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Cluster Allocation Design Networks

Ana Maria Madrigal∗

Abstract. When planning and designing a policy intervention and evaluation,
it is important to differentiate between (future) policy interventions we want to
evaluate, FT , affecting “the world”, and experimental allocations, AT , affecting
“our picture of the world”. The policy maker usually has to define a strategy that
involves policy assignment and recording mechanisms that will affect the (condi-
tional independence) structure of the data available. Causal inference is sensitive
to the specification of these mechanisms. Influence diagrams have been used for
causal reasoning within a Bayesian decision-theoretic framework that introduces
interventions as decision nodes (Dawid 2002). Design Networks expand this frame-
work by including experimental design decision nodes (Madrigal and Smith 2004).
They provide semantics to discuss how a design decision strategy (such as a clus-
ter randomised study) might assist the identification of intervention causal effects.
The Design Network framework is extended to Cluster Allocation. It is used to
assess identifiability when the experimental unit’s level is different from the analy-
sis unit’s level, and to discuss the evaluation of cluster- and individual-level future
policies. Cases of ‘pure’ cluster (all individuals in a cluster receiving the same
intervention) and ‘non-pure’ cluster (only a subset receiving the policy) are dis-
cussed in terms of causal effects. The representation and analysis of a simplified
version of a Mexican social policy programme to alleviate poverty (Progresa) is
performed as an illustration of the use of Bayesian hierarchical models to make
causal inferences relating to household and community level interventions.

Keywords: Cluster allocation, Influence diagrams, Causal inference, Identification
of policy effects, DAGs

1 Introduction

Different data sets provide different types of information. Different queries might require
different information to obtain answers. When using data for learning, it is important
to consider the conditions and circumstances under which the data were collected. The
distributions that can be learnt (or not) might vary among apparently similar data sets.
This is an important consideration to the analyst before learning model parameters.
Consider the case in which we have two data sets that contain records of whether or
not children in a population take food nutrition supplements (FS) and whether or not
they have gained weight. The first data set comes from a census sample, and the second
comes from an experiment where half the children were given food supplements and
half of them were not. Suppose we are interested in learning the prevalence of children
taking supplements in the population, p(FS). It is clear that learning from the second
data set that p(FS) = 0.5 only reflects an experimental choice and not a population
prevalence, as would be the case if we were to use the first data set (e.g. showing how
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parents ‘naturally’ choose to give FS to children). The collecting strategy defines the
structure of the data set. A perfect design of experiments will give a more organised
layout of the data. An observational study might be more ‘disorganised’, as data is
allowed to arise naturally. In this paper, we focus our attention on a particular type of
query related to policy intervention evaluations and discuss which data set structures
do or do not let us answer causal queries and extract appropriate causal effects (e.g. the
causal effect of FS on children’s weight). Discussions about the identifiability of causal
effects have been usually phrased as ‘Is the causal effect of T on Y identifiable?’ (see
Pearl 2000; Lauritzen 2001; Dawid 2002). In this paper, the role of data structures is
made explicit by phrasing the identifiability question as ‘Is the causal effect of T on Y
identifiable from the data available?’.

Intervention has to do with ‘perturbing’ the dynamics of a system. If we say that
a system consists of components which influence each other and that its dynamics
describe the way these components interact with each other in an equilibrium state,
some examples of systems might be consumption-expenditure patterns, road traffic in
a town or the human body. The system at present has some pre-intervention dynamics
attached to it. When we intervene a system, by introducing a promotion-advertisement
campaign, by adding a red light at a corner, or by giving medicine, we are introducing
a new component into a system that will imply new post-intervention dynamics. The
intervention might have both qualitative effects, modifying the structure of the system
(maybe by ‘blocking’ the interaction between two of its components), and quantitative
effects, modifying the value of the components. One of the main interests consists in
describing if and how the intervention affects the system. Evaluation of the intervention
effects is required and it is usually measured in terms of a response variable, such as
sales-awareness, number of accidents, or health condition.

Discussions of causal reasoning have been made usually assuming that the graph rep-
resenting the system implicitly includes the underlying (experimental) mechanism that
is generating the data (see Pearl 2000). Then, in this fixed ‘natural’ or ‘idle’ system,
whether the future policy intervention FT effect is identifiable and can be obtained is
evaluated. Randomised allocation of treatments to units is a well known practice within
medical clinical trials but, because of ethical, social and financial issues, complete ran-
domisation within an experiment designed to evaluate a social policy will usually be
unfeasible. Knowing the details of the policy assignment mechanism and a well-planned
recording of the data become very relevant issues in order to obtain all the information
needed to measure the right ‘causal’ effects (see Rubin 1978). Influence Diagrams (IDs)
are used to represent the system dynamics and interventions graphically; a review of
the main features of the framework used is made in Section 2. Our interpretation of
causal effects for interventions is Bayesian decision-theoretic, where an intervention on
a system is regarded as a decision. Dawid (2002)’s extended influence diagrams are
augmented by including ‘experimental design’ decisions nodes within the set of inter-
vention strategies to create what we call a Design Network (DN), to provide semantics
to discuss how a ‘design’ strategy (such as clustering) might assist the systematic iden-
tification of intervention causal effects, to give a taxonomy for design decisions, and to
show how these decisions might alter the graphical (conditional independence) struc-
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ture used to evaluate the causal effect of policy FT . It is maintained that experimental
design decisions are intrinsic to any causal analysis of policy intervention strategies.
Design Networks were introduced in Madrigal and Smith (2004) for random allocation,
and their main characteristics are presented in Section 3. Design Networks for cluster
allocation are discussed in Section 4; the propositions can be derived from the discussion
in Appendix A.

This research was motivated by a Mexican Social Policy Programme (Progresa)
whose objective is to alleviate poverty. It consists of a three-stage mechanism to target
its eligible population, based on community and household characteristics. The policy
involves a collection of interventions at different levels (community, household and indi-
vidual). All households are recipients of the community-level interventions (e.g. health
infrastructure and services). Actions at household and individual level (e.g. extra mon-
etary support and nutritional supplements) affect only ‘poor’ (eligible) households and
vary according to household/individual demographics, so not all units in the community
(cluster) are intervened equally. This motivates the discussion about the data structure
arising from a cluster allocation, the distinction of ‘overall’ and ‘total’ effects, the dif-
ferences in the inference of cluster- and individual-level interventions, and the nested
structures in design and analysis. The design of the study included a randomised clus-
ter allocation for treatment and control communities. To illustrate some features of
causal analysis in a cluster allocation setting, this paper presents in Section 5, a hierar-
chical model analysis based on Spiegelhalter (2001). Formulation is performed for the
evaluation of cluster- and individual-level interventions based on Progresa data.

2 Intervention Graphical Framework and Causal Infer-

ence

Influence diagrams (IDs) have been used for over 20 years to form the framework for both
describing (see Howard and Matheson 1981; Oliver and Smith 1990) and also devising
efficient algorithms to calculate the effects of decisions (see Jensen 2001) in complex
systems which implicitly embody strong conditional independence assertions. However,
it is only recently that they have been used to explain causal relationships (Dawid 2000,
2002), and been shown to be much more versatile than Causal Bayesian Networks (Pearl
1993, 1995).

The simplest form of external intervention is when a single variable X is forced to
take on some fixed value x′. This is known as an ‘atomic intervention’ and, following
Pearl (2000), it is denoted by do(X = x′). The atomic intervention replaces the original
mechanism: p(x | pa(x)) by p(x | pa(x); do(X = x′)) = 1 if X = x′ where pa(x)
denotes the parent nodes of X . This conditioning by intervention formula has appeared
in various forms (see Pearl 1993; Spirtes et al. 2000; Robins 1986). It cannot be asserted
in general that the effect of setting the value of X to x′ is the same as the effect of
observing X = x′. Only in limited circumstances (as when the node for X has no
parents in the graph) will conditioning by intervention and conditioning by observation
coincide. Graphically, interventions are represented by deleting the arrows that enter
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the intervened node in the original graph, making explicit the fact that when the value
is set externally, the parents’ values are not relevant post-intervention. Pearl’s do(·)
corresponds to an external intervention. By recognising interventions as decisions, the
Bayesian decision-theoretical framework embeds Pearl’s doing operation and provides a
stronger framework for causal inference. The strong links between decision theory and
Pearl’s causal model have been discussed by Heckerman and Shachter (2003). Those
who are familiar with Bayesian decision theory will find comfort, as I have, in these
connections.

Dawid (2002) points out that, traditionally, in IDs conditional distributions are
given for random nodes, but no description is supplied of the functions or distributions
involved at the decision nodes, which are left arbitrarily at the choice of the decision
maker. If we choose to provide some descriptions of the decision rules, then any given
specification of the functions or distributions at decision nodes constitutes a decision
strategy, π. Decisions determine what we may term the partial distribution, p, of
random nodes given decision nodes which is not in general the same as the associated
conditional distributions (see Cowell et al. 1999, section 2.3). If E and D denote the set
of random events and the set of decisions, respectively, then the full joint specification
pπ, consisting of decision strategy π and partial distribution p for all e ∈ E and d ∈ D is
given by pπ (e, d) . The graphical representation of pπ can be made by using extended IDs
that incorporate non-random parameter nodes (θe = p(e | pa0 (e)) and strategy nodes
(

πd = π(d | pa0 (d))
)

representing the mechanisms that generate random and decision
nodes respectively. Here, pa0 (.) denotes the set of domain parents of X (i.e. parents
in the original non-extended version of the ID). In what he calls augmented DAGs,
Dawid incorporates intervention nodes F where FX = x corresponds to ‘setting’ the
value of node X to x (in Pearl’s language: FX = do(X = x)), and he introduces a
new value ∅ such that when FX = ∅, X is left to have its ‘natural’ distribution, termed
by Pearl the ‘idle’ system. Figure 1 shows, for a simple case, the usual representation
of IDs as well as its extended and augmented versions, for the set (T,B, Y ) where
T = (T1, T2, .., Ts) represents a set of policy variables (treatments), B = (B1, B2, .., Br)
is a set of background variables (potential confounders) and Y is a response variable.
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Figure 1: Extended influence diagrams and augmented DAGs

Causal reasoning is related to prediction in the face of intervention. It relates to the
idea that a variable is a ‘cause’ if setting this variable to a specific value (by intervention)
changes the distribution of the response. Causal enquiries about the ‘effect of T on Y ’ are
seen as relating to (comparisons between) the distributions of Y given FT = do(T = t′)
for various settings of t′. The intervention node F of the augmented DAG is used as
an ‘auxiliary’ variable to discuss the identifiability of these effects under certain DAG
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structures. In particular, there is interest in establishing if the causal effect of FT on Y
can be identified and estimated correctly from the available data. The structure of the
data available is defined by the set of conditional independencies that are derived from
the graph.

Definition (Conditional independence) If X,Y, Z are random variables with a joint
distribution P(·), we say that X is conditionally independent of Y given Z under P , if for
any possible pair of values (y, z) for (Y, Z) such that p(x, y) > 0, P (x | y, z) = P (x | z).
This can be written following Dawid (1979)’s notation as (X⊥⊥Y | Z)P .

The discussion is conducted in terms of the relevance of learning the strategy that
gave the value t′ to T , namely whether it arose from the original experimental setting
π(t | b) (FT = ∅) or whether it was set externally (FT = do(T = t′)). Conditional
independencies of the form (Y⊥⊥FT | T, ·)dE

are used for this. Different examples of
identifiable and unidentifiable situations are discussed by Pearl (2000), Lauritzen (2001)
and Dawid (2002), each with their particular framework and notation. Imagine the set
(T,B, Y ) is available to us in the data set ∆. Figures 2(a) and 2(b) show the cases where
B is said to be irrelevant for Y and where B is said to be white noise of Y (with respect to
T ) respectively. The case where B is an intermediate variable between T and Y (i.e. T
affectsB andB affects Y ) is shown in Figure 2(c). In these three structures the definition
of absolute non-confounding given by Y⊥⊥FT | T holds (see Dawid 2002, §7). This
asserts that the distribution of Y given T will be the same, whether T arose ‘naturally’
or T is set by intervention. Thus the causal effect can be estimated directly from the
data available, ∆, using p(y | t′, FT = do(T = t′)) = p(y | t′, FT = ∅) = p(y | t′). The
definition of non-confounding (Y⊥⊥FT | T ) does not hold for the structure shown in
Figure 2(d). In this latter system, B is said to act as a confounder, as it affects both
treatment T and response Y . So, in order to obtain the causal effect, we are required
to know (or observe) the marginal distribution p (B). If this is the case, then the causal
effect p(y | FT = t′) can be obtained using the ‘back-door formula’ (Pearl 1993) which
‘adjusts’ for B such that p(y | FT = t′) =

∑

b p(y | t′, b)p (b) .
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Figure 2: Possible basic structures

Social policies will usually be more complex systems including all irrelevant (BT ) and
white-noise (BY ) background variables, possible confounders (BC) and an intermediate
process, as shown in Figure 2(e). Most of the examples in social policy interventions FT

involve (a collection of) atomic or contingent interventions. Therefore, the intermediate
process might involve both intermediate variables affected by T and possible actions G
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that will be triggered when the policy T is done. The ‘overall’ causal effect will include
all direct and indirect effects of do(T = t′) on Y .

3 Introducing experimental nodes

3.1 Policy versus Experimental Decisions

When planning and designing a policy intervention and evaluation, the policy maker
will have to define a strategy that involves ‘policy intervention’ actions (DT = {d′}) and
‘experimental design’ actions (DE = {d∗}). The former includes decisions related to how
the policy is implemented and what (which doses and to whom) will be provided. The
latter is related to the evaluation of the policy and includes experimental design decisions
that define the (chosen or controlled) conditions under which the study is carried out
and the data (∆) recorded. If D = {d′1, .., d′DT

, d∗1, .., d
∗
DE

} are the components of a
particular decision strategy πD, the interest lies in describing πD (D | E). In this sense,
we say that policy intervention actions (DT ) are concerned with intervening ‘the world’,
while experimental design actions (DE) relate to intervening the statistician’s ‘view of
the world’.

It is important to differentiate between ‘choosing a policy’ and ‘choosing a design’, as
the goals of these interventions are different. The ‘success’ of a policy intervention DT

is measured in terms of its efficacy to provoke ‘better’ values on the response variable
Y through its overall effects reflected by p(Y | FT = do(T = t′);DE). The efficacy
of an experimental intervention, DE, is measured in terms of its ability to isolate the
policy effect as much as possible. Making an explicit representation of both types of
interventions will assist decisions of the experimenter and considerations of the analyst,
when the aim is to evaluate the causal effect of policy FT .

When we, as data-collectors, approach the world, the data we collect depend on our
way of approaching it. The data we observe in the database (available data, ∆dE

) will
reflect the experimental design decisions DE = dE made (or deliberately ‘not made’) at
the time of its collection through p(data | DE). Two extreme cases of designed studies
might be, on the one hand, the ‘perfect’ experiment where all factors are controlled,
balanced and randomised and, on the other hand, the complete observational study
with all the relations that happen in ‘natural’ conditions (approximated by a census
of all population). The available literature discusses broadly the cases for completely
experimental data (see, for example, Chaloner and Verdinelli 1995; Wu and Hamada
2000) or completely observational data (e.g. Rosenbaum 2002). Although in the social
sciences access to perfect experimental data is usually not feasible, the data is not
always completely observational. In some cases, controls are taken at the time of the
design/collection of data, which gives rise to partially experimental data. In this work,
we consider DE to include any experimental conditions that might involve a decision by
the experimenter (data collector). The choice of ‘no control at all’ leads to observational
data (∆∅) which is assumed to be a (degenerate) special type of experimental data.

Experimental design interventions, DE = {M,R(B)}, contain the mechanisms M =
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{ME,MS ,MT} through which units are selected and assigned to eligible, sample and
treatment groups, and the recording mechanism R(B) that determines whether the
background variables are observed and available to us in the data ∆dE

. In addition,
implementation details which refer to the logistics and how the study will be carried
out are important, as they can introduce some biases. A complete description of these
mechanisms is presented in Madrigal (2004). In this paper we focus on the treatment
assignment mechanisms MT .

As an example, imagine a policy will be implemented to increase the nutritional state
(Y ) of ‘poor’ children in a certain geographical area. Suppose there are two different
brands of food supplements (FS) in green or red packages. A decision to sign a contract
with the food supplement provider(s) for as long as the policy takes place has to be
made. Imagine the policy maker is faced with four possible policy interventions: Policy
0 (t′0): ‘Do not give any FS’; Policy 1 (t′1): ‘Give green FS’; Policy 2 (t′2): ‘Give red FS’;
and Policy 3 (t′3):‘Give green FS to young babies; and give red FS to older children’.
Once a policy is chosen, all children in the target population will be under the same
policy. In this case, policy intervention strategies (DT ) are defined for the same target
population (namely, children in poverty), and the future policy interventions (FT ) are
given by t′0, t

′
1, t

′
2 and t′3. When evaluating the policy intervention effect we obtain the

‘overall effect’ of each of the policies. Although the policy interventions act on children
through the actual FS given, it is important to bear in mind that questions ‘Is policy
t′i giving better results than policy t′j?’ are different from the question ‘Is the green
FS working better than the red FS?’. In this case, they will coincide when we are
comparing policies t′1 and t′2, but to draw conclusions about the effects of green and
red FS from a comparison between, say, t′0 and t′3 could be dangerous, as in t′3, the
effect of FS is confounded with age. The policy maker, as an experimenter, has to
choose the experimental design strategy (DE) used to collect data ∆dE

. This data is
used to evaluate policy intervention strategies (DT ) and compare the effects of policies
FT = do(Policy = t′s). Imagine that policy makers in principle have in mind the
implementation of contingent policy t′3 (against the option of not providing any food
supplement at all t′0). First, the experimental levels {t∗} have to be set. These are
allocated through action AT = do(Policy = t∗). Choosing some experimental levels
{t∗} to be equal to future policy levels {t′}, such that t∗1 = t′0 and t∗2 = t′3, ensures
the positivity condition (see Appendix A), and then {t∗} = {t∗1, t∗2} = {t′0, t′3}. Imagine
the allocation of policies is done randomly with probability of one half. This random
intervention could be expressed as AθT

= do(θT = θ∗T ) such that it fixes θ∗T = p(AT =
do(Policy = t∗m)) = 1

2 for m=1,2. Policy allocation is randomised and it is defined by
the experimental design strategy, DE.

Dawid (2002)’s framework, although open to different strategies for setting the value
of a treatment T = t′, including randomised or atomic definitions, does not allow us to
represent in the same graph and formulae both the atomic (future) policy intervention
FT ∈ DT (allocating treatment T = t′ with probability one) and the (contingent or
randomised) experimental allocation strategy followed when collecting data AT ∈ DE

(allocating treatment T = t∗ according to θ). Neither does it allow us to represent the
impact on the (graphical) data structure of the experimental actions. Therefore, an
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extension is needed.

3.2 Design Networks: Basics

In its simplified version, let DE = {A,R(B)} where A contains all the policy assignment
mechanisms and R(B) contains the recording mechanism, such that R(Bq) = 1, for
q = 1, 2...Q, if variable Bq is recorded and R(Bq) = 0 if Bq is either unobservable
or not recorded. Assignment nodes A and recording nodes R can be included in the
DAG as decision nodes to create a design network (DN). The design network shows the
‘natural’ (experimental) mechanisms that generate the data available ∆dE

. In general,
no matter whether the data has been collected already or we are planning the design to
generate the data, DE represents decisions to be made at the data collection time.

Consider the set (T,B, Y ). For simplicity, suppose that T and Y are univariate,
that B does not contain intermediate variables between T and Y (i.e. B consists of
pre-intervention variables not affected by T ), and that the future policy is an atomic
intervention FT = do(T = t′). Figure 3(a) shows the usual influence diagram represen-
tation of this case, and Figure 3(b) gives the corresponding design network. Note that
A blocks all the paths going from B to the policy node T. This follows from the as-
sumption that A captures all the allocation mechanisms for T that might be influenced
by the background variables B, so that A is the only parent of the policy node T in the
design network. Recording nodes, R(B), are added for each background variable Bq ,
introducing the decision to record Bq versus not to record it. A double circle containing
a dashed and solid line is given to each background node Bq to show its potential ob-
servability. It is assumed that policy T and response variable Y will be recorded. Figure
3(c) shows an augmented design network in which the future atomic intervention node
FT is added to the design network.
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T Y
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(b ) Design Network

��� 	�
 B

T YF �

A

(c) Augmented Design Network

�
� 	�

B

T Y

(a ) I nf l uence Dia gra m

Figure 3: Design Networks

By representing simultaneously the design nodes DE = {A,R(B)} and the future
intervention node FT , the augmented design network is useful to make conclusions about
two different tasks involved in policy evaluation and design: (1) the identifiability of the
causal effect of T on Y , given a design dE ⊂ DE ; and (2) the choice of a design strategy
dE to collect data when the interest is to evaluate the effect of intervention FT . As
mentioned before, the identifiability of intervention FT depends on the data available
(determined by mechanisms dE); and the efficacy of experimental design (dE) is always
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to be determined with respect to the effects it tries to isolate (here FT ). Thus, DE and
FT are and should always be read in the light of each other, and the augmented design
network allows us to do that.

For causal reasoning in task (1), to discuss the identifiability of the causal effect of T
on Y , we are interested in comparing the relevance of the choice of FT given particular
experimental conditions d∗E , namely comparing p(y | t′, FT = do(T = t′);DE = d∗E)
and p(y | t′, FT = ∅;DE = d∗E). This provides us with expressions and guidelines for
control via analysis of possible confounders. On the other hand, in task (2), when
planning the data collection by choosing an experimental design, we are interested in
the relevance (or irrelevance) of the choice of experimental conditions dE , (with respect
to the identifiability of FT ) for different experimental choices dE ⊂ DE . So, we are
interested in making comparisons between different settings of d∗E and then choosing
the optimal design from all experimental designs available in DE . This provides us with
guidelines for control via design.

Augmented DAGs and the set of conditional independencies derived from them
have been used for causal reasoning in task (1) (see Dawid 2002). If two augmented
DAGs derived from experimental conditions dE1 and dE2 share the same conditional
independence statements, then they are equivalent for causal reasoning. Assignment
actions A might affect the original collection of conditional independence statements.
Recording decisions will have an effect on the set of variables that will be available
to us through the available (sic) experimental data. Thus R(B) will not introduce
any new (in)dependencies in the structure, but will be relevant when discussing the
potential identifiability of effects given assignment actions A = a∗. Some additional
general remarks about the Decision Networks framework can be found in Appendix A.

4 Causal graphical analysis for cluster allocation

Most of the literature in Cluster Randomised Trials (CRTs) has emphasised the fact
that Fisher’s principle is violated, as the experimental unit does not coincide with the
analysis unit, and the difference in levels where the experimental allocation generating
data available, ∆, is at cluster level and the analysis is undertaken for a response at
individual level. When introducing the need for the evaluation of a future intervention
FT using data generated from a (past) experiment dE , it is important to acknowledge
the fact that the future intervention level might differ from the experimental level.
In general, the future intervention (FT = do(T = t′)), the experimental allocation
(AT = do(T = t∗)) and the response variable (Y ) could each be at cluster/individual
level and would not necessarily coincide. The experimental level will define the data
structure and the conditional independence statements reflected in the ‘experimental’
causal graph through dE . The future intervention FT level will define the ‘future’ causal
graph structure.

The interest could lie in the causal effect at cluster level or at individual level.
Responses at cluster level will summarise what is observed at a community level, while
responses at individual level are usually more of interest to describe what is the effect in,
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say, a household within a community. If we are interested in the intervention effect on an
individual level response, depending on how the future intervention will be implemented,
there are two possible (causal) intervention effects we might be interested to identify:
namely, the distribution of the individual outcome given a clustered intervention, P (Yjk |
FTj = do(Tj = t′)), and the distribution of the individual outcome given an individual
intervention, P (Yjk | FTjk = do(Tjk = t′)). The former would try to estimate the effect
of a cluster-level intervention (usually the interest in social policy) and the latter would
try to estimate the effect of an individual-level intervention (as could be the goal of
many medical trials).

4.1 Cluster design networks

In terms of design decision strategies, a cluster-randomised study implicitly involves two
design decisions: (1) the decision of clustering (i.e. to allocate the treatments to clusters
of individuals) and (2) the decision of randomising (i.e. to perform the allocation using
a random procedure).

When an intervention at cluster level occurs we distinguish between two cases. The
first is related to the case in which the intervention affects all individuals in the cluster:
for example, when the improvement of health services is undertaken at community level
and all families within a community are subject to the same infrastructure. In this case,
individuals within the cluster cannot choose not to be affected by the policy intervention.
In this paper this case will be referred to as a ‘pure-cluster’ intervention (and denoted
by dC = 1). The second case refers to the situation in which, although an intervention
is allocated at cluster level, not all individuals, but only a subset of them within a
cluster, will be subject to the intervention. Actions, in this second case, are ‘done’ at
individual-level to individuals within a cluster, and thus individual characteristics might
have an influence in the individual’s allocation of treatment

An example of the latter is when the intervention affects only eligible individuals.
A cluster policy of this type could be seen as: ‘all eligible individuals k in cluster j will
receive policy t′ ’ via ATj = do(Tj = t′). So, allocation of policy is done at cluster level
and two eligible individuals in the same cluster cannot be allocated different policies
(contrary to what would happen if the policy allocation was done at individual level).
In the case of Progresa, this will correspond to the case where only poor households are
receiving extra money for nutrition and educational grants. These actions are aimed at
household-level; however, not all households in a community are poor and therefore not
all households within a community receive the same treatment, only the eligible ones.
In a more general setting, the individual choice of treatment might depend on some
possibly unobserved background variables and not necessarily only on some previously
defined (and observed) eligibility criteria. For example, imagine that some health centres
are allocated a certain restricted quantity of food supplements to be distributed among
families visiting them, but the amount of food supplements is not enough to cover all
families. Then, the fact that a family is receiving the food supplement or not could
depend on the (unobserved) nurses’ choice or on a first-come-first-served basis. In any
case, when different units within a cluster do not necessarily receive the same treatment
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and this is dependent on certain individual-level background variables, the experiment
will be referred as a ‘non-pure’ cluster allocation (and denoted by dC = 0).

4.2 Effects of cluster allocation design decisions

A design network for the general cluster setting for a cluster-level future intervention
FTj is presented in Figure 4. As we are discussing clusters of individuals, naturally
variables are not all at the same level and a simple DAG cannot be used without further
notation The levels are represented in the graph by squares, following Spiegelhalter’s
notation (see WinBUGS), meaning that the same graphical structure applies for each
of the observations at the same level. Design decisions can then be taken at both
individual and cluster level. The structure has been kept similar to that used above,
but now we have the situation replicated for the two levels involved. Let cluster j (for
j = 1, 2, ...J) have Kj units and let Tj and Tjk be variables for intervention status
(Treatment / Control) at cluster and unit level respectively. Similarly, let Bj and
Bjk represent the background variables at cluster and unit level and Zj some recorded
cluster-level covariates that might be affected by the policy. Nodes Aj and Ajk will
correspond to the assignment mechanisms to allocate policy at cluster and individual
levels respectively. Action ATj = do(Tj = t∗) defined in Aj will imply Tj = 1 if the value
t∗ corresponds to the policy taking place in cluster j, and will imply Tj = 0 if the value
t∗ corresponds to ‘control’. This will work similarly for the individual-level case. The
recording mechanisms could be defined over the set of cluster and individual background
variables, R(Bj) and R(Bjk), respectively. The response Yjk will correspond to that
observed for individual k in cluster j.

The decision of running a ‘pure’ cluster allocation experiment (dC = 1) will imply
that the intervention is done equally to all members in the cluster. So, once the treat-
ment for cluster j Tj is fixed by action ATj = do(Tj = t∗), this fully implies actions
ATjk = do(Tjk = t∗), and so the values of the treatments Tjk for all Kj individu-
als in cluster j. Then tj = tjk = tjk′ for all individuals k, k′ = 1, 2, ...Kj in cluster
j. So, the effect of pure-clustering prohibits individual covariates from influencing the
choice of treatment, breaking any links that could be present from Bjk (any background
individual-level covariates) to Tjk in the graph. When ‘non-pure’ cluster allocation takes
place (dC = 0), although the experimental allocation is made at cluster level, individual
k within cluster j might be receiving treatment or not depending on some individual-
level covariates Bjk, and thus tjk might differ from tjk′ for k 6= k′.

The assignment mechanism nodes Aj and Ajk could be expanded. This is not done
in Figure 4, to keep the (already complex) graph as simple as possible. The individual
assignment mechanism Ajk is considered to be dependent on the actual policy that was
allocated to cluster j, Tj , and (possibly) on some individual background variables. Thus,
the action assigning policy t∗ to individual k ATjk = do(Tjk = t∗) is considered to be de-
pendent on Tj and Bjk such that θTjk = p (ATjk = do(Tjk = t∗) | Tj , Bjk) = q(Tj , Bjk).
The ‘pure-cluster’ case will imply that the individual assignment mechanism does not
depend on individual background variables Bjk and
θTjk = p (ATjk = do(Tjk = t∗) | ATj = do(Tj = t∗), dC = 1) = 1 and the following propo-
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Figure 4: Design Network for cluster allocation and cluster-level future intervention FTj

sition is thus established.

Proposition (Pure-Clustering) If the experimental design strategy dE includes the
action of performing a ‘pure cluster’ experiment such that {dC = 1} ∈ dE , then the
‘structural’ effect of dC = 1 on the ‘original’ set of conditional independencies, is to
introduce the set of conditional independencies (Tjk⊥⊥Bjk)dC=1 that will hold on the
data ∆dE

generated by dE .

Figure 5 includes a close-up of the individual-level plateau in Figure 4, in which the
design network has been extended for node Ajk and variables Zjk introduced. Now let
us refer to the situation when a ‘pure’ cluster experimental intervention is not feasible,
but when we have a non-pure cluster experiment such that, within each cluster j, indi-
vidual policy allocation follows a deterministic rule based on individual-level observed
covariates Zjk. The final policy allocated to an individual through Ajk will be a function
of Zjk, and any other possible influences on Tjk from background variables Bjk (other
than Zjk) are eliminated. The prevalences of Tjk in the experimental data available
∆ will depend on the policy allocated to the cluster Tj and Zjk but not on Bjk .(e.g.
θTjk = p (ATjk = do(Tjk = t∗) | Tj , Zjk) = q(Tj , Zjk)) The structure obtained is similar
to the stratified allocation presented in Madrigal (2005), and arrow (c) will be deleted
when this ‘deterministic’ allocation takes place.

Proposition If a ‘non-pure cluster’ experiment includes a design strategy in which poli-
cies at individual level are allocated following a ‘deterministic’ rule defined by the exper-
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Figure 5: Close-up of individual-level plateau

imenter based on covariates Zjk , then conditional independencies (Tjk⊥⊥Bjk | Zjk)dE

are introduced and will hold on the data ∆dE
generated by dE .

As introduced in Madrigal and Smith (2004), design decision strategy dE including
random allocation of policies (i.e. AθT

= do(θT = θ∗T ) ∈ dE) might, qualitatively speak-
ing, modify the structure of the data we are to collect (see Appendix A). By allocating
the treatments completely at random (i.e. AθTj

= do(θTj = θ∗Tj)) we ensure that the
treatment received is independent of any background variables Bj that, otherwise, might
have an influence on the policy assignment mechanism. Then, when random allocation
takes place, arrow (r) from Bj to Aj in Figure 4 disappears and the conditional inde-
pendence statement (Tj⊥⊥Bj)dE

holds. Again, this probability, θ∗Tj , might depend on
possible stratification observed variables. When randomising at cluster level we there-
fore ensure that the level of treatment that is received by cluster j is independent of
the level received by cluster j ′ (i.e. knowing that cluster j was assigned intervention t∗

does not give us any further information about the intervention group at cluster j ′).

4.3 Identifying cluster-level interventions

The appropriateness and consequences of different design decisions dE ⊂ DE will depend
on the goals of the experiment. The case in which the interest is in the effect of a cluster-
level future intervention FTj = do(Tj = t′) on a cluster-level response Yj will degenerate
to the one-level case. When the interest lies in an individual-level response Yjk , it can be
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seen in Figure 4 that, if d∗E includes a random cluster allocation procedure and arrow
(r) is not present, the conditional independencies (Yjk⊥⊥FTj | Tj)d∗

E
hold for all j,k.

Thus, once the value of the policy assigned to the cluster Tj is known, learning whether
the policy status Tj arose from the future policy implemented FTj = do(Tj = t′)
or from the ‘original’ experimental allocation ATj = do(Tj = t∗) when FTj = ∅, is
irrelevant. Therefore, direct identifiability of the effect FTj = do(Tj = t′) on Yjk holds
and p(yjk | FTj = do(Tj = t′)) can be directly obtained from data ∆d∗

E
available as long

as t′ ∈ {t∗} such that

p(yjk | FTj = do(Tj = t′); ∆d∗

E
) = p(yjk | Tj = t′; ∆d∗

E
)

This does not disregard the fact that individuals belonging to the same cluster will
have a positive correlation, which must be taken into account in any model used for the
analysis and estimation of the effect on an individual-level response.

Again, when non-random cluster allocation is performed as part of the experimental
design d∗E , (Yjk⊥⊥FTj | Tj)d∗

E
does not hold anymore, but the conditional independencies

(Yjk⊥⊥FTj | Tj , Bj)d∗

E
hold for all j,k. Thus, the identifiability of the effect of a future

policy FTj = do(Tj = t′) on Yjk will depend on the recordability of cluster-background
variables R(Bj) and the causal effect will need to be obtained through an ‘adjustment’
procedure such that, as before, using the back-door criteria

p(yjk | FTj = do(Tj = t′)) =

∫

p(yjk | Tj = t′, Bj)p(Bj)dBj .

Unless we are ready to assume some prior distribution for p(Bj), the recording of vari-
ables Bj as part of the design ({R(Bj) = 1} ∈ d∗E) are needed to achieve an ‘adjusted
identification’ of the causal effect.

Different recording mechanisms might assist identification. For instance, if we were
ready to assume that cluster background variables did not have a direct effect on the
individual response, such that arrow from Bj to Yjk was deleted, then all the influence
fromBj would be through individual background variables and the observed cluster-level
variables Zj . In this case, conditioning on Tj , Bjk and Zj would be enough and a design
able to record these variables will provide identifiability. Thus, if cluster background
variables Bj were not accessible to the experiment, this new set of covariates {Bjk, Zj}
could assist identification.

4.3.1 Bayesian hierarchical models

In a hierarchical setting, data within each cluster j is assumed to depend on parameters
θj , which in turn are assumed to be drawn from some population distribution with
parameters ψ. In an initial model, the response yjk for individual k in cluster j is
assumed to have a Normal distribution, such that

yjk ∼ N(µjk , σ
2)

µjk = uj (1)
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and cluster-specific random effects (uj) are assumed to have a Normal distribution with
mean φj and variance σ2

u, such that

uj ∼ N(φj , σ
2
u)

φj = α+ βTj (2)

where Tj represents the treatment given to the jth cluster. There are many potential
elaborations to this basic model (see Spiegelhalter 2001; Turner et al. 2001). The priors
that need to be specified for this model are p(α), p(β), p(σ2), p(σ2

u). Making causal
assumptions and a graphical representation of all influences present in the particular
system analysed could assist recognition of possible confounders and thus assist both
the experimenter’s decisions for control via design and the analyst’s decisions for control
via analysis.

When cluster allocation is done randomly, if we are ready to assume linear relations,
the two-level Bayesian hierarchical model as specified in equations (1) and (2) could
be used to estimate the effect of FTj on Yjk, and coefficient beta can ‘safely’ be given
a causal interpretation as an ‘overall’ effect. For the non-random case, the analysis
will need the conditioning on the ‘relevant’ background variables. The inclusion of
individual-level and cluster-level covariates in the analysis could be done directly by
including them in equations (1) and (2) respectively. The conclusions just derived hold
for both ‘pure’ cluster and ‘non-pure’ cluster allocations. The ‘overall’ causal effect will
correspond to a ‘total effect’ when a ‘pure’ cluster allocation (dC = 1) is done. However,
this will not be the case for dC = 0, where the ‘total effect’ cannot be obtained. To make
the difference between ‘overall’ and ‘total’ effects clearer, the interactions of individuals
in a cluster have to be considered, and this is discussed below in Section 4.5.

4.4 Identifying individual interventions from clustered data

Consider the case where the main interest is in obtaining the individual-level causal
effect, namely P (Yjk | FTjk = do(Tjk = t′)) from data that is clustered. If randomised
allocation could take place at individual level, then it could be directly identified from
the experimental data ∆, as individual random allocation will break the possible influ-
ence of cluster background variables on the policy allocated to the individual. Suppose
that it is not feasible to randomise at individual level, but to intervene clusters is possi-
ble. The design network for this case will basically coincide with that shown in Figure 4,
but in this case we assume that the future policy will consist of an individual intervention
FTjk , and that we are interested in identifying effects at the individual level.

From the design network in Figure 6 it can be seen that (Yjk⊥⊥FTjk | Tjk) does
not hold even if arrows (r) and (c) are deleted from the graph. So, the effect of policy
intervention FTjk = do(Tjk = t′) on Yjk cannot be identified directly from the data
and some adjustment will be needed.

When a ‘non-pure’ cluster allocation takes place in the experiment, individual policy
assignment will depend on both the policy allocated Tj and individual background
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Figure 6: Design Network for cluster allocation and individual-level future intervention FTjk

variables Bjk. Conditioning on this set of variables, the irrelevance of FTjk is gained
such that (Yjk⊥⊥FTjk | Tjk, Tj , Bjk) Thus the recording of Bjk is needed in order to
obtain adjusted identifiability through

p(yjk | FTjk = do(Tjk = t
′); dC = 0) =

∫

p(yjk | Tjk = t
′
, Tj = t

∗
, Bjk)p(Tj = t

∗
, Bjk)dBjkdTj ,

where, if randomisation did not take place at cluster level, Tj and Bjk are not indepen-
dent (both having Bj as an ancestor) and their joint distribution is needed. If recording
at individual level for Bjk is not undertaken, the causal effect will be unidentifiable.

When ‘pure’ cluster allocation is done, and as a result arrow (c) is deleted, then there
are no individual level confounders and all possible confounders will be at cluster-level.
So, ‘pure cluster’ assignment might improve identification of individual intervention
effects, in particular, when randomisation at cluster level is feasible or in the case when
cluster-level confounders (Bj) are easier to observe and/or control than individual-level
confounders (Bjk).

As shown above, the ‘overall’ effect of a future cluster-level intervention at cluster
level FTj can be identified from the experimental data when policies in the experiment
are allocated randomly at cluster level. Something similar happens when the assignment
is not carried out randomly, but cluster background variables are recordable and an
‘adjustment’ measure is needed. Moreover, for dC = 1, the overall effect will coincide
with the participants’ total effect. Thus, if the indirect effect due to interaction among
neighbours is negligible, as could be the case when vitamin supplements are administered
to children in Progresa, the total effect measured will be equal to the direct (personal)
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effect. Although this might not be always true for social policies, this might be the case
for some treatments in a medical setting in which, for example, a drug is supposed to
act in an individual regardless of his interaction with other people in the cluster. In
this case, a ‘pure cluster’ design could assist identification of individual interventions.
Therefore, a ‘good’ (randomised or controlled) cluster design might be able to provide
more information than a ‘bad’ (with unobserved confounders) individual design. The
distinction of overall, total, direct and indirect effects will be discussed next.

4.5 Overall versus total effects

As Koepsell (1998) states, ‘just as infectious agents can be spread from person to per-
son, transmission of attitudes, norms and behaviours among people who are in regular
contact can result in similar responses’. So, when people interact or communicate, their
response to an intervention can be explained (and partitioned) in terms of direct (‘per-
sonal’) effect and indirect (‘neighbours’) effect. So, interventions may affect the whole
population, not just those who participate (or were subject to interventions).

The fact that all individuals in a group follow the same policy, or are encouraged
to take a particular action, has thus an additional ‘interaction effect’. This is so as
individuals interact with each other, creating a domino effect. In the case of Progresa
we have, for example, the fact that mothers talk! Thus, if a mother is encouraged to
take children to the health centre for food supplements, besides her possible individual
motivation, the fact that other mothers in the village are encouraged as well, creates an
additional effect on her (i.e. if everybody is doing it, there is an extra motivation to do
it, and being the only one not doing it will be rare and possibly socially penalised).

If in a cluster, not all individuals are allocated the same intervention, then the effects
of interventions can be classified, following Hayes et al. (2000)’s definition, according to
the ‘intervention status of the individual’ as participants (treated) or nonparticipants
(controls). Those who participate receive both a direct

(

DE(P )

)

and an indirect effect
(

IE(P )

)

, which combine to form the total effect
(

λ(P ) = DE(P ) + IE(P )

)

. The non-
participants receive only an indirect effect, IE(NP ), so their total effect contains only
those indirect effects (λ(NP ) = IE(NP )). The indirect effects received by participants
and non-participants may differ in magnitude, so an index is used to distinguish them:

Participants (P) Non-participants (NP)

Total effects λ(P ) = DE(P ) + IE(P ) λ(NP ) = IE(NP )

If we are ready to assume that these effects are equal for all individuals in a cluster,
then the overall effect observed in a cluster will correspond to the weighted average of
the effects on participants and non-participants such that

Overall effect = w(P )λ(P ) + w(NP )λ(NP ) (3)

where w(P ) and w(NP ) are just weights that will be functions of the number of partici-
pants and non-participants in the cluster (or in terms of the ‘coverage’ -% of participants-
of the experiment). So, the overall effect will include a combination of direct and indirect
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effects. In particular, expression (3) could be extended to be re-written as

Overall effect = w(P )

(

DE(P ) + IE(P )

)

+ w(NP )IE(NP )

= w(P )DE(P ) +
(

w(P )IE(P ) + w(NP )IE(NP )

)

In the case where indirect effects, for both participants and non-participants, are as-
sumed to be negligible such that IE(P ) ≈ 0 and IE(NP ) ≈ 0, then the overall effect will
be approximately proportional to the direct effect such that

Overall effect ≈ w(P )DE(P ).

In the case of a ‘pure cluster’ experiment, either all individuals are participants (treated
cluster) or all are non-participants (control cluster). In this situation, contamination
within clusters is completely avoided, and in control clusters no intervention indirect
effects are observed (i.e. IE(NP ) = 0). For the treated clusters, all individuals are
participants, and overall intervention effect of the cluster will coincide with the total
participant effect, denoted by τ(P ) : namely,

Overall effect (control cluster) = 0 · λ(P ) + 1 · λ(NP ) = total effect(NP ) = 0

Overall effect (treated cluster) = 1 · λ(P ) + 0 · λ(NP ) = total effect(P ) = τ(P )

and therefore

Overall effect(dC=1) = total effect (P ) = τ(P ) = DE(P ) + IE(P )

Individually randomised trials typically aim to measure the direct effect, DE(P ). By
contrast, CRTs measure the total effect τ(P ) if all individuals participate, but otherwise
they measure the overall effect, which will vary according to intervention coverage and
the characteristics of the population.

If individuals are naturally clustered, the magnitude of the indirect effect of an
intervention is likely to be important in deciding whether a trial should be individually
- or cluster- randomised. Indirect effects, due to interaction, will be included in the
outcome measure. As a consequence, if the main interest is in measuring only the direct
effect that a possible drug/treatment, say, has on an individual and it is known that
indirect effects could be relevant, then CRTs might not be the best option as they will
measure the overall effect instead of the direct effect.

In assessing the value of intervention it is important to take into account their
indirect as well as direct effects. In some cases it may be better to avoid intervention if
the coverage needed to make it beneficial is too high to be realistically achievable. In
addition, it may be desirable to separate the overall effect into its direct and indirect
components. Methods for measuring direct and indirect effects separately have mostly
been developed in the context of vaccination (see Hayes et al. 2000; Longini et al. 1998).
Standard CRT designs measure the overall effect of intervention, and this is often the
most useful measure for policy makers because it includes all the components, both
direct and indirect, which a population would experience if a cluster policy were to be
implemented.
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It should be clear that the stable-unit-treatment-value-assumption (SUTVA, as la-
beled in Rubin 1980), which implies that the response of the unit does not depend on
which treatment was applied to other units, does not hold when units interact and the
indirect neighbours effects are not negligible. However the Bayesian predictive decision-
theoretic approach that is followed in this paper does not require this assumption, as
would be the case in Rubin’s counterfactual approach. The counterfactual model for
causal inference could lead to ambiguities and pitfalls, as discussed by Dawid (2000).

5 Progresa effect example using hierarchical models

In this section a hierarchical model analysis based on Spiegelhalter (2001) is performed
for the evaluation of cluster- and individual-level interventions based on Progresa data.
In the programme, communities were randomly allocated either to a treatment or a
control group. The community level interventions G1 (such as the improvement of
health services and educational talks) are received by all households in a ‘treatment’
community. In addition, all eligible (poor) households that belong to a ‘treatment’
community receive household interventions, such as financial support, G2. The data
recorded includes a census of eligible and non-eligible households for (treated and con-
trol) communities selected for the study.

Let Tj be the cluster treatment indicator, such that ATj
= do(Tj = 1) if community

j was allocated to Progresa programme and ATj = do(Tj = 0) if it was allocated to
control, so we have

Tj =

{

1 if community Treatment
0 if community Control

Let E be an indicator variable denoting eligibility status. Then Ejk = 1 if household k
in community j is eligible and Ejk = 0 if non-eligible. In Progresa, Ejk = 1 corresponds
to a poor household. Thus,

Ejk =

{

1 if ‘poor’ household
0 if ‘non-poor’ household

So, household k in community j will be allocated household-level Progresa interventions
Tjk (e.g. financial support) through an allocation Ajk , in which a household is given
extra money if, in addition to belonging to a treatment cluster, the household is ‘eligible’.
It will not be given extra money if either it is not eligible or if it belongs to a control
community. If we denote by Pjk , the indicator variable for ‘Progresa participant’, such
that Pjk = 1 if household k in cluster j receives economical support and Pjk = 0 if not,
then, Pjk is defined as

Pjk =

{

1 if Tj = 1 and Ejk = 1
0 otherwise

From the general formulation of the Design Network for cluster allocation presented
above, a simplified version of Progresa’s experimental design containing the main fea-
tures is shown in Figure 7, where Yjk represents the response of household k in commu-
nity j for k = 1, 2, ...Kj ; Bj represents the background variables that are shared by all
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individuals in community j. Background variables at individual level were not added
to keep the graph simple, but could be easily incorporated. As allocation at cluster
level was done randomly in Progresa, no arrow is drawn from Bj to Tj . If G1 denotes
Progresa’s cluster-level intervention (action) corresponding to health services and talks
(i.e. the ‘encouragement’ that communities receive to improve their nutrition) and G2

denotes Progresa’s household-level action of giving financial support to poor households,
then note that the action do(Tj = 1) will trigger both atomic cluster-level intervention
G1 and contingent (on Tj and Ejk) individual-level intervention G2.

T̂
B̂

G _ Ŷ `

Ê `

aFbdcfe g6e h h h iEj
jkblcfe g�e h h h m

G n

P̂ `

Figure 7: Progresa experimental Design Network for basic nodes

5.1 Cluster-level intervention effect

Imagine that we are interested in the effect of Progresa on the total food consumption
yjk, measured in terms of the amount of money spent on food in a household. The com-
plete data set, including poor and non-poor households, consists of 20,589 households
in 500 clusters. To begin with, assume we are interested in measuring the overall effect
of Progresa intervention FTj = do(Tj = t′). A hierarchical model following the setting
presented in Section 4.3 (equations (1) and (2)) is used to estimate this effect. This
model was run in BUGS using vague priors following Spiegelhalter (2001) with

p(α) ∼ Uniform(−10000, 10000)

p(β∗) ∼ Uniform(−10000, 10000)

p(σ−2) ∼ Gamma(0.01, 0.01)

p(σ−2
u ) ∼ Gamma(0.01, 0.01)

We encountered no difficulties in convergence of this model. The analysis is based on a
sample of 10,000 iterations following a burn-in of 5,000.

The posterior inference (means and 95% intervals) for the parameters involved is
presented in Table 1. As can be seen from the table, the posterior mean for beta



A.M. Madrigal 577

Parameter Mean 95% interval

β∗ 39.48 (20.36, 58.33)
α 444.9 (435.2, 454.6)
σ−2 2.102E − 5 (2.061E − 5, 2.143E − 5)
σ−2

u 1.054E − 4 (1.052E − 41, .216E − 4)

Table 1: Posterior distributions of parameters for cluster-level intervention

is E [β∗ | ∆] = 39.48 with a 95% interval of (20.36,58.33). In this case β∗ gives the
cluster-level total overall effect of Progresa intervention on the food expenditure in a
household. So, β∗ contains a summary of the effects of the programme (through G1 and
G2) on Y for all the population in a cluster, by averaging participants (receiving G1

and G2) and non-participants (only receiving G1). Depending on the aims of the study
this total overall effect might be the relevant causal effect of interest. In such a case,
it could be said that the causal effect of Progresa is to increase, on average, the food
expenditure of a household by 39.48 Mexican Pesos. This in relation to the average food
expenditure for a household in a control community that will be of E [α | ∆] = 444.9
Mexican Pesos.

5.2 Individual-level effect

Now imagine that we are interested in obtaining an estimate of the ‘causal’ effect of the
individual-level intervention FG2

= do(G2 = g′2 = q(poor)) of giving financial support
to poor households. The allocation of G2 depends on the cluster-allocated policy Tj

(Treatment/Control) and on the eligibility condition Ejk of a household defined as
‘poor’: both are assumed to have an effect on the household expenditure level and thus
act as confounders in this case. So, to identify the individual-level effect of FG2

, it is
needed to control by including these two confounders in the analysis.

The hierarchal model used for the cluster-level effect above can be extended to
include covariates Tj and Ejk at cluster and individual level respectively. The ‘Progresa
participants’ status of a household Pjk acts as an indicator variable of the presence
of economic support provided by G2. We include here the household size Zjk as an
individual covariate to illustrate the possible inclusion of other covariates in the model.
Household size will have an influence on the total expenses of the household Y, and it
is neither affected by the policy nor affecting (at least directly) policy allocation. So
now this is considered part of the white noise (with respect to T and P) at the recorded
individual level. Equations (1) and (2) can be substituted by

yjk ∼ N(µjk, σ
2)

µjk = uj + β2Pjk + δEjk + γZjk (4)

uj ∼ N(φj , σ
2
u)

φj = α+ β1Tj (5)
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We chose to use the same priors to estimate this model, as before. Thus all the coeffi-
cients (namely α, β1, β2, δ and γ) were given vague uniform distributions a priori. Again,
we encountered no difficulties in obtaining convergence and the sample simulated is the
same size as before.

The posterior means and 95% intervals for all the parameters are given in Table 2.
The individual-level effect here will be measured by the coefficient of Pjk , namely β2,
whose posterior mean is given by E [β2 | ∆] = 45.71 with a 95% interval of (33.95, 57.49).
In general β2 will isolate the effect of G2 (from the effect of G1) and we could say that the
effect of a policy FG2 that provides economic support according to the poverty level of
a household will increase, on average, the food expenditure of a participant household
by 45 Mexican Pesos (regardless of the presence or not of a secondary action G1).
However, β2 implicitly includes possible indirect effects resulting from the interaction
of participant households with non-participant households in a community.

Parameter Mean 95% interval

α 473.5 (461.7 , 485.5)
β1 16.7 (-3.848 , 36.63)
β2 45.71 (33.95 , 57.49)
δ -34.14 (-43.54 , -24.69)
γ 30.56 (29.54 , 31.6)

Table 2: Posterior distributions of parameters for individual-level intervention

A second reading of this analysis could consider the case in which the total effect of
Progresa (defined by G1 and G2) is split in its effect on food expenditure, due to the
community-level action of educational talks (G1) and the economic support provided
at household level to poor people (G2). Then, β1 becomes a parameter of interest
containing the direct effect of G1 (i.e. the effect of Progresa on food expenditure that is
not due to economic support) and Pjk is regarded as an intermediate variable. In this
case, and following the reasoning of path analysis (Bollen 1989; Pearl 2000), we can see
that the total overall effect of Progresa β∗ could be written as β∗ = β1+λβ∗

2 where λ will
contain information about the prevalence of participants within a treated community.
The total overall effect at household level is here denoted by β∗

2 (= β2 + δb(E)P ) where,
as before, β2 represents the direct individual-level effect and δb(E)P the confounding
effect, which in this case has been controlled via analysis.. In this case it can be seen
that, although the posterior mean for β1 has a value of 16.7, the 95% posterior interval
includes the value zero. So we cannot assert that the direct effect of the cluster-level
intervention G1 was different from zero. A more careful analysis, possibly including
more ‘white noise’ covariates at cluster level, might provide narrower intervals for the
coefficients. However, given that this response variable is measured in money terms, the
main effect of the programme could be expected to be due to the increase of income of
the participant households derived from G2. This might not be true for other response
variables.

We can notice that one could be tempted to offer a causal interpretation to the
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Figure 8: Posterior distribution for (a) β2 and (b) β1

coefficient of eligibility (δ) that distinguishes between poor and non-poor households.
However, the data available was not properly selected in order to isolate the relationship
between poorness and food expenditure. The level of poorness in Progresa was obtained
through a discriminant function that depends on many household level covariates that
could also affect the response, becoming confounders for this coefficient. Therefore, if
we are interested in interpreting δ, a data set including these covariates will be needed.
In this analysis, household size is known to be part of the variables used to define the
poorness of a household. Its inclusion or not in the model (analysis not shown), although
‘transparent’ for β1 and β2 (given Ejk), will have an important effect on the posterior
mean E [δ | ∆] . Although, in this case the posterior mean seems to be significantly
different from zero and has the ‘correct’ sign (i.e. it should be expected that poor
people spend less money than non-poor people), this superficial conclusion might still
be subject to unrecorded confounding.

6 Conclusion

The primary contribution of this paper is to expand on Dawid (2002)’s model for causal-
ity reasoning within the Bayesian decision-theoretic framework: to ‘adapt’ it to policy
analysis, to include experimental nodes, to allow intervention nodes ‘do’ parameters
nodes, to discuss the relevance (or irrelevance) of experimental design and to include
interventions at different levels (clusters) of units. Observational data is considered a
degenerate type of experimental data. In addition, there was a need to create some nota-
tion to describe the mechanisms derived from choices, such choices as the experimenter
might make when choosing the ‘lens of the camera’ to picture the world. These choices
affect the characteristics (units, variables and distributions) of the database. The inspec-
tion of influence diagrams and, in particular, the augmented DAGs derived from them,
has been shown to be useful to decide if the data available is sufficient for obtaining
consistent estimates of the target causal effect of policy intervention FT = do(T = t′).
If so, we can derive a closed-form expression for the target quantity in terms of distribu-
tions of available quantities. If it is not sufficient, this framework can help suggest a set
of observations and experiments that, if performed, would render a consistent estimate
feasible. Design Networks expand the IDs framework to address explicitly experimental
design and provide the semantics to discuss how design can assist identification, and
when and how one can identify causal effects. Incorporating nodes for experimental
design decisions is useful in demonstrating their impact on the graphical structure and
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on the ‘data structure’ derived from it. Certain policy assignment mechanisms, such
as randomised cluster allocation, will add ‘extra’ independencies to the ID, defining a
new collection of conditional independencies. To make a causal inference of FT , it is
important that we consider the mechanisms producing the data (dE). Furthermore, we
need to differentiate between policy interventions we want to evaluate, FT ∈ DT , and
experimental allocations, AT ∈ DE. The relevance of DE in assisting the identification
and comparison of different mechanisms d∗E in terms of identifiability can be addressed
using DN for diverse types of assignment. Design networks were introduced for cluster
allocation, and Spiegelhalter (2001)’s Bayesian hierarchical model was extended to in-
clude causal interpretation and used to illustrate a causal analysis of a simplified version
of the Progresa programme.

When cluster allocation is done randomly, two-level Bayesian hierarchical models
could be used to obtain the effect of FTj on Yjk and the relevant coefficient can ‘safely’
be given a causal interpretation as an ‘overall’ effect. For the non-random case the
analysis will need the conditioning on the ‘relevant’ background variables. Cluster
allocation might help identifying individual-policy effects in certain cases.

Design of experiments within the Bayesian decision theoretic approach has been
studied broadly in the literature; however, not in terms of causal reasoning and identi-
fiability. In most of the literature on Bayesian experimental design the discussions have
been limited to a) a set of options which include the choice of the levels of treatment
and the number of repetitions within each level, and b) to a utility function usually de-
fined in terms of minimising the posterior variance of estimates (or maximising entropy),
which is an important issue. However, an experiment that overlooks identification could
lead to the wrong conclusions if causal analysis is of interest. Causal inference imposes
an extra criterion for the evaluation of the designs. This work extends the on-going
discussion to a more general setting where the set of options is extended to include deci-
sions about policy allocation and recording mechanisms and where the utility function
is allowed to include a measurement of identifiability.

Appendix A. Design Networks: General remarks

By allowing the ‘idle’ system in Dawid (2002) to refer to any experimental system, the
list of propositions in this section could be derived directly or are analogous to the
results presented in Dawid (2002).

In general, we will say that the ‘causal’ effect of T on Y is identifiable directly from
the available (experimental) data collected under DE = dE , if learning the value of FT

(i.e. learning if the future policy was set to a value or left to vary ‘naturally’) does not
provide any ‘extra’ information about the response variable Y given the value of T and
experimental conditions DE = dE (i.e. if (Y⊥⊥FT | T )DE

) then p(y | t′, FT = do(T =
t′);DE = dE) = p(y | t′, FT = ∅;DE = dE). Note that this will hold (or not) regardless
of R(B).

Definition (Direct identifiability) The ‘causal’ effect of T on Y is identifiable directly



A.M. Madrigal 581

from available (experimental) data collected under DE = dE , if (Y⊥⊥FT | T )dE
. Then

p(y | FT = do(T = t′);DE = dE) = p(y | t′;DE = dE).

This will imply that the conditional distribution p(y | t′) that is extracted from
data generated according to dE can be used directly to estimate the target causal effect
p(y | FT = do(T = t′)) regardless of the recordability or the actual values of B.

Let dE1 = {A = a1;R(B) = r1} and dE2 = {A = a2;R(B) = r2} be two experimen-
tal design interventions.

Proposition If two experimental DNs under allocations defined by A = a1 and A = a2

share the same conditional independencies Sa1
= Sa2

, and (Y⊥⊥FT | T )a holds for
a = a1, a2 then experiments dE1 and dE2 share the same ‘direct identifiability’ status
for the causal effect of T on Y defined by intervention FT for any recording mechanisms
r1 and r2 Thus, the choice of assignment mechanism (between a1 and a2) is said to be
irrelevant to obtaining direct identification.

For instance, if a1= pure random allocation with probability θ∗1 and a2= pure random
allocation with probability θ∗2 , such that 0 < θ∗T < 1 for all t∗, both assignments lead to
direct identifiability. Then, regardless of the background variables recorded, the choice
between a1 and a2 is irrelevant for identification purposes. Both allocations might be
different in terms of a balanced sample and the variance and efficacy of the estimates,
but this is regarded as a secondary goal of the choice of experiment.

Proposition If direct identifiability holds for a1, i.e. (Y⊥⊥FT | T )a1 , but not for a2,
then the choice between dE1 = {a1, r} and dE2 = {a2, r} is not irrelevant for direct
identifiability.

An example of this is when a1 = pure random allocation and a2 = ∅. Although
naturally it could be observed that (T⊥⊥B)∅ holds, direct identifiability will usually
not hold for a2 = ∅. So, the choice between performing a randomised experiment and
observing the original mechanism is not irrelevant for the isolation of effects and their
direct identification.

Direct identifiability of the causal effect implies assuming (Y⊥⊥FT | T )dE
, which

is a very strong assumption that usually will not hold when observational studies or
imperfect experiments take place. However, we might be ready to assume that for a
set B∗ ⊆ B where B∗⊥⊥FT , conditional on B∗ the learning of FT is irrelevant for the
response, such that (Y⊥⊥FT | T,B∗)dE

and then

p(y | t′, B∗, FT = do(T = t′);DE = dE) = p(y | t′, B∗, FT = ∅;DE = dE)

so we could ‘substitute’ the future intervened probability with the ‘natural experimental’
distribution available from the data.
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Definition (Conditional identifiability) The ‘causal’ effect of T on Y conditional on B∗

is identifiable directly from the available (experimental) data collected under DE = dE ,
if (Y⊥⊥FT | (T,B∗))dE

. Then

p(y | FT = do(T = t′), B∗;DE = dE) = p(y | t′, B∗;DE = dE).

Notice that conditional identifiability alone does not imply that procedures like the
back-door formula can be used to calculate the overall effect of T on Y, which needs
condition (B∗⊥⊥FT )dE

to hold as well.

Proposition If direct identifiability does not hold for a1, dE1 = {a1, r1}, then the
choice of the recording mechanism R(B) = r1 in the experimental design defined by
dE1 = {a1, r1}, is relevant for obtaining ‘adjusted’ identifiability.

When identifiability cannot be obtained directly from the data defined by DE , iden-
tifiability can still hold for a particular configuration of R(B). Then, we say that the
causal effect is identifiable through an ‘adjustment’ procedure, and this leads to another
definition.

Definition (Adjusted identifiability) The ‘causal’ effect of T on Y is identifiable through
an ‘adjustment’ procedure if

p(y | t′, FT = do(T = t′);DE = dE) = h(y, t′, B∗ | DE = dE)

such that R(B∗
q ) = 1 for all B∗

q ∈ B∗ ⊆ B and h is a function of known probabilistic
distributions of recorded variables under dE .

If we had a complete picture of the systems, then we could observe all background
variables B and their influences and no unobserved or latent variables would exist.
Then, R(Bq) = 1 would be plausible for all q and we would always be able to find
a combination R(B∗) such that p(y | FT = do(T = t′);R(B∗)) would be identifiable
through an adjustment procedure. However, our vision as experimenters willing to
collect data is much narrower and is restricted to a partial view in which not all back-
ground variables are accessible and not all settings r are accessible. Nevertheless, we
can still choose among different settings of R(B). The design network representation
permits us to evaluate identifiability for different choices of the recording mechanism
R(B). In consequence, it could assist the experimenter to choose among a possible set
of recording settings, r, in order to assist identification of the effect of interest. In a
first raw classification, recording mechanisms could be classified into those for which
adjusted identifiability holds (h exists) and those for which the effect remains uniden-
tifiable. Different recordings might have further consequences in the inference of causal
effect; however, in terms of identifiability, the choice between two recordings that ensure
adjusted identifiability is irrelevant. Thus we have,
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Proposition Let dE1 = {a, r1} and dE2 = {a, r2} be two experimental conditions such
that direct identifiability does not hold for the policy assignment mechanism defined by
A = a, and where r1 and r2 represent recording mechanisms in which collections B∗

1 and
B∗

2 are recorded respectively. If functions h1 and h2 of known probabilistic distributions
can be found for both recordings r1 and r2, then dE1 and dE2 are said to be equivalent
for adjusted identifiability and the choice between recording mechanisms r1 and r2 is
irrelevant for identifiability.

In the case where neither h1 nor h2 can be found, the choice of r1 and r2 is also
irrelevant, but in this case both recordings produce non-identifiability. However, when
h1 exists, but h2 does not, then dE1 and dE2 do not share the same identifiability
status, as the target causal effect of future intervention FT can be obtained through an
adjustment procedure for dE1 but it is not identifiable under dE2.

When ‘adjustment’ is needed, some closed-forms for the function h have been given.
The ‘back-door’ criterion (Pearl 1993), the ‘front-door’ formula (Pearl 1995) and the ‘G-
computation’ formula (Robins 1986) are examples of criteria and formulae that imply
the use of background variables to obtain ‘adjusted’ estimates and are all particular
cases of functions h. A broader discussion of these criteria under different approaches
can be found in Pearl (2000), Dawid (2002) and Lauritzen (2001).

If we can assume we are in a situation represented by a system in which potential
confounders exist, pure random allocation will provide a data-generating mechanism
that ensures direct identifiability of the effect of interest. In this case, we are performing
control via design of the potential confounders that might be affecting the choice of
policy, like politicians’ preferences to benefit some particular communities. A generating
mechanism that can only provide identifiability through an ‘adjustment’ formulation
will correspond to a situation in which potential confounders have to be controlled via
analysis.

Even if functions h1 and h2 can be found for dE1 and dE2 and adjusted identifiability
can be obtained, further considerations are necessary when choosing an experiment. If
r1 and r2 are such that B1 ⊆ B2 then dE1 will be generally preferred to dE2, as recording
a larger data set implies a more costly implementation and storage. In this sense, we
would like the set of recorded variables to be minimal, but sufficient for identifiability.
Definitions of sufficient sets have been made (see Lauritzen 2001; Dawid 2002; Pearl
2000). Functions h1 and h2 might be found for sets B1 6= B2 where neither of them is
a subset of the other. In any case, functions h1 and h2 might not have the same form
and particular estimates might not be equally efficient when derived from h1 than when
derived from h2, reflecting the loss of information associated with our restricted partial
views determined by r1 and r2. An example of this, for the front-door formulation, can
be found in Lauritzen (2001).

When direct or adjusted identifiability holds, the design dE is ignorable. However, as
Rubin (1978) notes, not all ignorable mechanisms can yield data from which inferences
for causal effects are insensitive to prior specifications. Direct identifiability gives a
situation where effects are insensitive to the specification of prior distributions of the
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data. However, this will not hold for adjusted identifiability where the causal effect is
dependent on the prior distribution of background variables, P (B).

A.1 The positivity condition

In general, the set {t∗} of intervention-values assigned through AT is not necessarily the
same as the set of future-policy-values {t′} defined by FT . In order to be able to evaluate
the causal effects of intervention FT = do(T = t′), we need treatment t′ to be observed
under experimental conditions dE . So, we need p(t′ | B∗, FT = ∅;DE = dE) > 0. This
requires that treatment assignment mechanism AT includes t′ as one of its allocated
values. In other words, this requires that t′ ∈ {t∗}. In a prospective study, this condition
will usually hold. However, when data has been already collected, we might face the
case where t′ /∈ {t∗}. In this case, we would only be able to use the data available if
we could make some parametric assumptions for p(Y | T, ·) before the policy effects can
be identified. In general, if all the relevant information needed to evaluate the causal
effect is encoded in a function τ (η) of η, and the experimental data provides us with
information about λ (η) , it will suffice if τ (η) ⊆ λ (η) . In this case, predictively,

p(y | FT = do(T = t′); dE) =

∫

η

p(y | FT = do(T = t′), τ (η))p(λ (η) | ∆dE
; dE)dη.

If different policies represent categorical variables, this could be difficult. In the FS
example, imagine the two supplements provided in the experiment through assignment
AT = do(T = t∗) are from different brands, say brand A (t∗A) and brand B (t∗B), and
the future policy consists of providing a food supplement from brand C (t′C). The data
available, no matter how the actual assignment was made (random or not), will hardly
be useful to conclude anything about the effect of food supplement C. However, imagine,
that we have a measure in terms of the calorie intake that each supplement provides
and that t∗A = 100 kcal and t∗B = 300 kcal, and we know that supplement C has 200
kcal, then if we are ready to assume that η contains a summary of the effect on weight
per each increase of one kcal, then we would be able to estimate its effect.

A.2 Choice of experimental design

The problem of choosing an experiment has been set in Bayesian decision theory using
decision trees (see Lindley 1971; Bernardo and Smith 1994). A DN could be viewed as
its corresponding ID, allowing us to represent influences between decisions and random
nodes. Optimality can be defined in various ways, and qualities for the distributions
of estimators, such as minimum variance, are desirable (see Chaloner and Verdinelli
1995). Here we focus on the isolation of the target causal effect and thus on its identi-
fication. The efficacy of experimental design interventions DE could then be measured
in terms of making the (causal) effects of FT = do(T = t′) identifiable and then two
(or more) experiments can be compared in these terms, and among the experimental
decisions DE we choose the one with highest utility. ‘Pure’ (i.e. non-stratified) indi-
vidual random allocation contrasted with the ‘no experiment’ choice (i.e. observational
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data) is used to introduce this procedure. When the policy assignment is done through
random allocation, two control actions are performed: randomisation and intervention.
So treatment t∗ is done, AT = do(T = t∗), according to a probability distribution θ∗T
totally fixed and controlled by the experimenter through AθT

= do(θT = θ∗T ). Node A
might be expanded to show explicitly the mechanisms underlying the assignment and
the new independencies that might be introduced. This expansion involves parameter
and intervention nodes that are included in an augmented-extended design network.

• AθT   = Ø :=  N o  R a n d o m i s a t i o n
θT (predispositions in the choice of T) is left to 
v a ry   “na tu ra lly ” a ccording  to θT =p(AT | B) 

• R a n d o m  a l l o c a t i o n ,  b y  d o i n g  (θT = θ*
T ) :•Brea k s link  (r) a nd introdu ces conditiona l 

independencies:
B T Y FT |  T T Y

AT

θTAθT

FT

B R ( B)
( r )
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independencies:
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θTAθT
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B R ( B)
( r )

Figure 9: Augmented - Extended DN for random allocation

Experimental actions ‘do’ parameter nodes. Random allocation breaks the link
(r) and therefore two experimental structures arise from this choice. For each design
strategy d∗E ⊂ DE taken we can obtain an experimental DN from which independencies
can be easily read. These experimental DNs define the data structure or data pattern.

T YFT
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T YFT
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for No Random Allocation
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Figure 10: Experimental DN

Imagine we establish that the utilities associated with obtaining direct identifiability,
adjusted identifiability and unidentifiability are given by UD, UA and UU respectively.
Then for the pure random allocation vs observational case, the four possible combi-
nations of (A,R(B)) are shown in Table 3. Both experimental decisions that include
random allocation, AθT

= do(θT = θ∗T ), have the same utility associated in terms of
identifiability and are equivalent in these terms. However, performing an experiment
(randomising and/or recording) will typically involve an associated cost that is not in-
cluded here. The fact that UD 6= UA (and actually we consider UD > UA) is due
to the fact that the recording of B will increase the cost of the experiment and that
p(y | FT = t′, dE = 3) is sensitive to the specification of prior distributions of the data.
The choice of θ∗T could have an effect on the efficacy of the estimators as it could af-
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fect the balance of the experiment, but the actual value θ∗T does not affect the graph
independence structure and the identifiability status derived from it.

Experimental Decisions Design Consequence Utility(dE)

DE AθT
R(B) p(y | F T = t′; dE) U

1 random 1 direct identifiability UD

2 random 0 direct identifiability UD

3 ∅ 1 adjusted identifiability UA

4 ∅ 0 No identifiable UU

Table 3: Choice of experimental design for pure random example

A.3 An influence diagram for policy analysis

Figure 11 shows an influence diagram of the (simplified version of the) complete system
for policy analysis. As before, the policy variable is denoted by a decision node T
that has been augmented to make explicit policy intervention FT . When the policy is
defined through policy intervention decisions DT , it can contain a collection of actions
G that are triggered when intervention FT = do(T = t′) takes place. Actions G can be
contingent on a set of observed variables Z and are children nodes of T . The definition of
possible structures and correspondent formulae for the calculation of the overall effect
of intervention FT in Y through actions G have been discussed in Madrigal (2004).
The policy assignment mechanisms are contained in decision node A, which could be
influenced by some background variables B. Both, the policy assignment mechanisms,
A, and the recording mechanisms of B, R(B), are defined as part of the experimental
decisions DE .

G

Z

Y

B

A

TF o

Figure 11: Complete ID for policy analysis

This simple structure shows how the two sets of decisions (namely, policy intervention
decisionsDT and experimental decisionsDE) could be represented in the same graph. A
more realistic graph should include some possible links between the background variables
B and the variables Z in which actions G are contingent on, and possibly some type of
influence of Z in the policy assignment mechanism. It is important to use the policy
makers’ expertise and knowledge to be able to represent in the influence diagram a most
accurate version of the ‘real’ system with all possible influences. This will assist our
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causal inferences conclusions and help the choice of actions.
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