the setup phase, and pre-
compute the OTs [Bea95]: for this, the parallel OT protocol is run on randomly
chosen (by C and S) values of corresponding sizes (instead of private inputs of
C and pairs of garbled input values of S). Then, in the online phase, C uses its
randomly chosen value to mask his private inputs, and sends them to S. S replies
with encryptions of wire’s garbled inputs using his random values from the setup
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phase (which garbled input is masked with which random value is determined
by C’s message) . Finally, C can use the masks he received from the OT protocol
in the setup phase to exactly decrypt the correct garbled input value.

More specifically, the setup phase works as follows: for i = 1, . . . , `, C
chooses random bits ri ∈R {0, 1} and S chooses random masks m0

i ,m
1
i ∈R

{0, 1}t′ (recall, t′ = t + 1 is the bitlength of garbled values). Both parties run a
OT`

t′ protocol on these randomly chosen values, where S inputs the pairs m0
i ,m

1
i

and C inputs ri and C obliviously obtains the mask mi = mri
i . Additionally,

S creates a garbled circuit C̃ with garbled inputs x̃0
i , x̃

1
i and ỹ0

i , ỹ1
i and sends

C̃ together with the output decryption table to C. This message has the size
4`t′+1 ∼ 4`t bits. Overall, the setup phase has a slightly smaller communication
complexity than the Millionaires protocol without setup described above.

In the online phase, S sends the garbled values ỹ` corresponding to his input
y` to C and the online part of the OT protocol is executed: for each i = 1, . . . , `, C
masks its input bits xi with ri as Xi = xi⊕ri and sends these masked bits to S. S
responds with the masked pair of t′-bit strings

〈
M0

i ,M1
i

〉
=

〈
m0

i ⊕ x̃0
i ,m

1
i ⊕ x̃1

i

〉
if Xi = 0 or

〈
M0

i ,M1
i

〉
=

〈
m0

i ⊕ x̃1
i ,m

1
i ⊕ x̃0

i

〉
otherwise. C obtains

〈
M0

i ,M1
i

〉
and decrypts x̃i = Mri

i ⊕ mi. Using the garbled inputs x̃`, ỹ`, C evaluates the
garbled circuit C̃, obtains the result from the output decryption table and sends
it back to S. Overall, in the online phase `t′ + 2`t′ + 1 ∼ 3`t bits are sent.

Cost Evaluation. Computation Complexity. As our improved GC for integer
comparison consists of no more than ` non-XOR 2-to-1 gates (cf. comparison
circuit in §3.2), C needs to invoke the underlying cryptographic hash-function
(e.g., SHA-256 for t = 128 bit symmetric security) exactly ` times to evaluate
the GC (cf. §2.4). All other operations are negligible (XOR of t-bit strings).
Hence, the computational complexity of the online phase of our protocol is neg-
ligible as compared to that of protocols based on homomorphic encryption. Even
with an additional setup phase, those protocols need to invoke a few modular
operations for each input bit which are usually by several orders of magnitude
more expensive than the evaluation of a cryptographic hash function used in
our protocols. Further the computational complexity of the setup phase in our
protocol is more efficient than in protocols based on homomorphic encryption
when using efficient OT protocols implemented over elliptic curves and efficient
extensions of OT for a large number of inputs (cf. §2.3).

Communication Complexity. Table 3 shows that also the communication com-
plexity of our protocol is much lower than that of previous protocols which
are based on homomorphic encryption. As underlying OT`

t′ protocol we use the
protocol of [AIR01] implemented over a suitably chosen elliptic curve and using
point compression described in §B. This protocol has asymptotic communication
complexity 12`t bits and is secure in the standard model. (Using the protocol of
[NP01] which is secure in the random oracle model would result in communica-
tion complexity 6`t bits and much lower computation complexity.) The chosen
values for the security parameters correspond to standard recommendations for
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short-term (upto 2010), medium-term (upto 2030) and long-term security (after
2030) [GQ09].

Table 3. Asymptotic communication complexity of comparison protocols on `-bit val-
ues. Parameters defined in §2.1: ` = 16, κ = 40, short-term security: t = 80, T = 1024,
medium-term security: t = 112, T = 2048, long-term security: t = 128, T = 3082.

Communication Previous Work This Work
Complexity [Fis01] [BK04] [DGK07] Setup Phase Online Phase Total

Asymptotic (κ + 1)`T 4`T 2`T 16`t 3`t 19`t

short-term 82 kByte 8 kByte 4 kByte 2.5 kByte 0.5 kByte 3.0 kByte
medium-term 164 kByte 16 kByte 8 kByte 3.5 kByte 0.7 kByte 4.2 kByte
long-term 246 kByte 24 kByte 12 kByte 4.0 kByte 0.8 kByte 4.8 kByte

4.2 First-Price Auctions

In standard auction systems such as Ebay, the auctioneer learns the inputs of
all bidders and hence can deduce valuable information about the bidding be-
havior of non-successfull bidders or cheat while computing the auction function
depending on bidders’ input values. To overcome this, a secure protocol can be
used instead. Bidders provide their bids in a “smartly” encrypted form to the
protocol which allows the auctioneer to compute the auction function without
learning the bids. In the following we show how our constructions can be used
to improve two previously proposed secure auction systems: one in which all
bids are collected before the auction function is computed (Offline Auctions),
and another one where bids are input dynamically and the current highest bid
is published (Online Auctions).

Offline Auctions. In the offline auction system of [NPS99], the auction func-
tion is computed by two parties, an auction issuer and the auctioneer, who are
assumed not to collude. The auction issuer creates a garbled circuit which com-
putes the auction function and sends it to the auctioneer. For each of the bidders’
input bits b, a proxy-OT protocol is run, where the auction issuer inputs the two
complementary garbled input values b̃0, b̃1 of the garbled circuit, the bidder in-
puts b and the auctioneer obtains the corresponding garbled value b̃. Then, the
auctioneer evaluates the garbled circuit on the garbled inputs and obtains the
outcome of the auction as output.

In order to run a first-price auction which outputs the maximum bid and
the index of the maximum bidder, our improved minimum circuit of §3.3 can
be used. This circuit is substantially smaller and hence the resulting protocol is
more efficient than the circuit used in [NPS99] as shown in Table 2.
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Online Auctions. The auction system proposed in [DGK07,DGK08a,DGK08b]
extends the idea of splitting the computation of the auction function between two
parties, the auctioneer (called server) and another party (called assisting server)
who are assumed not to collude. Each bidder can submit a maximum bid b
which he secret-shares between server and assisting server over respective secure
channels. Afterwards, the bidder can go offline, while the server and assisting
server run a secure comparison protocol to compare the secret-shared maximum
bid with the publicly known value of the currently highest bid to keep track
which bidder is still “in the game”. A detailed description of the scenario can be
found in [DGK08b].

In the following we show that our GC-based comparison protocol outperforms
the comparison protocol presented in [DGK07] which is based on homomorphic
encryption for the online auction scenario. Our protocol uses the efficient compar-
ison protocol of §4.1 with inputs given in different forms: the bid is secret-shared
between both players (cf. §A.2 for simple folklore technique to use such inputs in
GC) and the other input is publicly known to both parties (e.g., can be treated
as a private input of circuit constructor S). The resulting circuit-based protocol
for online auctions has exactly the same performance as our solution for the
Millionaires problem described in §4.1 with the same efficiency improvements
over previous solutions. In particular, the possibility to move all expensive oper-
ations into the setup phase, which can be executed during idle times (whenever
no new bids are received), is very beneficial for this application as this enables
the bidders to instantly see if their current bid was successful or if another bidder
meanwhile gave a higher bid. This feature is important towards the end of the
auction, where the frequency of bids is high. We further recall that the workload
of the setup phases can be reduced by extending OTs efficiently (cf. §2.3).

4.3 Minimum Distance

Finally, we give an efficient protocol for secure computation of the minimum
distance (or nearest neighbor) between a private query point Q, held by client C,
and an ordered list of private points P0, . . . , Pn−1 (called database), held by server
S. The protocol consists of two sub-protocols: the first sub-protocol computes
for i = 1, . . . , n the encrypted distance JδiK of the query point Q to each point
Pi in the database, using a suitably chosen homomorphic encryption scheme,
and outputs these encrypted distances to S. The second sub-protocol securely
selects the minimum value and index of these encrypted distances and outputs
the minimum distance δmin and minimum index imin to C.

Distance Computation. We sketch the sub-protocols to securely compute the
distance JδiK between query point Q and points Pi in the database next.

Hamming Distance. The Hamming distance between two points P = (p1, . . . , pm)
and Q = (q1, . . . , qm) with pj , qj ∈ {0, 1} is defined as dH(P,Q) :=

∑m
j=1 pj ⊕

qj =
∑m

j=1(1− pj)qj + pj(1− qj). Using an additively homomorphic encryption
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scheme, the Hamming distance can then be computed as follows: C generates
a public-key pk and a corresponding secret-key of an additively homomorphic
cryptosystem and sends (the verifiably correct) pk and bitwise homomorphic
encryptions of Q, Jq1K, . . . , JqmK, to S. As computing the Hamming distance is a
linear operation, S can compute the encrypted Hamming distance to each point
P = Pi in its database as JδiK = JdH(P,Q)K from JqjK and pj using standard
techniques as proposed in [JP09].

Euclidean Distance. The Euclidean distance can be seen as an extension of
the Hamming distance from 1-bit coordinates to `-bit coordinates, i.e., for j =
1, . . . ,m : pj , qj ∈ {0, 1}`. The Euclidean distance is then defined as dE(P,Q) :=√∑m

j=1(pj − qj)2. As the Euclidean distance is not negative, it is sufficient to
compute the square of the Euclidean distance instead, in order to find the min-
imum (or maximum) Euclidean distance: dE(P,Q)2 =

∑m
j=1(pj − qj)2. The

encryption of the square of the Euclidean distance Jδ2
i K = JdE(Pi, Q)2K can be

computed analogously to the protocol for the Hamming distance by using ad-
ditively homomorphic encryption which allows for at least one multiplication
(cf. §2.2). Alternatively, additively homomorphic encryption together with an
additional round for squaring can be used as proposed in [EFG+09].

Minimum Selection. After having securely computed the homomorphically
encrypted distances JδiK held by S, the minimum and minimum index of these
values can be selected by converting these homomorphically encrypted values to
garbled values as described in §A.3 and securely evaluating the minimum circuit
of §3.3. The asymptotic communication complexity of this minimum selection
protocol is 13`nt bits for the garbled circuits (when GCs are pre-computed), n
homomorphic ciphertexts, and OTn`

t′ . The number of homomorphic ciphertexts
can be further reduced using packing (§A.3), and the number of OTs can be re-
duced to a constant number of OTs (§2.3). As for the other application scenarios
described before, all expensive operations can be moved into a setup phase and
the entire protocol has a constant number of rounds.

Our minimum selection protocol can also be used as a provably secure5 re-
placement for the minimum selection protocol of [Ker08], which was used in the
context of privacy-preserving benchmarking. In this scenario, mutually distrust-
ing companies want to compare their key performance indicators (KPI) with the
statistics of their peer group using an untrusted central server.

Acknowledgements. We thank anonymous reviewers of CANS 2009 for helpful
comments and pointing out previous work.

5 The minimum selection protocol of [Ker08] requires multiplicative-blinding of an
additively homomorphically encrypted value which reveals some information about
the magnitude of the blinded value.
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A Input/Output Conversion Protocols

A.1 Private Inputs and Outputs

Private S Input: Inputs privately known to the circuit constructor S are easiest
to deal with. For each of these inputs i, S sends the garbled value w̃vi

i corre-
sponding to the plain value vi to evaluator C.

As described in [PSS09], in case of semi-honest constructor (i.e., with no cut-
and-choose), the inputs of S can also be securely incorporated into the garbled
circuit. This optimization avoids to transfer any additional data for S’s private
inputs and the size of the GC can be reduced as well. However, in many appli-
cations it is beneficial even in the semi-honest scenario to separate conversion
of the inputs from creation of the garbled circuit, as this allows S to create the
garbled circuit in an offline pre-computation phase already before its private
inputs are known.

Private C Input: For private inputs wi of the evaluator C, both parties execute
an OT protocol for each input bit in which constructor S inputs the two garbled
t′-bit values w̃0

i , w̃1
i and C inputs its plain value vi to obtain w̃vi

i as output. For
` input bits, the OTs can be executed in a parallel OT`

t′ protocol which can
efficiently be extended to OTt

t as described in 2.3.

Private S Output: If the output of the functionality is a private output wi of the
evaluator C, constructor S provides C with the output decryption table for wi,
i.e., the permutation bit πi chosen when creating the garbled value w̃0

i =
〈
k0

i , πi

〉
.

Private C Output: For private outputs wi of the constructor S, evaluator C
does not get an output decryption table but sends the obtained permutation
bit πi of the obtained garbled value w̃i = 〈ki, πi〉 back to S who can deduce
the corresponding plain value from this. Clearly, this works only if C is semi-
honest as otherwise he could easily flip the output bit. This can be prevented by
requiring C to send the output key ki instead.

A.2 Secret-Shared Inputs and Outputs

Secret-Shared Input: As proposed in [FPRS04], a bit b can be secret-shared
between C holding share bC and S holding share bS , with b = bC ⊕ bS . A secret-
shared input bit b can be converted into a garbled input b̃ using an OT`

t′ protocol:
C inputs bC and S inputs the two corresponding garbled values in the usual order
b̃0, b̃1 if bS = 0 or swaps them to b̃1, b̃0 otherwise. It is easy to verify that C
obliviously obtains the correct garbled value b̃ for the shared bit b.

Secret-Shared Output: A similar method can be used for a secret-shared output
bit b. S chooses a random share bS and provides C with an output decryption
table (cf. private output to C) in the correct order in case bS = 0 or with swapped
entries otherwise. C decrypts the garbled output to bC which satisfies b = bC⊕bS .
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A.3 Homomorphically Encrypted Inputs and Outputs

In the scenario of secure two-party computation based on homomorphic encryp-
tion, one party, say client C, generates a key-pair of the homomorphic encryption
scheme and sends the (verifiably correct) public key and its inputs encrypted un-
der the public key to S. Afterwards, S can perform operations on the ciphertexts
which result in corresponding operations on the encrypted plaintext data (using
the homomorphic property of the cryptosystem). In order to compute operations
that are not compatible with the homomorphic property (e.g., multiplication of
two ciphertexts encrypted with an additively homomorphic encryption scheme),
additional communication rounds must be performed. In the following we show
how computing on homomorphically encrypted data can be combined with a
garbled circuit to efficiently evaluate non-linear functions, such as comparison,
minimum search, or other functionalities in a constant number of rounds.

Homomorphically Encrypted Input: If S holds an `-bit value Jx`K, additively ho-
momorphically encrypted under C’s public key, this value can be converted into
a garbled value x̃` output to C as follows: S chooses a random value r from the
plaintext space P and adds this to the encrypted value: JyK = Jx` + rK. In order
to avoid an overflow, this requires that ` + κ ≤ |P | for a statistical correctness
parameter κ (e.g., κ = 40). S sends JyK to C who decrypts into y. Afterwards,
both parties evaluate a garbled circuit which takes off the additive blinding: the
private input of S into this garbled circuit are the ` least significant bits of r,
r` = r mod 2`, and C inputs the ` least significant bits of y, y` = y mod 2`.
The garbled circuit is an `-bit subtraction circuit (cf. §3.1) which recovers the
plaintext value from the blinded value as x̃` = ỹ` − r̃`. This conversion proto-
col from additively homomorphically encrypted values into garbled values was
used in [BPSW07,JP09]. A detailed proof of the protocol and further efficiency
improvements, that can be achieved by packing together multiple values under
encryption and converting this packed value at once, can be found in [BFK+09].

Homomorphically Encrypted Output: A garbled `-bit output x̃`, held by C after
having evaluated the garbled circuit, can be converted back into a homorphic
encryption Jx`K held by S as follows: S chooses a random (` + σ)-bit value
r`+σ ∈R {0, 1}`+σ, where σ is a statistical security parameter (e.g., σ = 80) and
` + σ ≤ |P | to avoid an overflow. Now, a garbled (` + σ)-bit addition circuit
(cf. §3.1) is evaluated which computes ỹ`+σ = x̃` + r̃`+σ: C inputs x̃` into this
circuit and S provides C with the garbled value r̃`+σ together with an output
decryption table for y`+σ. After evaluation of GC, C obtains y`+σ, encrypts it
under his public key of the additively homomorphic cryptosystem and sends the
ciphertext Jy`+σK to S. S can subtract the blinding value r`+σ under encryption
and gets Jx`K. This output conversion protocol can be proven secure analogous
to the proof for homomorphically encrypted inputs [BFK+09].
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B Efficient OT protocol of [AIR01] over elliptic curves

In the following we describe the efficient two-move OT protocol of [AIR01] in-
stantiated with elliptic curves as proposed in [Lip03] in detail. The protocol
of [AIR01] is based on a homomorphic, semantically secure cryptosystem with
verifiability property, i.e., the validity of a public key pk and the validity of a
ciphertext c with respect to a valid pk can efficiently be checked. In general, e.g.,
for the Paillier scheme [Pai99], additional Zero-Knowledge Proofs-of-Knowledge
(ZK-PoK) are needed to prove these properties. As outlined in [AIR01], the
multiplicatively homomorphic ElGamal scheme enjoys verifiability without such
ZK-PoKs, as it can easily be checked whether a given element g has prime order
q by checking gq ?= 1.

EC-ElGamal. For efficiency reasons, ElGamal can be implemented over a suit-
ably chosen elliptic curve (EC-ElGamal) which results in the protocol shown in
Protocol 1. Recall, an elliptic curve over a prime field Fp is parametrized by
the six-tuple T = (p, a, b, P, q, h), where p is a 2t-bit prime (t is the symmetric
security parameter), a, b ∈ Fp specify the equation E : y2 ≡ x3 + ax + b mod p,
P = (xP , yP ) ∈ E(Fp) is the base point with large prime order q (2t bit in the
curves we choose) and h = #E(Fp)/q is a small cofactor. O denotes the point at
infinity. Each point can be represented with 2t + 1 bits using point compression
which is computationally more expensive than the uncompressed representation
which has size 4t bits [SEC00a].

Point embedding. We assume, that the strings s0, s1 are short enough to be
embedded into points on the elliptic curve. A probabilistic algorithm for embed-
ding a string into the x-coordinate of a point was proposed in [Kob87]: let κ be
a statistical correctness parameter (e.g., κ = 10 is proposed in [Kob87]). Then,
assuming 0 ≤ s < q/2κ − 1, we try to append κ bits to s until we obtain an x,
2κs ≤ x < 2κ(s+1) < q, such that f(x) = x3 +ax+ b is a square in Fp (this can

efficiently be tested by computing the Legendre-Symbol and testing if
(
x
p

) ?= 1).
Now, s is embedded into the point S = (x,

√
f(x)) ∈ E(Fp). Obviously, S can

be decoded back into string s by dropping the last κ bits of its x-coordinate.

Choice of Elliptic Curves. An implementation could use the curves secp160,
secp224r1, resp. secp256r1 from the SECG standard [SEC00b,SEC00a,Bro05]
which corresponds to symmetric security levels of t = 80, 112, resp. 128 bit.
For these curves, the DDH assumption is assumed to hold as they are chosen
verifiably at random [SEC00b,SEC00a] compliant with the recommendations in
many international standards such as the Digital Signature Standard of NIST
[FIP00]. Additionally, these curves allow efficient checking whether a point G is
a scalar multiple of the base point P , as they have cofactor h = 1 [SEC00b],
which implies that each point G 6= O that lies on the curve, i.e., satisfies E, is a
scalar multiple of P [CF05].
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Protocol 1 OT1
` protocol of [AIR01] instantiated with EC-ElGamal

Input C: bit b ∈ {0, 1}
Input S: pair of strings s0, s1 ∈ {0, 1}`

Output C: string sb

Output S: success ∈ {⊥,>}

1: Setup phase: C generates EC-ElGamal keypair (chooses secret key s ∈R Zq and
computes public key Q = [s]P ) and sends public key Q to S.

2: Setup phase: S verifies that Q
?
∈ E and aborts with success = ⊥ otherwise.

3: C encrypts B = O or B = P with EC-ElGamal and public key Q depending on b:
choose r ∈R Zq, compute C1 = [r]P , C2 = [r]Q = [r + s]P , if b = 1 then C2 =
C2 + P .

4: C sends C1, C2 to S.

5: S verifies that C1, C2

?
∈ E and aborts with success = ⊥ otherwise.

6: S maps s0 to point S0 and s1 to point S1.
7: S computes (C0

1 , C0
2 ) as conditional disclosure of S0 conditioned on B = O:

choose r0, s0 ∈R Zq, compute C0
1 = [s0]C1 + [r0]P , C0

2 = [s0]C2 + [r0]Q + S0.
8: S computes (C1

1 , C1
2 ) as conditional disclosure of S1 conditioned on B = P :

choose r1, s1 ∈R Zq, compute C1
1 = [s1]C1 + [r1]P , C1

2 = [s1](C2−P ) + [r1]Q + S1.
9: S sends C0

1 , C0
2 , C1

1 , C1
2 to C and outputs success = > to S.

10: C decrypts Sb = Cb
2 − [s]Cb

1 and maps this point to the string sb which is output
to C.

Communication Complexity. The asymptotic communication complexity of the
OT1

` protocol given in Protocol 1 is 12t bits, as overall 6 points of size 2t+1 bits
each are sent. The corresponding parallel OTm

` protocol can be easily obtained
by running this protocol m times in parallel (with same setup phase) and has
asymptotic communication complexity 12mt bits.

Theorem 1 (Security). The OT1
` protocol given in Protocol 1 is secure against

malicious C and semi-honest S provided the DDH assumption holds for the
underlying elliptic curve.

Proof. The proof of theorem 1 follows directly from the proof for the OT protocol
in [AIR01, Sect. 5.1] and the proof that the semantic security of ElGamal is
equivalent to the Decision Diffie-Hellman (DDH) assumption in the underlying
group [TY98].

Hashed EC-ElGamal. Instead of using EC-ElGamal, the semantically secure
Hashed EC-ElGamal encryption scheme [Sho04] can be used. In hashed EC-
ElGamal, the message s is not embedded into a point S on the elliptic curve.
Instead, a random point R on the elliptic curve is encrypted from which a sym-
metric encryption key Hκ(R) for encryption of s is derived using an entropy
smoothing hash function Hκ. As no point embedding is needed in hashed EC-
ElGamal, this reduces the computational complexity of S. However, the commu-



24 V. Kolesnikov, A.-R. Sadeghi, T. Schneider

nication complexity is slightly increased by |s| bits as the ciphertext additionally
contains the symmetric encryption of the message s.

C Improved Multiplexer [KS08]

An `-bit multiplexer circuit MUX selects its output z` to be its left `-bit input
x` if the input selection bit c is 0, respectively its right `-bit input y` otherwise.
As shown in Fig. 9, the block can be composed from ` parallel Y blocks that are
1-bit multiplexers.

The Y gates have three inputs xi, yi, c and one output zi. They could be
instantiated with a 3-to-1 gate of size 23 = 8 table entries. According to [KS08], Y
blocks can be instantiated more efficiently, as shown in Fig. 10: this instantiation
needs only a 2-input AND gate of size 22 = 4 table entries and two free XOR
gates resulting in an overall improvement by a factor of two (as 4 instead of 8
table entries need to be garbled and transferred in the GC protocol). The efficient
`-bit multiplexer construction has size

∣∣∣MUX`
∣∣∣ = ` · |Y| = 4` table entries.

x1 y1

Y

z1

. . .

x! y!

Y

z!

y2x2

Y

z2

c

MUX

. . .

Fig. 9. Multiplexer Circuit
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Fig. 10. Improved Y Block [KS08]


