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A gamma model for DNA mixture analyses

R. G. Cowell,∗ S. L. Lauritzen† and J. Mortera‡

Abstract. We present a new methodology for analysing forensic identification
problems involving DNA mixture traces where several individuals may have con-
tributed to the trace. The model used for identification and separation of DNA
mixtures is based on a gamma distribution for peak area values. In this paper we
illustrate the gamma model and apply it on several real examples from forensic
casework.

Keywords: DNA mixture, forensic, identification, mixture separation, peak area.

1 Introduction

We present a methodology for analysing the important problem of identification and

separation or deconvolution of mixed DNA traces, where several individuals may have

contributed to a DNA sample. Here we illustrate its use for analysing DNA mixtures

arising in forensic casework. However, the problem of identifying components of mix-

tures has potential applications outside this area.

A mixed DNA profile is typically obtained from an unidentified biological stain or

other trace found at a scene of crime. This occurs in rape cases, in burglaries where

objects might have been handled by more than one individual, and also in a scuffle or

brawl.

The analysis of DNA mixtures, for calculating the likelihoods of all hypotheses in-

volving a specified set of known and unknown contributors to the mixture, based solely

on the qualitative information on which alleles were present in the mixture, is illustrated

in Evett et al. (1991) and Weir et al. (1997). In Mortera et al. (2003) Bayesian networks

have also been constructed to address some of the challenging problems that arise in

the interpretation of mixed trace evidence based on qualitative allele information.

However, the analysis becomes relatively complex when we want to use quantitative

peak area values, which contain important additional information about the composition

of the mixture. To handle such cases more sophisticated probabilistic modelling is

required. This paper is concerned with the quantitative modelling of the peak areas to

analyse DNA mixed profiles in order, for example, to infer the genotypes of individuals

contributing to the mixture.

A model of peak areas based on conditional Gaussian (CG) distributions was pre-

sented in Cowell et al. (2006a), and an implementation of this model in a prototype

software tool called MAIES is described in Cowell et al. (2006b). The CG model in
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these papers is a moment approximation to a more appropriate model based on gamma

distributions. Here we present details of the gamma which is also amenable to imple-

mentation and exact inference in Bayesian networks (Cowell et al. 2006c).

The outline of the paper is as follows. In § 2 we give some genetic background

material and in § 3 we illustrate the model for peak areas. In § 4 we illustrate the model

on real forensic casework examples and show how well it predicts the genotypes of the

individuals who have contributed to the mixture. Finally, in § 5 we discuss further work

required to bring the methodology to a point where it could be applied to the routine

analysis of casework.

2 Genetic background

We now introduce some basic genetic facts about DNA profiles, for a more detailed

explanation see Butler (2005). A gene is a particular sequence of the four bases, rep-

resented by the letters A, C, G and T. A specific position on a chromosome is called a

locus (hence there are two genes at any locus of a chromosome pair). A DNA profile
consists of measurements on a number of forensic markers, which are specially selected

loci on different chromosomes. Current technology uses around 12 – 20 short tandem
repeat (STR) markers. Each such marker has a finite number (up to around 20) of

possible values, or alleles, generally positive integers. For example, an allele value of 5

indicates that a certain word (e.g. CAGGTG) in the four letter alphabet is repeated

exactly 5 times in the DNA sequence at that locus. If a partial repeat sequence is

present then the size of the partial repeat is given in bases after a decimal point. For

example, the allele named 9.3 consists of 9 repeats and a partial repeat of 3 base pairs.

An individual’s DNA profile comprises a collection of genotypes, one for each marker.

Each genotype consists of an unordered pair of alleles, one inherited from the father and

one from the mother (though one cannot distinguish which is which). When both alleles

are identical the individual is homozygous at that marker, and only a single allele value

is observed; else the individual is heterozygous.

Databases have been gathered from which allele frequency distributions, for various

populations, can be estimated for each forensic marker. Here we refer to the gene

frequencies reported in Butler et al. (2003).

The results of a DNA analysis are usually represented as an electropherogram (EPG)

measuring responses in relative fluorescence units (RFU), see Figure 1. When we are

in the presence of a DNA trace where three or more alleles are present on some marker,

the trace must have been left by more than one individual. The allele values (repeat

numbers) correspond to peaks with a given height and area and are determined by

size values along the horizontal axis (see the third column in Figure 1). The band

intensity around each allele in the relative fluorescence units represented, for example,

through their peak areas (column 5 of Figure 1), contains important information about

the composition of the mixture. Peak area is measured automatically by the apparatus

essentially corresponding to the shaded areas in Figure 1.
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Figure 1: An electropherogram (EPG) of marker VWA from a mixture. Peaks represent

alleles at 15, 17 and 18 and the areas and height of the peaks express the quantities of

each. Since the peak around allelic position 17 is the highest this indicates that the 17

allele is likely to be a homozygote or a shared allele between two heterozygotes. This

image is supplied through the courtesy of LGC Limited, 2004.

3 The Model

3.1 Notation and setup

We consider I potential contributors to a DNA mixture, assume that M markers are

to be used in the analysis of the mixture, and that marker m has Am allelic types,

m = 1, . . . ,M .

The model is idealized in that it ignores complicating artifacts such as stutter, drop-

out alleles and so on. Now prior to amplification, and provided the mixture sample

has not been degraded to the point of breaking up tissue cells, the sample put into

the amplification apparatus will consist of an unknown number of cells from each of

the I contributors to the mixture. Then, with every cell containing exactly two alleles

from each marker, the fraction or proportion of cells θi, from individual i, is also a

common measure across the markers of the amount of DNA from individual i. Let

θ = (θi, i = 1, . . . , I) denote the vector of these proportions of DNA so that θi ≥ 0

and
∑

i θi = 1. If γ denotes the total amount of DNA in the sample, individual i then
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contributes γθi.

In an ideal amplification apparatus, the proportion of alleles of each allelic type

would be preserved without error. We model departures from this ideal through random

variation. The post-amplification proportions of alleles for each marker are represented

in the peak area information. For a specific marker m, we define the peak weight wa of

an allele a with repeat number λa by scaling the peak area as

wa = λaαa,

where αa is the peak area around allele a. Multiplying the area with the repeat number

is a crude way of correcting for the fact that alleles with a high repeat number tend to be

less amplified than alleles with a low repeat number. For issues concerning heterozygous

imbalance see Clayton and Buckleton (2004).

We further assume that

• The pre-amplification mixture proportion θ is constant across markers, for the

reasons outlined above;

• The peak weight for an allele, Wa is approximately proportional to the amount of

DNA of allelic type a;

• Wa is the sum of the allele a weights of all contributors.

3.2 The network model

The diagram in Figure 2 indicates the model structure for each marker in the case of

two contributors where four distinct alleles are present in the mixture. The central

layer of the diagram represents genotypes of the two contributors each of which could

originate from a specific individual, here named suspect and victim respectively, or

from an unknown contributor. The central layer also includes the joint genotype of

the two contributors. The genotypes of suspect, victim and unknown contributors are

represented in the top layer. The nodes in the bottom layer represent expected values

of each of four possible peak areas as determined by the genotypes of the contributors

and the fraction θ contributed by the the first of these. Similar diagrams represent

other markers and these all form elements in an object-oriented Bayesian network used

to perform an exact calculation of relevant quantities using efficient local computation

algorithms (Lauritzen and Spiegelhalter 1998), thus avoiding the use MCMC methods.

For details on this implementation see Cowell et al. (2006c).

3.3 The conditional Gamma Model

Let Wm
ia denote the contribution of individual i to the peak weight at allele a of marker

m, and let nmia denote the number of alleles of type a possessed by individual i. The key

distributional premise of our model is to assume that

Wm
ia ∼ Γ(ρmγθin

m
ia, ηm) (1)
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Figure 2: Network model for a specific marker describing a mixture with two contribu-

tors.

where Γ(α, β) denotes the gamma distribution with density

f(w) =
βα

Γ(α)
wα−1e−βw,

ρm is an amplification factor, and ηm a scale parameter.

The individual contributions Wm
ia are unobservable, whereas the measurement pro-

cess yields observations of the total weights Wm
+a, being the sum of the corresponding

weights for the contributors

Wm
+a =

∑

i

Wm
ia ∼ Γ

(
ρm
∑

i

γθin
m
ia, ηm

)
, m = 1, . . . ,M ; a = 1, . . . , Am. (2)

We further introduce the weighted allele number

Bma =
∑

i

γθin
m
ia,

which has the property that

B+ =
∑

a

Bma =
∑

a

∑

i

γθin
m
ia =

∑

i

γθi

(
∑

a

nmia

)
=
∑

i

2γθi = 2γ

is twice the total amount of DNA and is independent of m. Letting

µma =
Bma
B+

=

∑
i θin

m
ia

2

we have

Wm
+a ∼ Γ(2ρmµ

m
a γ, ηm), (3)



338 DNA mixture analyses

and

Wm
++ =

∑

a

Wm
+a ∼ Γ(2ρmγ, ηm), (4)

the latter being independent of µm = (µma , a = 1, . . . , Am). To avoid arbitrariness in

scaling, we consider the relative peak weight Rma , obtained by scaling with the total

peak weight as

Rma =
Wm

+a

Wm
++

,

so that the set of relative peak weights on each marker follows a Dirichlet distribution

that does not depend on the scale parameter ηm:

Rm = {Rma } ∼ Dir(2ρmµ
m
a γ), (5)

having

E[Rma ] = µma (6)

and

V [Rma ] =
µma (1 − µma )

2ρmγ + 1
= σ2

mµ
m
a (1 − µma ), (7)

where

σ2
m =

1

2ρmγ + 1
.

Conditional on µm, the total peak weight Wm
++ and relative peak weights are inde-

pendent and independent of everything else in the network model. Thus information

about mixture composition from the peak areas about µm is contained in the relative

weights Rma and the corresponding likelihood factorizes as

L(µ |W ) = f(W |µ) = L(µ |R,W++)

∝ L(µ |R) =
∏

a

ra
2ργµa−1

Γ(2ργµa)
=
∏

a

ra
µa( 1

σ2 −1)

Γ
(
µa(

1
σ2 − 1)

) , (8)

where we have suppressed the dependence on the marker m. This factorization now

enables efficient computation of quantities of interest using a probabilistic expert system

(Cowell et al. 2006c).

4 Application of our model to forensic casework

An analysis of a mixed trace can have different purposes, several of which can be relevant

simultaneously, making a unified approach particularly suitable. However, for the sake

of exposition we consider the issues separately. The first focus of our analysis will be

that of evidential calculation, detailed in § 4.1. Here a suspect with known genotype is

held and we want to determine the likelihood ratio for the hypothesis that the suspect

has contributed to the mixture vs. the hypothesis that the contributor is a randomly

chosen individual. We distinguish two cases: the other contributor could be (i) a victim
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with a known genotype; or (ii) a contaminator with an unknown genotype possibly

without a direct relation to the crime. This could be a laboratory contamination or any

other source of contamination from an unknown contributor.

Another use of our network is the separation of profiles, i.e. identifying the genotype

of each of the possibly unknown contributors to the mixture, the evidential calculation

playing a secondary role. This use is illustrated in § 4.2.

In all of the examples considered in this paper we shall use the value σ2
m = 0.01 for

all markers. This is the value used in Cowell et al. (2006a) and Cowell et al. (2006b)

for conditional Gaussian models, reflecting the variability in peak areas reported in the

literature (Gill et al. 1997).

Table 1: Evett data showing mixture composition, peak areas and relative weights from

a 10:1 mixture of two individuals, with suspect’s genotype specified.

Marker Alleles Peak area Relative weight Suspect

D8 10 6416 0.4347 10
11 383 0.0285
14 5659 0.5368 14

D18 13 38985 0.8871 13
16 1914 0.0536
17 1991 0.0592

D21 59 1226 0.0525
65 1434 0.0676
67 8816 0.4284 67
70 8894 0.4515 70

FGA 21 16099 0.5699 21
22 10538 0.3908 22
23 1014 0.0393

THO1 8 17441 0.4015 8
9.3 22368 0.5985 9.3

vWA 16 4669 0.4170 16
17 931 0.0884
18 4724 0.4747 18
19 188 0.0199

4.1 Evidential calculations

This section illustrates how to calculate the weight of the evidence—in the form of a

likelihood ratio, LR = Pr(E |H0)/Pr(E |H1)—for a given suspect to have contributed

to a trace under different circumstances.

The evidence E , could consist of DNA profiles extracted from a suspect, s, a victim,
v, and the mixed trace. In this case we compute the likelihood ratio in favour of the

hypothesis that the victim and suspect contributed to the mixture: H0 : v&s, vs. the
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hypothesis that the victim and an unknown individual, u1 contributed to the mixture:

H1 : v&u1. A variant has an unknown contaminator, u2 instead of a victim, in which

case the hypotheses are H0 : u2&s versus H1 : u1&u2.

Our example is taken from Evett et al. (1998) and has only information of the geno-

type from one potential contributor, here named the suspect, whereas the other unknown

contributor is termed contaminator. The data refers to a 10:1 mixture of two individ-

uals. The data is displayed in Table 1 and is henceforth referred to as the Evett data.

Table 2 displays the logarithm of this likelihood ratio together with the corresponding

ratio when peak weights are ignored, and the ratios when the mixture proportion θ is

assumed known at given values.

Table 2: Logarithm of the likelihood ratios in favour of H0 : u2&s vs. H1 : u1&u2 for

the Evett data.

For fixed θ =
Alleles Areas 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

log10 LR 4.40 8.23 -299.23 -222.68 -145.75 -68.78 5.06 8.26 8.52 8.53 8.53

Note that the strengthening of evidence against the suspect is more dramatic when

peak area information is used: the logarithm of the likelihood ratio changes from 4.4

to 8.23, corresponding to an additional factor around 6000. Also the likelihood ratio is

essentially constant over a region which completely covers the posterior plausible range

0.85 < θ < 0.95.

The posterior distribution of the mixture proportion θ is displayed in Figure 3. The

maximum occurs around the value 0.90, which is a little off the true 10:1 mixture

proportion.

4.2 Separation calculations

Deconvolution of mixtures or separating a mixed DNA profile into its components

has been studied by Perlin and Szabady (2001); Wang et al. (2002); Bill et al. (2005),

among others. A mixed DNA profile has been collected and the genotypes of one or

more unknown individuals who have contributed to the mixture are desired, for example

with the purpose of searching for a potential perpetrator among an existing database

of DNA profiles.

For a two-person mixture, the easiest case to consider is clearly that of separation

of a single unknown profile, i.e. when the genotype of one of the contributors to the

mixture is known. The case when both contributors are unknown is more difficult. In

the latter situation this is only possible to a reasonable accuracy when the contributions

to the DNA mixture have taken place in quite different proportions.

We concentrate on the problem of separating a mixture into two components, using

peak area and allele repeat number information but no information regarding the two

contributors to the mixture. We begin by using the Evett data again, but this time ig-
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Figure 3: Posterior distribution of the mixture proportion for the Evett data using the

suspect’s genotype.

noring the information on the suspect. The predicted genotypes of the two contributors

are shown in Table 3, with the suspect’s profile being predicted correctly.

Table 3: Predicted genotypes of both contributors for Evett data, with suspect (p1)

correct on every marker. The number in brackets is the product of individual marker

probabilities.

Marker Genotype p1 Genotype p2 Probability

D8 10 14 11 14 0.8693
D18 13 13 16 17 1
D21 67 70 59 65 1
FGA 21 22 21 23 0.8819
THO1 8 9.3 9.3 9.3 0.8640
vWA 16 18 17 19 1

joint 0.6720 (0.6705)

Our next example is taken from Appendix B of Clayton et al. (1998) and illustrates

use of the amelogenin marker in the analysis of DNA mixtures when the individual

contributors are of opposite sex. Peak area analysis of the amelogenin marker in DNA

indicated an approximate 2:1 ratio for the amount of female to male DNA contributing to

the mixture. Peak area information was available on six other markers, the information

is shown in Table 4; we shall refer to this as the Clayton data.
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Table 4: Clayton data showing mixture composition, peak areas and relative weights

together with the DNA profiles of both victim and suspect. For the marker D21 the

allele designation in brackets is as given in Clayton et al. (1998) using the Urquhart et
al. (1994) labelling convention.

Marker Alleles Peak area Relative weight Suspect Victim

Amelogenin X 1277 0.8298 X XX
Y 262 0.1702 Y

D8 13 3234 0.6372 13
14 752 0.1596 14
15 894 0.2032 15

D18 14 1339 0.1462 14
15 1465 0.1714 15
16 2895 0.3612 16
18 2288 0.3212 18

D21 28 (61) 373 0.1719 28
30 (65) 590 0.2913 30

32.2 (70) 615 0.3259 32.2
36 (77) 356 0.2109 36

FGA 22 534 0.1547 22
23 2792 0.8453 23 23

THO 5 5735 0.2756 5
7 10769 0.7244 7 7

vWA 15 1247 0.1633 15
16 1193 0.1667 16
17 2279 0.3383 17
19 2000 0.3318 19

Table 5: Predicted genotypes of both contributors for Clayton data, with victim (p1)

and male suspect (p2) correct on every marker. The number in brackets is the product

of individual marker probabilities.

Marker Genotype p1 Genotype p2 Probability

Amelogenin X X X Y 0.9979
D8 13 13 14 15 0.9661
D18 16 18 14 15 0.9996
D21 30 32.2 28 36 0.9844
FGA 23 23 22 23 0.9994
THO 5 7 7 7 0.9019
vWA 17 19 15 16 0.9995

joint 0.8797 (0.8785)
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In Table 5 we show the results of separating the mixture using peak area information

only, without using information on either the suspect or victim. All markers are correctly

identified. Figure 4 shows the posterior distribution of the mixture proportion; the peak

at around 0.65 corresponds to a mixture ratio of 1.86:1, in line with the approximate

2:1 estimated in Clayton et al. (1998).

Figure 4: Posterior distribution of mixture proportion from Clayton data using no

genotypic information.

Our final example uses data from Perlin and Szabady (2001), henceforth referred to

as the Perlin data, displayed in Table 6. Ignoring information of the known contributors

to the mixture, we obtain the posterior distribution for θ shown in Figure 5, with the

mode at 0.69 very close to the value reported of 0.7.

The predicted genotypes of the two contributors are shown in Table 7. There is

a genotype classification error in marker vWA, however the low marginal predictive

probability for the genotype on this marker would indicate that the classification is not

reliable; to a lesser extent this is also true for marker D19. The correct allelic combina-

tion is the second most probable genotype combination with a posterior probability of

0.3040, which is close to the probability of the most likely combination, 0.3602.
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Table 6: Perlin data showing mixture composition, peak areas, relative weights, sus-

pect’s and victim’s genotypes from a 7:3 mixture of two individuals.

Marker Alleles Peak area Relative Weight Suspect Victim

D2 16 0.3190 0.1339 16
18 0.6339 0.2992 18
20 0.3713 0.1947 20
21 0.6758 0.3722 21

D3 14 1.0365 0.5010 14 14
15 0.9635 0.4990 15 15

D8 9 0.7279 0.2832 9
12 0.2749 0.1426 12
13 0.6813 0.3829 13
14 0.3160 0.1913 14

D16 11 1.4452 0.6801 11
13 0.2889 0.1607 13
14 0.2660 0.1593 14

D18 12 0.3443 0.1504 12
13 0.6952 0.3290 13
14 0.6755 0.3443 14
17 0.2850 0.1764 17

D19 12.2 0.6991 0.3109 12.2
14 0.6060 0.3092 14
15 0.6949 0.3799 15

D21 27 0.2787 0.1289 27
29 0.7876 0.3913 29
30 0.9337 0.4798 30 30

FGA 19 1.0580 0.4621 19 19
24 0.2830 0.1561 24

25.2 0.6589 0.3817 25.2

THO1 6 0.3178 0.1268 6
7 1.0074 0.4691 7 7
9 0.6749 0.4041 9

vWA 17 1.4755 0.7265 17
18 0.5245 0.2735 18
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Figure 5: Posterior distribution of mixture proportion from Perlin data using no geno-

typic information.

Table 7: Predicted genotypes of both contributors for Perlin data. The number in

brackets is the product of individual marker probabilities. There is a classification error

in marker vWA (italicized).

Marker Genotype p1 Genotype p2 Probability

D2 18 21 16 20 0.9995
D3 14 15 14 15 0.9898
D8 9 13 12 14 0.9990
D16 11 11 13 14 0.9998
D18 13 14 12 17 1
D19 12.2 15 14 14 0.7750
D21 29 30 27 30 0.9688
FGA 19 25.2 19 24 0.9970
THO1 7 9 6 7 0.9297
vWA 17 18 17 17 0.5378

joint 0.3602 (0.3697)
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5 Discussion

In the previous sections we have demonstrated how a probabilistic expert system based

on a gamma model for the peak areas can be used for analysing DNA mixtures using

peak area information, yielding a coherent way of predicting genotypes of unknown

contributors and assessing evidence for particular individuals having contributed to the

mixture. The gamma model appears to perform well, as can be seen in the examples

presented in § 4.1 and § 4.2. The model developed by Cowell et al. (2006a) based on

conditional Gaussian distributions gives similar results to those obtained here and this

approximative model thus seems satisfactory to use in such relatively simple situations.

However, the Gaussian model has some logical difficulties, for example associated with

the fact that the relative peak areas necessarily vary in the unit interval and in general

may be difficult to approximate with normal distributions. The gamma model we have

described does not need any additional ad hoc approximations and deals well both with

additive composition of peak areas and renormalization. This could be of particular

importance when the network model is elaborated to include other artifacts such as

silent alleles, dropout and stutter phenomena.

There are further issues which need to be considered which we highlight here. As was

the case for the Gaussian model, the variance factors may depend on the marker and on

the amount of DNA analysed, but for simplicity we used marker independent values in

our analyses. Our model is robust to small changes in these parameter estimates. Our

model shows these variance factors to depend critically on the total amount of DNA

available for analysis, and as this necessarily is varying from case to case, a calibration

study should be performed to take this properly into account. However, we find it

comforting that the system itself would warn against trusting an uncertain prediction,

by yielding an associated low classification probability, as shown for the marker vWA

in Table 7.

Methods for diagnostic checking and validation of the model should be developed

based upon comparing observed weights to those predicted when genotypes are assumed

correct. Such methods could also be useful for calibrating the variance parameter σ2.

Cowell et al. (2006a) use a model which also includes measurement error. This is par-

ticularly simple to incorporate in the conditional Gaussian model, but appears to have

only a minor influence on the results.

We also need to explore how to extend the model to handle Y-chromosome and

mitochondrial DNA haplotype data. As mentioned earlier, we emphasize that for the

moment we have not dealt with incorporating artifacts such as stutter, pull-up, allelic

dropout, etc., but we hope to pursue these and other aspects in the future. It may

be that in incorporating such artifacts our networks will become too complex for ex-

act inference based on evidence propagation in Bayesian networks, and a Monte-Carlo

simulation approach may be required.

In a general review of the analysis of DNA evidence, Foreman et al. (2003) in-

clude several applications of PES and emphasize their potential by predicting that this

methodology “will offer solutions to DNA mixtures and many more complex problems
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in the future”. We hope that the models presented in this paper shall indeed be part

of the solutions anticipated by Foreman et al.
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