
Bayesian Analysis (2008) 3, Number 2, pp. 427–442

On some difficulties with a posterior probability

approximation technique

Christian P. Robert∗ and Jean-Michel Marin†

Abstract. In Scott (2002) and Congdon (2006), a new method is advanced to
compute posterior probabilities of models under consideration. It is based solely
on MCMC outputs restricted to single models, i.e., it is bypassing reversible jump
and other model exploration techniques. While it is indeed possible to approxi-
mate posterior probabilities based solely on MCMC outputs from single models,
as demonstrated by Gelfand and Dey (1994) and Bartolucci et al. (2006), we show
that the proposals of Scott (2002) and Congdon (2006) are biased and advance sev-
eral arguments towards this thesis, the primary one being the confusion between
model-based posteriors and joint pseudo-posteriors. From a practical point of
view, the bias in Scott’s (2002) approximation appears to be much more severe
than the one in Congdon’s (2006), the latter being often of the same magnitude
as the posterior probability it approximates, although we also exhibit an example
where the divergence from the true posterior probability is extreme.

Keywords: Bayesian model choice, posterior approximation, reversible jump, Markov
Chain Monte Carlo (MCMC), pseudo-priors, unbiasedness, improperty.

1 Introduction

Model selection is a fundamental statistical issue and a clear asset of the Bayesian
methodology but it faces severe computational difficulties because of the requirement
to explore simultaneously the parameter spaces of all models under comparison accu-
rately enough to provide sufficient approximations to the posterior probabilities of all
models. When Green (1995) introduced reversible jump techniques, it was perceived
by the community as the second MCMC revolution in that it allowed for a valid and
efficient exploration of the collection of models and the subsequent literature on the
topic exploiting reversible jump MCMC is a testimony to the appeal of this method.
Nonetheless, the implementation of reversible jump techniques in complex situations
may face difficulties or at least inefficiencies of its own and, despite some recent ad-
vances in the devising of the jumps underlying reversible jump MCMC (Brooks et al.
2003), the care required in the construction of those jumps often acts as a deterrent
from its applications.

There are practical alternatives to reversible jump MCMC when the number of
models under consideration is small enough to allow for a complete exploration of those
models. Integral approximations using importance sampling techniques like those found
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in Gelfand and Dey (1994), based on a harmonic mean representation of the marginal
densities, and in Gelman and Meng (1998), focussing on the optimised selection of the
importance function, are advocated as potential solutions, see Chen et al. (2000) for a
detailed introduction. The reassessment of those methods by Bartolucci et al. (2006)
showed the connection between a virtual reversible jump MCMC and importance sam-
pling (see also Chopin and Robert 2007). In particular, those papers demonstrated
that the output of MCMC samplers on each single model could be used to produce ap-
proximations of posterior probabilities of those models, via some importance sampling
methodologies also related to Newton and Raftery (1994).

In Scott (2002) and Congdon (2006), a new and straightforward method is advanced
to compute posterior probabilities of models under scrutiny based solely on MCMC
outputs restricted to single models. While this simplicity is quite appealing for the
approximation of those probabilities, we believe that both proposals of Scott (2002) and
Congdon (2006) are inherently biased and we advance in this note several arguments
towards this thesis. In addition, we notice that, to overcome the bias we thus exhibited,
a valid solution would call for the joint simulation of parameters under all models (using
priors or pseudo-priors) and, in this step, the primary appeal of the methods would thus
be lost compared to the one proposed by Carlin and Chib (1995), from which both Scott
(2002) and Congdon (2006) are inspired.

We want to point out at this stage that the original purpose of Scott (2002) is to
provide a survey of Bayesian methods for the analysis of hidden Markov models and
thus that the approximation we analyse here is introduced as a side remark within the
whole paper. If we insist here on the bias produced by Scott’s (2002) approximation, it
is because it generated followers, including Congdon (2006), and because both approx-
imations are based on the same erroneous interpretation of the marginal distribution
in Bayesian model choice. We also note that Congdon’s (2006) approximation often
produces values that are numerically of the same magnitude as the true value of the
posterior probabilities, with sometimes very close proximity as illustrated in Example
2 of Section 3.4, but also potential severe mishaps as in Example 4 of Section 3.4.

2 The methods

In a Bayesian framework of model comparison (see, e.g., Robert 2001), given D models
in competition, Mk, with densities fk(y|θk), and prior probabilities %k = P (M = k)
(k = 1, . . . , D), the posterior probabilities of the models Mk conditional on the data y
are given by

P (M = k|y) ∝ %k

∫

fk(y|θk)πk(θk) dθk ,

the proportionality term being given by the sum of the above and M denoting the
unknown model index.

In the specific setup of hidden Markov models, the solution of Scott (2002, Section
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4.1) is to generate, simultaneously and independently, D MCMC chains

(θ
(t)
k )t , 1 ≤ k ≤ D ,

with stationary distributions πk(θk|y) and to approximate P (M = k|y) by

%̃k(y) ∝ %k

T
∑

t=1







fk(y|θ(t)
k )

/ D
∑

j=1

%j fj(y|θ(t)
j )







,

as reported in formula (21) of Scott (2002), with the indication that (21) averages the
D likelihoods corresponding to each θj over the life of the Gibbs sampler (p.347), the
latter being understood as independently sampled D parallel Gibbs samplers (p.347).

Adopting a more general perspective, the proposal of Congdon (2006) for an approx-
imation of the P (M = k|y)’s follows both from Scott’s (2002) approximation and from
the pseudo-prior construction of Carlin and Chib (1995) that predated reversible jump
MCMC by saturating the parameter space with an artificial simulation of all parameters
at each iteration. However, due to a very special (and, we believe, mistaken) choice of
pseudo-priors discussed below, Congdon’s (2006, p.349) approximation of P (M = k|y)
eventually reduces to the estimator

%̂k(y) ∝ %k

T
∑

t=1







fk(y|θ(t)
k )πk(θ

(t)
k )

/ D
∑

j=1

%j fj(y|θ(t)
j )πj(θ

(t)
j )







,

where the θ
(t)
k ’s are samples from πk(θk |y) (or approximate samples obtained by an

MCMC algorithm). This is a simple and readily implementable formula that attracted
other researchers like Chen et al. (2008).

Although both approximations %̃k(y) and %̂k(y) clearly differ in their expressions, by

the addition of a πk(θ
(t)
k ) term in Congdon’s (2006) formula, they fundamentally relate to

the same notion that parameters from other models can be ignored when conditioning on
the model index M . This approach is therefore bypassing the simultaneous exploration
of several parameter spaces and it restricts the simulation effort to marginal samplers on
each separate model. This feature is very appealing since it cuts most of the complexity
from the schemes both of Carlin and Chib (1995) and of Green (1995). We however
question the foundations of those approximations as presented in both Scott (2002) and
Congdon (2006) and advance below arguments that both authors are using incompatible
versions of joint distributions on the collection of parameters that jeopardise the validity
of the approximations.

3 Difficulties

The sections below expose the difficulties found with both methods, following the ar-
guments advanced in Scott (2002) and Congdon (2006), respectively. The fundamental
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difficulty with both approaches appears to us to stem from a confusion between the
model dependent simulations and the joint simulations based on a pseudo-prior scheme
as in Carlin and Chib (1995). Once this difficulty is resolved, it appears that the corre-
sponding approximation of P (M = k|y) by P̂ (M = k|y) does require a joint simulation
of all parameters and thus that the solutions proposed in Scott (2002) and Congdon
(2006) are of the same complexity as the proposal of Carlin and Chib (1995). If single
models MCMC chains are to be used, alternative approaches described for instance in
Chen et al. (2000) and compared in Gamerman and Lopes (2006) can be implemented.

3.1 Incorrect marginals

We denote by θ = (θ1, . . . , θD) the collection of parameters for all models under consid-
eration. Both Scott (2002) and Congdon (2006) start from the representation

P (M = k|y) =

∫

P (M = k|y, θ)π(θ|y) dθ

to justify the approximation

P̂ (M = k|y) =

T
∑

t=1

P (M = k|y, θ(t))/T .

This is indeed an unbiased estimator of P (M = k|y) provided the θ(t)’s are generated
from the correct (marginal) posterior

π(θ|y) =

D
∑

k=1

P (θ, M = k|y) (1)

∝
D

∑

k=1

%k fk(y|θk)
∏

j

πj(θj)

=

D
∑

k=1

%k mk(y) πk(θk|y)
∏

j 6=k

πj(θj) . (2)

In both papers, the θ(t)’s are instead simulated as independent outputs from the compo-
nentwise posteriors πk(θk|y) and this divergence jeopardises the theoretical validity of
the approximation. The error in both interpretations stems from the fact that, while the

θ
(t)
k ’s are (correctly) independent given the model index M , this independence does not

hold once M is integrated out, which is the case for the θ
(t)
k ’s in the above approximation

P̂ (M = k|y).

3.2 MCMC versus marginal MCMC

When Congdon (2006) defines a Markov chain (θ(t)) at the top of page 349, he indicates

that the components of θ(t) are made of independent Markov chains (θ
(t)
k ) simulated
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with MCMC samplers related to the respective marginal posteriors πk(θk|y), following
the approach of Scott (2002). The aggregated chain (θ(t)) is thus stationary against the
product of those marginals,

D
∏

k=1

πk(θk|y) .

However, in the derivation of Carlin and Chib (1995), the model is defined in terms
of (1) and the Markov chain should thus be constructed against (1), not against the
product of the model marginals. Obviously, in the case of Congdon (2006), the fact
that the pseudo-joint distribution does not exist because of the flat prior assumption
(see Section 3.3 for a proof) prevents this construction but, in the case the flat prior
is replaced with a proper (pseudo-) prior, the same statement holds: the probabilistic
derivation of P (M = k|y) relies on the pseudo-prior construction and, to be valid, it does
require the completion step at the core of Carlin and Chib (1995), where parameters
need to be simulated from the pseudo-priors. Generating from the component-wise
posteriors πk(θk|y) produces a bias.

Similarly, in Scott (2002), the target of the Markov chain (θ(t), M (t)) should be the
distribution

P (θ, M = k|y) ∝ πk(θk) %k fk(y|θk)
∏

j 6=k

πj(θj)

and the θ
(t)
j ’s should thus be generated from the prior πj(θj) when M (t) 6= j—or equiva-

lently from the corresponding marginal if one does not condition on M (t), but simulating
a Markov chain with stationary distribution (2) is certainly a challenge in many settings
if the latent variable decomposing the sum is not to be used.

Since, in both Scott (2002) and Congdon (2006), the (θ(t))’s are not simulated against
the correct target, the resulting averages of P (M = k|y, θ(t)), %̃k(y) and %̂k(y), will both
be biased, as demonstrated in the examples of Section 3.4.

3.3 Improperty of the posterior

When resorting to the construction of pseudo-posteriors adopted by Carlin and Chib
(1995), Congdon (2006) uses a flat prior as pseudo-prior on the parameters that are
not in model Mk. More precisely, the joint prior distribution on (θ, M) is given by
Congdon’s (2006) formula (2),

P (θ, M = k) = πk(θk) %k

∏

j 6=k

π(θj |M = k)

= πk(θk) %k ,

which is indeed equivalent to assuming a flat prior as pseudo-prior on the parameters
θj that are not in model Mk.

Unfortunately, this simplifying assumption has a dramatic consequence in that the
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corresponding joint posterior distribution of θ is never defined (as a probability distri-
bution) since

π(θ|y) =

D
∑

k=1

πk(θk|y) P (M = k|y)

does not integrate to a finite value in any of the θk’s (unless their support is compact).
While Congdon (2006) states that it is not essential that the priors for P (θj 6=k |M = k)
are improper (p.348), the truth is that they cannot be improper.

The fact that the posterior distribution on the saturated vector θ = (θ1, . . . , θD)
does not exist obviously has negative consequences on the subsequent derivations, since
a positive recurrent Markov chain with stationary distribution π(θ|y) cannot be con-
structed. Similarly, the fact that

P (M = k|y) =

∫

P (θ, M = k|Y ) dθ

does not hold any longer.

Note that Scott (2002) does not follow the same track: when defining the pseudo-
priors in his formula (20), he uses the product definition1

P (θ, M = k) = πk(θk) %k

∏

j 6=k

πj(θj) ,

which means that the true priors could also be used as pseudo-priors across all models.
However, we stress that Scott (2002) does not refer to the construction of Carlin and Chib
(1995) in his proposal, nor does he use pseudo-priors in his simulations.

3.4 Illustrations

We now proceed through several toy examples where all posterior quantities can be
computed in order to evaluate the bias induced by both approximations and we observe
that, despite its theoretical bias, Congdon’s (2006) can sometimes achieve a close ap-
proximation of the posterior probability, but also that, in other settings, it may produce
an unreliable evaluation.

Example 1. Consider the case when a model M1 : y|θ ∼ U(0, θ) with a prior θ ∼ Exp(1)
is opposed to a model M2 : y|θ ∼ Exp(θ) with a prior θ ∼ Exp(1). We also assume
equal prior weights on both models: %1 = %2 = 0.5.

The marginals are then

m1(y) =

∫ ∞

y

θ−1e−θ dθ = E1(y) ,

1The indices on the priors have been added to make notations consistent with the present paper.
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where E1 denotes the exponential integral function tabulated both in Mathematica and
in the GSL library, and

m2(y) =

∫ ∞

0

θe−θ(y+1) dθ =
1

(1 + y)2
.

For instance, when y = 0.2, the posterior probability of M1 is thus equal to

P (M = 1|y) = m1(y)/{m1(y) + m2(y)}
= E1(y)/{E1(y) + (1 + y)−2}
≈ 0.6378 ,

while, for y = 0.9, it is approximately 0.4843. This means that, in the former case,
the Bayes factor of M1 against M2 is B12 ≈ 1.760, while for the latter, it decreases to
B12 ≈ 0.939.

The posterior on θ in model M2 is a gamma Ga(2, 1+y) distribution and it can thus
be simulated directly. For model M1, the posterior is proportional to θ−1 exp(−θ) for
θ larger than y and it can be simulated using a standard accept-reject algorithm based
on an exponential Exp(1) proposal translated by y.

Using simulations from the true (marginal) posteriors and the approximation of
Congdon (2006), the numerical value of %̂1(y) based on 106 simulations is 0.7919 when
y = 0.2 and 0.5633 when y = 0.9, which translates into Bayes factors of 3.805 and of
1.288, respectively. For the approximation of Scott (2002), the numerical value of %̃1(y)
is 0.6554 (corresponding to a Bayes factor of 1.898) when y = 0.2 and 0.6789 when
y = 0.9 (corresponding to a Bayes factor of 2.11), based on the same simulations. Note
that in the case y = 0.9, a selection based on either approximation of the Bayes factor
would select the wrong model.

If we use instead a correct simulation from the joint posterior (2), which can be
achieved by using a Gibbs scheme with target distribution P (θ, M = k|y), we then get
a proper MCMC approximation to the posterior probabilities by the P̂ (M = k|y)’s. For
instance, based on 106 simulations, the numerical value of P̂ (M = 1|y) when y = 0.2
is 0.6370, while, for y = 0.9, it is 0.4843. Note that, due to the impropriety difficulty
exposed in Section 3.3, the equivalent correction for Congdon’s (2006) scheme cannot
be implemented.

In Figure 1, the three approximations are compared to the exact value of P (M = 1|y)
for a range of values of y. The correct simulation produces a graph that is indistinguish-
able from the true probability, while Congdon’s (2006) approximation stays within a
reasonable range of the true value and Scott’s (2002) approximation drifts apart for
most values of y. J

The above correspondence of what is essentially Carlin and Chib’s (1995) scheme
with the true numerical value of the posterior probability is obviously unsurprising in
this toy example but more advanced setups see the approximation degenerate, since
the simulations from the prior are most often inefficient, especially when the number



434 Difficulties with an approximation technique

Figure 1: Example 1: Comparison of three approximations of P (M = 1|y) with the
true value (in blue and full lines): Scott’s (2002) approximation (in green and mixed
dashes), Congdon’s (2006) approximation (in brown and dashes), while the correction of
Scott’s (2002) approximation is indistinguishable from the true value (based on N = 106

simulations).

of models under comparison is large. This is the reason why Carlin and Chib (1995)
introduced pseudo-priors that were closer approximations to the true posteriors.

The proximity of Congdon’s (2006) approximation with the true value in Figure 1
shows that the method could possibly be used as a cheap first-order substitute of the
true posterior probability if the bias was better assessed. First, we note that when all
the componentwise posteriors are close to Dirac point masses at values θ̂k, Congdon’s
(2006) approximation is close to the true value

%̂k(y) ≈ %kfk(y|θ̂k)πk(θ̂k)

/ D
∑

j=1

{

%j fj(y|θ̂j)πj(θ̂j)
}

.

Further, the posterior expectation of fk(y|θ(t)
k )πk(θ

(t)
k ) involves the integral of

∫

fk(y|θk)2πk(θk)2

mk(y)
dy ,

thus the bias is likely to be small in settings where the product fk(y|θ(t)
k )πk(θ

(t)
k ) is

peaked as in large samples, for instance. That the bias can almost completely disappear
is exposed through a second toy example.
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Example 2. Consider the case when a normal model M1 : y ∼ N (θ, 1) with a prior
θ ∼ N (0, 1) is opposed to a normal model M2 : y ∼ N (θ, 1) with a prior θ ∼ N (5, 1).
We again assume equal prior weights.

In that case, the marginals are available in closed form

m1(y) =
1√
4π

exp−y2

4
and m2(y) =

1√
4π

exp− (y − 5)2

4

and the posterior probability of model M1 is

P (M = 1|y) =

{

1 + exp
5(2y − 5)

4

}−1

.

For argumentation’s sake, assume that we now produce both sequences (θ
(t)
1 ) and (θ

(t)
2 )

from the posterior distributions N (y/2, 1/2) and N ((y + 5)/2, 1/2), respectively, by
using the same sequence of εt ∼ N (0, 1), i.e.

θ
(t)
1 =

y

2
+

1√
2
εt and θ

(t)
2 =

y + 5

2
+

1√
2
εt .

Using those sequences, we then obtain that

exp− 1
2 (y − θ

(t)
1 )2 − 1

2 (θ
(t)
1 )2

exp− 1
2 (y − θ

(t)
2 )2 − 1

2 (θ
(t)
2 − 5)2

=
exp− 1

2 (y − y
2 − 1√

2
εt)

2 − 1
2 (y

2 + 1√
2
εt)

2

exp− 1
2 (y − y+5

2 − 1√
2
εt)2 − 1

2 (y+5
2 + 1√

2
εt − 5)2

=
exp− 1

2 (y
2 − 1√

2
εt)

2 − 1
2 (y

2 + 1√
2
εt)

2

exp− 1
2 (y−5

2 − 1√
2
εt)2 − 1

2 (y−5
2 + 1√

2
εt)2

= exp−5

4
(2y − 5) ,

independently of εt, and thus that Congdon’s (2006) approximation is truly exact using
this device! Figure 2 shows the difference due to using two independent sequences of 104

εt’s [instead of one single sequence] and the severe discrepancy resulting from Scott’s
approximation. (Note that using an artificial MCMC sampler in this case would only
increase the variability of the approximations.)

J

The approximation may also be rather crude, as shown in the following example,
inspired from an example posted on Peter Congdon’s web-page in connection with
Congdon (2007).

Example 3. Consider comparing M1 : y ∼ B(n, p) when p ∼ Be(1, 1) with M2 : y ∼
B(n, p) when p ∼ Be(m, m). Once again, the posterior probability can be computed in
closed form since the Bayes factor is given by

B12 =
(n + 1)!

y!(n − y)!

(m + y − 1)!(m + n − y − 1)!

(m + n − 1)!

(m − 1)!2

(2m − 1)!
.



436 Difficulties with an approximation technique

−1 0 1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

y

Figure 2: Example 2: Comparison of two approximations of P (M = 1|y) with the true
value (in blue and full lines): Scott’s (2002) approximation (in green and mixed dashes)
and Congdon’s (2006) approximation (in brown and long dashes) (based on N = 104

simulations).

The simulations of p
(t)
1 from the posterior Be(y + 1, n− y + 1) in model M1 and of p

(t)
2

from the posterior Be(y+m, m+n−y) in model M2 are straightforward (and obviously
do not require an extra MCMC step). Figure 3 shows the impact of Congdon’s (2006)
approximation on the evaluation of the posterior probability for n = 15 and m = 100:
the magnitude is the same but, in that case, the numerical values are quite different.

In the case of three models in competition, namely when y ∼ B(n, p) and the three
priors are p ∼ Be(1, 1), p ∼ Be(a, b) and p ∼ Be(c, d), the differences may be of the
same order, as shown in Figure 4, but the discrepancy is nonetheless decreasing with
the sample size n. J

At last, the approximation may fall very far from the mark, as demonstrated in the
following example where the approximation has an asymptotic behaviour opposite to
the one of the true posterior probability.

Example 4. Consider comparing M1 : y ∼ N (0, 1/ω) with ω ∼ Exp(a) against M2 :
exp(y) ∼ Exp(λ) with λ ∼ Exp(b). The corresponding marginals are given in closed
form by

m1(y) =

∫ ∞

0

√

ω

2π
e−(y2/2)ω ae−aω dω =

a√
2π

Γ(3/2)

(a + y2/2)3/2
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Figure 3: Example 3: Comparison of Congdon’s (2006) (in brown and dashed lines)
approximation of P (M = 1|y) with the true value (in blue and full lines) when n = 15
and m = 510 (based on N = 104 simulations).

and

m2(y) =

∫ ∞

0

ey λe−eyλ be−bλ dλ =
b ey

(b + ey)2
.

The associated posteriors are ω|y ∼ Ga(3/2, a + y2/2) and λ|y ∼ Ga(2, b + ey). Figure
5 shows the comparison of the true posterior probability of M1 with the approximation
for various values of (a, b) and it indicates a very poor fit when y goes to +∞.

It is actually possible to show that the approximation always converges to 0 when
y goes to +∞, while the true posterior probability goes to 1. Indeed, when y goes to
+∞, the Bayes factor is

m1(y)

m2(y)
≈ aΓ(3/2)

b
√

2π

e2y

ey(y2/2)3/2
,

which goes to +∞ while, since ω(t) = εt/(a + y2/2) and λ(t) = υt/(b + ey), with
εt ∼ G(3/2, 1) and υt ∼ G(2, 1),

f1(y|ω(t))π1(ω
(t))

f2(y|λ(t))π2(λ(t))
=

a

b
√

2π

√
εte

−εt

υte−υt

b + ey

ey(a + y2/2)1/2
≈ a

b
√

2π

√
εte

−εt

υte−υt

√
2

y
,

which goes to 0 for all (εt, υt). The discrepancy is then extreme. J
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Figure 4: Example 3: Comparison of Congdon’s (2006) (in brown and dashed lines) ap-
proximation of P (M = 1|y) with the true value (in blue and full lines) when (n, a, b, c, d)
is equal to (17, 2.5, 12.5, 501.5, 500), (25, 1.5, 4, 540, 200), (13, .5, 100.5, 20, 10) and
(12, .3, 1.8, 200, 200), respectively (based on N = 104 simulations).
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Figure 5: Example 4: Comparison of Congdon’s (2006) (in brown and dashed lines)
approximation of P (M = 1|y) with the true value (in blue and full lines) when (a, b)
is equal to (.24, 8.9), (.56, .7), (4.1, .46) and (.98, .081), respectively (based on N = 104

simulations).



440 Difficulties with an approximation technique

Acknowledgements

Both authors are grateful to Brad Carlin and to the editorial board for helpful sug-
gestions and to Antonietta Mira for providing a perfect setting for this work during
the ISBA-IMS “MCMC’ski 2” conference in Bormio, Italy. The second author is also
grateful to Kerrie Mengersen for her invitation to “Spring Bayes 2007” in Coolangatta,
Australia, that started our reassessment of those papers. This work had been supported
by the Agence Nationale de la Recherche (ANR, 212, rue de Bercy 75012 Paris) through
the 2005-2008 project Adap’MC.

References

Bartolucci, F., Scaccia, L., and Mira, A. (2006). “Efficient Bayes factor estimation from
the reversible jump output.” Biometrika, 93: 41–52. 427, 428

Brooks, S., Giudici, P., and Roberts, G. (2003). “Efficient construction of reversible
jump Markov chain Monte Carlo proposal distributions (with discussion).” J. Royal
Statist. Society Series B, 65(1): 3–55. 427

Carlin, B. and Chib, S. (1995). “Bayesian model choice through Markov chain Monte
Carlo.” J. Royal Statist. Society Series B, 57(3): 473–484. 428, 429, 430, 431, 432,
434

Chen, C., Gerlach, R., and So, M. (2008). “Bayesian Model Selection for Heteroskedastic
Models.” Advances in Econometrics, 23. To appear. 429

Chen, M., Shao, Q., and Ibrahim, J. (2000). Monte Carlo Methods in Bayesian Com-
putation. Springer-Verlag, New York. 428, 430

Chopin, N. and Robert, C. (2007). “Contemplating Evidence: properties, extensions
of, and alternatives to Nested Sampling.” Technical Report 2007-46, CEREMADE,
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