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Abstract. In this paper we present a new method of constructing multi-
collision sets for iterated hash functions. Multicollisions have been stud-
ied quite actively since Joux published an attack against iterated hash
functions, which works in O(k2

n
2 ) complexity for 2k -multicollisions.

Recently Kelsey & Schneier and Aumasson have published even faster
multicollision attacks, which are based on fixed points of the compres-
sion function and some assumptions on the attacker’s capabilities. Our
method has complexity O(2

n
2 ) for arbitrarily large multicollision sets and

does not have any additional assumptions on the compression function
or attacker’s capabilities. The drawback of our method is the extremely
long messages generated by the algorithm in the worst case. Our method
is based on automata theory and, given a compression function f , we
construct a finite state transducer, which realizes the iterated hash func-
tion based on f . The method for generating multicollision sets is based
on well known pumping properties of these automata.

1 Introduction

Hash functions are a vital part of modern information technology. These func-
tions are needed especially in cryptography, where hash functions are used in
digital signature schemes, pseudorandom number generation, digital timestamp-
ing and for message authentication.

Iterated hash functions proposed by Merkle [11] and Damg̊ard [4] have been
the method of constructing hash functions, which has been used in all technically
feasible hash function proposals. The iterative structure makes it fairly easy to
hash arbitrarily long messages and if the underlying compression function is
collision free, also the whole hash function is collision free [4]. Unfortunately,
most of the more widespread hash functions such as MD4, MD5 and SHA-1 have
been found flawed, especially against collisions [17, 16, 9, 14, 5]. These collisions
are found using some weakness of the underlying compression function and thus
do not disprove the theorem of Damg̊ard.



There are, however, some results, which show that the iterative structure does
not provide an ideal hash function, i.e. a random oracle, which is a theoretical
tool used in many proofs of security in cryptography. Most notable result is the
multicollision attack by Joux [7], which shows that finding multicollisions for
iterated hash functions is much easier than for an ideal hash function. With the
help of this result, Joux also disproves some folklore assumptions about using
different hash functions for the same message and catenating the results. Some
of these results have been also proved for more general classes of hash functions
by Nandi & Stinson [12] and Hoch & Shamir [6].

There are also other multicollision methods for example by Kelsey & Schneier
[8] and by Aumasson [1]. These methods have better complexity than Joux’s
method, but they rely on the assumption that the compression function admits
easily found fixed points and Aumasson’s method restricts the use of the inital
value of the hash function.

In this paper, we give an automata-theoretic interpretation of iterated hash
functions. Suppose that a compression function f : {0, 1}n × {0, 1}m → {0, 1}n
of block size m and length n (where m > n) is given. To implement an iterated
hash function based on f , we construct a deterministic finite state transducer
with approx. 2m+n states, which

(i) takes as input any message x = x1x2 · · ·xl such that l is a positive integer
and xi is a message block of length m over the binary alphabet for each
i ∈ {1, 2, . . . l};

(ii) calculates the hash value Hf (h0, x) where h0 is the initial value; and

(iii) outputs the hash value Hf (h0, x) on the output tape.

Modeling iterated hash functions in terms of transducers with a finite (albeit
enormous) state set makes it possible to look at hashing as a computation, where
cycles (parts of the computation starting and ending in the same state) are
highly probable after certain number of iteration steps have been made. Thus,
we are able to describe a fresh method for generating multicollision sets, which is
based on cycles and pumping of input words. Arbitrarily large multicollision sets
can be constructed with complexity O(2

n
2 ) for the iterated hash function based

on f : {0, 1}n × {0, 1}m → {0, 1}n, where f can be an arbitrary compression
function, even a fixed input length random oracle (FIL-RO).

Our paper is organised in the following way. The second section introduces
previous methods for generating multicollisions. The third and fourth sections
give basic definitions of automata and hash functions. The fifth section shows
how iterated hash functions and multicollisions can be modeled with finite state
automata and transducers. In the sixth section, we introduce the multicollision
generation method based on pumping of words. In the final sections, we discuss
our results, draw conclusions from our research and give possible future research
proposals.



2 Previous methods

In this section we present briefly the most significant previous results concerning
multicollisions in iterated hash functions. First of all, a basic brute force multi-
collision attack against any hash function has the complexity O(k!

1
k 2

n(k−1)
k ) for

k colliding messages [15]. This was thought to be optimal also for iterated hash
functions, until Joux’s discovery. In the following we denote by f the compression
function used in the iterated hash function.

The Joux’s method [7] for generating 2k-collisions has the complexityO(k2
n
2 ).

In this method, one can begin with any initial value h0 and one finds two mes-
sage blocks x1 and x′1 such that f(h0, x1) = f(h0, x

′
1) := h1. Now, continuing

the same approach to h1 and so on, one obtains a 2k-collision after finding k
collisions. In Joux’s method there is no restriction on the initial values or the
function f , which can be assumed to be a FIL-RO or any other compression
function.

Kelsey and Schneier describe a multicollision finding algorithm in their paper
[8]. This algorithm is used to generate a second preimage attack against iterated
hash functions and it has the complexity O(2

n
2 ) for arbitrarily large multicolli-

sions. However, there are some assumptions on the underlying function f and
the memory required by the attacker. The function f is assumed to have easily
found fixed points, i.e. such values of f denoted by h and message blocks m
for which f(h,m) = h. Also the attacker is assumed to have O(2

n
2 ) memory

available for storing the intermediate values.
Aumasson [1] has modified the above method in such a way that there is no

need to assume any memory for the attacker and the complexity remains the
same O(2

n
2 ) for arbitrarily large multicollisions. This method also assumes that

fixed points are easily found for f and that the attacker can choose the initial
value. After this, one only needs to find one fixed point collision and arbitrarily
large multicollisions can be generated.

In information sciences in general and in information security in particular it
is a common habit to visualize iterated structures with (directed) graphs, e.g., [2].
It is well known that finite digraphs represent an equivalent notion to finite state
automata. However, when the state space of a system grows large, graphs loose
their power of expression. Also when it is necessary to treat computations as
rigorous mathematical objects, system description with automata substantially
outweighs graph representation.

3 Basics

In this section we give the basic definitions needed in our presentation. Let
N = {0, 1, 2, . . .} be the set of all natural numbers and N+ = N \ {0}. For each
l ∈ N+, we define Nl to be the set of l first positive integers: Nl = {1, 2, . . . , l}.
For each finite set S, let |S| be the cardinality of S, i.e. the number of elements
in S.



An alphabet is any finite, nonempty set of abstract symbols called letters. Let
A be an alphabet. A word (over A) is any finite sequence of symbols in A. Thus,
assuming that w is a word over A, we can write w = x1x2 · · ·xn, where n ∈ N
and xi ∈ A for i = 1, 2, . . . , n. Above n is the length |w| of w. Notice that n
may be equal to zero; then w is the empty word, denoted by ε, which contains no
letters. By |w|a we mean the number of occurrences of the letter a in w. If w 6= ε,
define the alphabet of w by alph(w) = {a ∈ A | |w|a > 0}. Let alph(ε) = ∅. The
word u is a subword of w if there exist m ∈ N and x0, u1, x1 . . . , um, xm ∈ A∗
such that w = x0u1x1 . . . umxm, where u = u1u2 · · ·um. A subword u of w is a
factor of w if w = x0ux1 for some x0, x1 ∈ A∗. A factor u of w is a prefix of w
if w = ux1 for some x1 ∈ A∗. The catenation of two words u and v in A∗ is the
word uv obtained by writing u and v after one another.

For each n ∈ N, denote by An the set of all words of length n over A. Let
A∗ =

⋃∞
n=0A

n be the set of all words and A+ = A∗ \ {ε} =
⋃∞

n=1A
n the set of

all nonempty words over A. Clearly catenation defines a binary operation · in
A∗: u · v = uv for all u, v ∈ A∗. In algebraic terms (A∗, ·) is a free monoid and
(A+, ·) is a free semigroup.

Each subset of A∗ is a language (over A).
Let A and B be alphabets. A mapping h : A∗ → B∗ is a (monoid) morphism

if h(uv) = h(u)h(v) for each u, v ∈ A∗ and h(ε) = ε.
A finite state automaton (abbrev. FSA) is a 5-tuple A = (S,A, δ, s0, F ),

where
S is a finite nonempty set (the the inner states of A)
A is an alphabet (the input alphabet) of A
δ is a mapping: S ×A → S (the transition function of A)
s0 ∈ S (the initial state of A)
F ⊆ S (the final states of A).

The domain of δ is enlarged to S ×A∗ in a natural way:{
δ(s, ε) = s for each s ∈ S ,
δ(s, ax) = δ(δ(s, a), x) for each s ∈ S, a ∈ A and x ∈ A∗ .

The language LA accepted by the finite state automaton A = (S,A, δ, s0, F )
is the set

LA = {w ∈ A∗ | δ(s0, w) = s for some s ∈ F} .

A finite transducer (abbrev. FTR) is a 7-tuple M = (S,A, δ, s0, F,B, λ),
where

S, A, δ, s0 ja F are as in a finite state automaton
B is an alphabet (the output alphabet of M)
λ is a mapping: S ×A → B∗ (the output function of M).

The domain of λ is enlarged to S ×A∗ in the following manner:{
λ(s, ε) = ε for each s ∈ S ,
λ(s, ax) = λ(s, a)λ(λ(s, a), x) for each s ∈ S, a ∈ A and x ∈ A∗ .



The transducer mapping τM defined by the finite transducer M is a partial
function from the set A∗ into the set B∗ such that τM(w) = u if and only if
δ(s0, w) ∈ F and λ(s0, w) = u.

4 Hash functions and collisions

In this section we give basic definitions of hash functions as presented in [4] and
multicollisions as presented in [7, 12, 6]. By block representation of a message,
we mean the division and padding of the message into blocks of equal size. We
may certainly without loss of generality assume that all our messages are over
the binary alphabet {0, 1}.

Definition 1. A hash function (of length n, n ∈ N+) is a mapping f : {0, 1}∗ →
{0, 1}n.

An ideal hash function f : {0, 1}∗ → {0, 1}n is a variable input length
random oracle (VIL-RO): for each x ∈ {0, 1}∗, the value f(x) ∈ {0, 1}n is chosen
uniformly at random.

Let r ∈ N+. An r-multicollision on the hash function f : {0, 1}∗ → {0, 1}n
is a set A ⊆ {0, 1}∗ such that |A| = r and f(x) = f(y) for all x, y ∈ A. A
2-multicollision (on f) is also called a collision on f .

An r-multicollision attack (algorithm) on a hash function f can loosely be
characterized to be an algorithm that finds an r-multicollision on f with some
nonnegligible probability. The complexity of the attack can be measured, for
instance, with respect to the number of messages the hash values of which have
to be determined to carry out the attack successfully.

In the following, we shall derive the concept of an iterated hash function.
Remember that all messages are assumed to be in a block representation form.

Definition 2. A compression function (of block size m and length n) is a map-
ping f : {0, 1}n × {0, 1}m → {0, 1}n where m,n ∈ N+,m > n.

Let m,n ∈ N+,m > n and the compression function f : {0, 1}n×{0, 1}m →
{0, 1}n be given.

Define the functions f i : {0, 1} × ({0, 1}m)i → {0, 1}n, i ∈ N+, inductively
as follows. Let f1 = f . For each i ∈ N+

f i+1(x, y1y2 · · · yi+1) = f(f i(x, y1y2 · · · yi), yi+1) ,

where x ∈ {0, 1}n and y1, y2, . . . , yi+1 ∈ {0, 1}m. Let finally f+ : {0, 1}n ×
({0, 1}m)+ → {0, 1}n be the mapping for which f+(x, y) = f i(x, y) for all x ∈
{0, 1}n, i ∈ N+, and y ∈ ({0, 1}m)i.

The iterated hash function Hf : {0, 1}n × ({0, 1}m)+ → {0, 1}n (based on
f) is defined as follows: Given the initial value h0 ∈ {0, 1}n, and the message
x ∈ ({0, 1}m)+, let Hf (h0, x) = f+(h0, x). Now, the complexity of any attack
against an iterated hash function is measured as the number of calls to the
underlying compression function and not just as the number of messages for
which the hash value has to be calculated.



5 Hash functions as finite state automata

Next, we construct a finite state transducerMf , which implements the iterated
hash function based on the compression function f : {0, 1}n×{0, 1}m → {0, 1}n
with block size m and length n (m,n ∈ N+, m > n), and with initial value
h0 ∈ {0, 1}n.

Informally, Mf works as follows. It reads the input from left to right one
symbol (0, 1 or β) at a time. Suppose that the word x1x2 · · ·xlβ, where l ∈ N+

and xi ∈ {0, 1}m for i = 1, 2, . . . , l, is on the input tape. Then the transducer,
starting the reading from the first symbol of x1 in the state (h0, ε), is after
reading x1x2 · · ·xi in the state (f i(h0, x1x2 · · ·xi), ε), i = 1, 2, . . . , l. The trans-
ducer has in each step written the empty word ε on the output tape. Suppose
now that Mf has read x1x2 · · ·xl, written ε on the output tape and lies in
the state (f l(h0, x1x2 · · ·xl), ε). It then (i) reads the symbol β; (ii) changes
its inner state to sacc (an accepting state); and (ii) writes Hf (h0, x1x2 · · ·xl)
(= f l(h0, x1x2 · · ·xl)) on the output tape. If the input is not of the aforemen-
tioned form x1x2 · · ·xlβ, the transducer (at some stage) goes to a rejecting state
srej and outputs only the empty word ε on the output tape.

More rigorously, let

Mf = (S,A,∆, δ, s0, λ, F )

be a finite state transducer in which

(i) S = {0, 1}n × (∪m−1
i=0 {0, 1}i) ∪ {sacc, srej}, where sacc and srej are new

symbols;
(ii) A = {0, 1, β}, where β is a new symbol;
(iii) ∆ = {0, 1};
(iv) δ is defined as follows: (1) δ((x, y), a) = (x, ya) for all (x, y) ∈ S, |y| < m−1,

and a ∈ {0, 1}; (2) δ((x, y), a) = (f(x, ya), ε) for all (x, y) ∈ S, |y| = m− 1,
and a ∈ {0, 1}; (3) δ((x, y), β) = srej for all (x, y) ∈ S, y 6= ε;
(4) δ((x, ε), β) = sacc for all x ∈ {0, 1}n; and (5) δ(sacc, a) = δ(srej , a) =
srej for all a ∈ A;

(v) s0 = (h0, ε);
(vi) λ is defined as follows: (1) λ((x, y), a) = ε for all (x, y) ∈ S and a ∈ {0, 1};

(2) λ((x, y), β) = ε for all (x, y) ∈ S, y 6= ε; (3) λ((x, ε), β) = x for all
x ∈ {0, 1}n; and (4) λ(sacc, a) = λ(srej , a) = ε for all a ∈ A; and

(vii) F = {sacc}

One is easily convinced that the above finite state transducerMf implements
the informal description we gave above. Note that the number of states of the
FTR (the underlying automaton, respectively) is huge. In this sense, it is not im-
plementable in practise; the state space of the transducer cannot be presented in
any efficient format in the memory of a real computer. However, the (abstract)
transducer formulation allows the exact examination of the cycle structure of
computations. Local cycles, which induce mutually independent pumpings in
input words are characteristic to finite state automata and transducers. In the



next section we show how to utilise this property to construct arbitrarily large
multicollision sets for iterated hash functions. More complicated devices (for
instance two-way pushdown automata and transducers) can be applied to im-
plement generalized iterated hash functions, for instance those introduced in [12]
and [6].

6 Multicollisions by pumping

Let Mf = (S,A,∆, δ, s0, λ, F ) be the finite state transducer that implements
the traditional iterated hash function Hf : {0, 1}n × ({0, 1}m)+ → {0, 1}n.
Choose two (arbitrary) message blocks x1, x2 ∈ {0, 1}m such that x1 6= x2. For
instance, one can make the choice x1 = 00 · · · 0 (meaning that x1 consists of m
zeros only) and x2 = 11 · · · 1 (i.e., x2 consists of m ones only).

Generate a sequence h0, h1, h2 . . . of compression function values and, re-
spectively, a sequence (h0, ε), (h1, ε), (h2, ε) . . . of states of the finite state trans-
ducer by the rule hi = f(hi−1, x1) for i = 1, 2, 3, . . .. Now, since f is de-
signed to be a FIL-RO we may assume that the compression function values
h0, h1, h2 . . . are randomly and evenly distributed over the set {0, 1}n. By the
birthday paradox, there exists, with a good probability, a collision among the
first 2

n
2 values h0, h1, h2 . . . , h2

n
2

. Let r1, r2 ∈ {1, 2, . . . 2
n
2 }, r1 < r2, be such

that hr1 = hr2 . Now, the two messages u1 = xr1
1 and u2 = xr2

1 induce the same
hash value fr1(h0, x

r1
1 ) = fr2(h0, x

r2
1 ) = hr1 . The respective finite transducer

Mf , after reading the prefix xr1
1 (the prefix xr1

1 x
r2−r1
1 , resp.) of any message

xr1
1 x

r2−r1
1 w, where w ∈ ({0, 1}m)+, is in the state (hr1 , ε). This means that the

transducer contains a cycle: for each k ∈ N+, if Mf is in the state (hr1 , ε)
and reads (xr2−r1

1 )k, it returns to the state (hr1 , ε). This means that for each
w ∈ ({0, 1}m)+, all messages (words) in the set (language) Dw = xr1

1 (xr2−r1
1 )∗w

have the same hash value, i.e., f+(h0, x
r1
1 (xr2−r1

1 )iw) = f+(h0, x
r1
1 (xr2−r1

1 )jw)
for all i, j ∈ N.

Now, we wish to construct a multicollision set for the hash function Hf .
Obviously Dw is such an infinite collision set. However, since r1 < r2, for
each pair z1, z2 of distinct messages in Dw, the lengths of z1 and z2 are not
equal, i.e., |z1| 6= |z2|. To overcome this obstacle, we proceed as follows. We
repeat the procedure by starting with the hash value h′0 = f(hr2 , x2) and
generating a sequence of compression function values h′0, h

′
1, h
′
2 . . . (and a se-

quence of states (h′0, ε), (h
′
1, ε), (h

′
2, ε) . . . of Mf ) such that h′i = f(h′i−1, x2) for

i = 1, 2, 3, . . .. Again, since f is a FIL-RO, by the birthday paradox, there is
with a significant probability, a collision among the values h′0, h

′
1, h
′
2 . . . , h

′
2n/2 .

Let s1, s2 ∈ {1, 2, . . . 2
n
2 }, s1 < s2, be such that h′s1

= h′s2
. Thus fs1(h′0, x

s1
2 ) =

fs2(h′0, x
s2
2 ) = h′s1

and, more generally, all messages in any language D′w =
x1(xr2−r1

1 )∗x2(xs2−s1
2 )∗w, where w ∈ ({0, 1}m)+ have the same hash value.

From automata-theoretic point of view, we have found a second cycle in the
finite state transducer Mf . The transducer, when having as input any word in
the language D′w, after reading the input, is in the state f+(h0, x

r1
1 x2x

s1
2 w) and

writes this value on its output tape. As was pointed out before, after reading



xr1
1 and any power (xr2−r1

1 )i of the word xr2−r1
1 Mf is in the state f(h0, x

r1
1 ).

Respectively, Mf after reading xr1
1 x2x

s1
2 and any power (xs2−s1

1 )j of the word
xs2−s1

2 is in the state f(h0, x
r1
1 x2x

s1
1 ). For each w ∈ ({0, 1}m)+, the language D′w

is a subset of the language accepted by the underlying finite state automaton of
Mf .

We wish to generate, for each integer r ≥ 2, an r-collision set of equal length
messages for the hash function Hf . Let r ∈ N+, r ≥ 2, and w ∈ {0, 1}m. Define

Cr,w = {xr1
1 (xr2−r1

1 )(s2−s1)ix2x
s1
1 (xs2−s1

1 )(r2−r1)(r−1−i)w | i ∈ {0, 1, . . . , r− 1}} .

We claim that Cr,w is an r-collision set of equal length messages for Hf . Clearly,
by the above facts, all messages in Cr,w have the same hash value. Since

|xr1
1 (xr2−r1

1 )(s2−s1)i x2 x
s1
1 (xs2−s1

1 )(r2−r1)(r−1−i)w|
= [r1 + s1 + 1 + (r − 1)(r2 − r1)(s2 − s1)]m+ |w|

for all i ∈ {0, 1, . . . , r − 1}, all messages in Cr,w are of equal length. Now, if any
two messages in Cr,w were the same, we would have a contradiction with our
assumption that x1 6= x2. Thus |Cr,w| = r and Cr,w is an r-multicollision set of
equal length messages for Hf .

Remark 1. Clearly, to find Cr,w, alltogether O(2
n
2 ) applications of f are needed,

so the complexity of the respective multicollision attack is O(2
n
2 ). It should,

however, be noted that despite the complexity of the attack, the messages in
the set Cr,w may be very long; for each u ∈ Cr,w we have the approximation
|u| ≤ r ·m · 2n + 1.

Remark 2. The messages in the set Cr,w may be long, but their true (information
theory or Kolmogorov) complexity is quite small. Even if x1 and x2 are chosen
to be complex messages of length m, to present and store the multicollision
set Cr,w, very little resources is required. In fact, one only needs to present and
store the words x1 and x2 and the numbers r1, r2, s1, and s2. Only approximately
2m + log2 r1 + log2 r2 + log2 s1 + log2 s2 ≤ 2m + 2n bits are needed. Also the
possibility to choose arbitrarily the messages x1 and x2 increases the flexibility
of the collision set and the number of alternatives to create it.

Remark 3. In the construction above, the factor (r2 − r1)(s2 − s1) appearing
in the power of the word x1 can certainly be replaced by the least common
multiplier lcm(r2 − r1, s2 − s1) of the numbers r2 − r1 and s2 − s1. In average,
the length of the words in Cr,w can so be shortened.

As we have seen above, the pumping construction creates infinitely large
multicollisions, while the work we have to do remains constant. The basic con-
struction requires 2n/2+1 calls of the compression function f . On the downside,
the generated messages are extremely long, namely for a 2k-collision r1 + s1 +
1+(2k−1)(r2−r1)(s2−s1) message blocks. It is reasonable to assume this to be
about 2n/2−1 + 2n/2−1 + 1 + (2k − 1)2n/2−12n/2−1 message blocks, which brings



us to the messages with size class of 2n blocks. This is of course huge, when we
compare it to the attack by Joux, which gives us 2k-collision, with messages of
size k blocks.

The downiside of the Joux attack is that we have to search for k 2-collisions to
create a 2k-collision. It is possible to combine these two attacks, while retaining
many properties from both of them.

We start by calculating f(h0, x
2n/2−1

1 ) = h2n/2−1 , where x1 can be any mes-
sage block. Next we search message blocks m1 and m2 such that m1 6= m2,
f(h2n/2−1 ,m1) = f(h2n/2−1 ,m2) = h2n/2−1+1. We continue by searching x2 that
satisfies f(h2n/2−1+1, x2) = f(h0, x

r1
1 ) for some 0 ≤ r1 ≤ 2n/2−1. Short combina-

toric evaluation shows us that finding such x2 is a bit easier, than finding a 2-
collision. Let us name Mr1 = xr1

1 , M1 = x2n/2−1−r1
1 m1x2, M2 = x2n/2−1−r1

1 m2x2.
After this we can create as large collision as we like by simply adding cycles

M1 or M2 at the end of the messages. We can create 4-collision from messages
Mr1M1M1, Mr1M1M2, Mr1M2M1, Mr1M2M2 and so on.

We have to do a bit more work than would be necessary for the normal
pumping construction. Basically, we have to call the compression function 2.5 ·
2n/2 times. On the other hand, the length of the messages for 2k-collision is
r1 + k(2n/2−1 − r1) + 2 blocks, which gives us messages with size class of 2n/2

blocks.
It is worth noticing that this attack also retains the basic structure of the

attack by Joux, meaning that messages, which form the collision, can be changed
by simply changing a single message block to another with the same desired
properties. This is essential in certain theoretical attacks against more general
classes of iterated hash functions such as those presented in [12] and [6] and
means that the above method can be directly applied with them. From these
attacks especially [6] also uses extremely long messages.

6.1 Practical implications

Suppose for a while that the compression function f is not a FIL-RO and that
the respective FTR contains an unsafe set of states, i.e., for certain (known)
inputs the FTR enters into a part of the state space containing only a restricted
number of states and stays there. Then certainly the lengths of the multicollision
messages in the previous attack can be considerably shortened. In the light of
fixed point vulnerabilities in many of the modern hash functions, it is quite
probable that subsets of this type exist in many hash functions and thus our
method could have practical implications in addition to its theoretical value.

These sets of weak states can be thought of as an extension of the fixed points
mentioned earlier. A set of weak states is comprised of a set of states W ⊂ S and
a set of message blocks M ⊂ {0, 1}m such that f(m,w) ∈W for all m ∈M and
w ∈ W . A weaker assumption would be that for all w ∈ W there exists m ∈M
such that f(m,w) ∈W . Now our method could be applied within these sets.

In the case of the stronger assumption, our method could be used to find
two cycles within the set W . One merely chooses the two message blocks x1



and x2 from the set M . In this way finding the two cycles (and thus arbitrarily
large multicollision sets) would take O(

√
|W |) compression function calcula-

tions. With the weaker assumption, our method can still be applied, but now
in each step one has to go through message blocks from M until one obtains a
state in W and make sure, that the two cycles are obtained with two distinct
sequences of message blocks. Thus, in the worst case, finding the two cycles re-
quires O(|M |

√
|W |) compression function calculations. If |M | is considerably

smaller than |W |, this would be of the same complexity than with the stronger
assumption.

The length of the messages in both cases would be in the class O(|W |) mes-
sage blocks, unless one uses the least common multiplier in the exponent as
mentioned in the earlier remark. This could reduce the length of the messages
even further. In any case, this kind of application of our method could produce
very practical ways to construct arbitrarily large multicollision sets for iterated
hash functions.

In a way, finding a cycle in the FTR with our method corresponds to finding
a set of weak states with |W | in the size class of O(2

n
2 ) and |M | = 1. Of course

much smaller sets could be found in real life iterated hash functions.

7 Discussion

As presented in the previous section, the pumping attack generates arbitrarily
large multicollisions for iterated hash functions with time complexity O(2

n
2 ). It

is clear that these messages contain an enormous amount of message blocks, but
the presentation of these blocks is very simple as pointed out in the previous
remarks. As [13] demonstrates, cycles in periodic functions can be found with
negligible memory. Using the algorithm described in [13], our method can also
be used with negligible memory.

In comparison to Joux’s method, our method has better time complexity and
does not have any additional assumptions on the attacker’s capabilities or the
underlying compression function f . However, the messages generated with our
method come with one property, which is not present with messages generated
with Joux’s method. Given a multicollision set generated with our method, the
verification that these messages form a multicollision for the given hash function
is a cumbersome task, because the verifier has to calculate many hash values
for extremely long messages. Thus, the verifier needs to do as much work as
the attacker to be assured of the correctness of the multicollision set. Messages
generated by Joux’s method are very short and thus the verification is extremely
easy and the work done by the verifier is negligible.

When comparing our results with Kelsey & Schneier or Aumasson, the asymp-
totic complexity is the same. On the other hand, our method does not suffer from
the limitations of these two methods, and can be applied to any compression
function, even a FIL-RO and with negligible memory. The problem of lengthy
messages is of course present in our method as the other two methods generate
much shorter messages.



If one considers practical attacks against iterated hash functions such as
MD5, SHA-1 etc., Aumasson’s method for finding multicollisions seems to be
optimal, if fixed points can be found for these hash functions. Our method has
very little practical value, if one assumes the compression function to be FIL-
RO, because of the size of the messages. However, as a theoretical result, our
method points out the limits of Merkle-Damg̊ard type iterative structure against
multicollision attacks.

We would like to point out that our method can be applied in situations,
where the compression function is not a FIL-RO. Also, as mentioned in the end
of the previous section, our method could be applicable, when single fixed points
are not easy to find for the compression function, but there is a comparatively
small set of vulnerable states within which our method can be applied. This
way the length of the messages would not be an issue and finding multicollisions
could be even faster than in the case of fixed points.

Furthermore, in the light of our new results and the previous results of Joux,
we can see the following result. For iterated hash functions, finding arbitrarily
many preimages, second preimages or collisions has the same complexity as find-
ing a single preimage, second preimage or collision, respectively, even when the
underlying compression function is a random oracle. The claims about preim-
ages follow from the fact that any large enough collision set can be made into
a preimage set by appending one suitable message block to all of the messages.
This idea has already been used by Joux in his paper, where this fact is implicitly
present. Thus, finding arbitrarily large preimage sets requires only one preimage
attack in addition to the collision attack. The claim about collisions follows from
the complexity of the pumping method demonstrated in this paper.

8 Conclusion

In this paper we have demonstrated a very natural way to study the theoretical
properties of iterated hash functions. We have also demonstrated a new method
of finding multicollisions for iterated hash functions. Our method is not depended
on the compression function having any special properties, e.g. easily found fixed
points, but works even when the compression function is a fixed input length
random oracle. Furthermore, our method works with any initial value of the
hash function. The drawback of our method is that the messages generating the
multicollision set are extremely long and the verification of the multicollision
requires as much work as the generation of the multicollision in the worst case.

However, our result could be applied in practice when single fixed points are
hard to find but comparatively small sets of vulnerable states can be found. It
would be an interesting research problem to try and find such sets of states and
apply our method in this scenario. In these cases the length of the messages
generated by our method would not pose a problem.

Future research into the automata-theoretic aspects of iterated hash func-
tions could lead into more new results on the theoretical limits of iterated hash
functions. Even the more complex methods of iteration such as HAIFA [3] and



wide-pipe hashing [10] can be easily presented as automata. This could reveal
some new properties of these methods. Furthermore, one can model even more
general classes of iterated hash functions such as those presented in [12] and [6]
and thus gain more insight on these constructs.

It is also worth mentioning that these results are not too tightly bound only
to hash functions, but these properties of multicollisions are more related to the
iterative structure of the hash functions. Thus, similar ideas may be useful in
studying other methods, which use iteration.
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