文章编号:0253-9950(2008)04-0227-05

侧线反馈对 H₂/HD/D₂ 低温精馏分离的影响

夏修龙,任兴碧,傅中华

中国工程物理研究院核物理与化学研究所,四川 绵阳 621900

摘要:为研究带侧线反馈的低温精馏氢同位素分离规律性,建立了带侧线反馈的低温精馏氢同位素分离计算方法,并以 $H_2/HD/D_2$ 体系进行了计算分析。计算结果表明,侧线反馈对分离性能影响显著,再沸器中以 D_2 为 主,氘丰度可达到 0.90,而无侧线反馈情况下,再沸器中以 HD 为主,氘丰度不超过 0.50;有侧线反馈条件下,系 统运行约 40 h HD 向 D_2 的转化达到峰值,而在无侧线情况下,HD 浓缩在 40 h 已达到饱和;当侧线采出比为 1 时,脱氘率最高。

关键词:氢同位素分离;低温精馏;侧线反馈 中图分类号:O643.14 文献标志码:A

Sidestream Effect on Separation of $H_2/HD/D_2$ by Cryogenic Distillation

XIA Xiu-long, REN Xing-bi, FU Zhong-hua

China Academy of Engineering Physics, P. O. Box 919(214), Mianyang 621900, China

Abstract: A computational model was constructed to study the separation of hydrogen isotopes by cryogenic distillation with sidestream feedback and a computational analysis was made for $H_2/HD/D_2$ system. The results show a remarkable influence of sidestream feedback on separation performance. D_2 is dominant in reboiler and deuterium abundance may reach 0. 90 with sidestream feedback while HD is dominant in reboiler and deuterium abundance can not exceed 0. 50 without sidestream feedback. A peak of transformation of HD to D_2 appears after about 40 h with sidestream while enrichment of HD is saturated without sidestream at the same time. The efficiency of deuterium stripping is best when a sidestream ratio is 1.

Key words: hydrogen isotopes separation; cryogenic distillation; sidestream feedback

在 $20 \sim 25$ K 温度下,根据氢同位素的 6 种分 子(H₂,HD,D₂,HT,DT,T₂)沸点存在微小差 异的特性,可以选择低温精馏工艺将其分离。低 温精馏具有处理量大、分离因子高的独特优势,是 工业规模氢同位素分离的首选工艺,可以应用于 重水生产、堆内重水除氚和升级、聚变堆氘氚燃料 循环等领域。从上世纪五六十年代到八十年代, 苏联、法国、德国先后建起了基于低温精馏工艺的 重水生产厂,气体处理量达到 4 000~5 000 m³/ $h^{[1]};$ 加拿大建成的基于低温精馏工艺的重水除 氚厂 DTRF 达到 360 kg/h,年回收氚达 10^{18} Bq 量级^[2];低温精馏在聚变堆中的氘氚燃料循环中

收稿日期:2007-11-16;修订日期:2008-07-12

基金项目:中国工程物理研究院科技发展基金资助项目(2007B02005)

作者简介:夏修龙(1975—),男,山东青岛人,硕士,助理研究员,从事氚工艺研究

也是不可缺少的单元,美国 LANL 早在上世纪七 十年代末就启动了针对氢同位素分离的 TSTA 项目,80 年代进行了 10¹⁶ Bq 规模的综合试验^[3]; 美国 MOUND 的 Grand Plan 将氚的生产与氚废 物的处理集中设计,氚的纯度达到 95%,该系统 核心是一套三根柱的低温精馏系统^[4-5]。氢同位 素分离涉及的体系复杂,往往通过多柱级联的方 式,各柱之间相互影响和制约,不可能对所有因素 逐一研究,因此理论方面也开展了大量的计算模 拟工作,日本、加拿大等均开发了各自的软件^[6-7], 用于指导低温精馏系统的设计和运行。

在氢同位素的 6 种分子中,有 3 种形式的分 子 HD, HT, DT 必须通过裂解,才能达到彻底 将 H, D, T 分离的目的。所以一般的精馏系统 都带有为数不等的岐化器,例如,在 TSTA 的 4 根精馏柱有 2 个岐化器^[8],JET 的 CD 系统由 3 根柱和 2 个岐化器组成^[9]。本工作拟建立有侧线 歧化的精馏分离模型,通过与无侧线情况下进行 比较,揭示侧线对分离性能影响的内在规律,用于 指导带侧线反馈分离实验的操作运行模式。

1 计算模型

精馏系统示意图示于图 1。由图 1 可知,低 温精馏氢同位素分离系统由顶端的冷凝器、底端 的再沸器、精馏柱和歧化反应器组成。混合的组 分在柱上某一位置进入后,由于不同组分的饱和 蒸汽压不同,从而造成在气、液两相中的分配不 同,达到分离的目的。歧化反应器内装有 Pt 或 Pd 催化剂,常温下可以将 HD, HT, DT 裂解,返 回精馏柱后进一步分离,达到很高的同位素纯度。 在 300 K,下面反应的平衡常数 K(HD)为 3.26。

 $H_2 + D_2 = 2 H D_{\circ}$

可以用塔板理论对精馏过程进行描述,对于 精馏柱上的任意一块塔板 *j*,其液相中某一组分 浓度 *x_i*, 随时间的变化用下式描述:

$$\frac{\mathrm{d}x_{i,\,j}}{\mathrm{d}t} = (V_{j+1}x_{i,\,j+1} + L_{j-1}x_{i,\,j-1} - V_jK_{i,\,j}x_{i,\,j} - V_jK_{j,\,j}x_{j,\,j})$$

图 1 精馏系统示意图

Fig. 1 Scheme of distillation system

 $L_{j}x_{i,j} + L_{j,\{x_{j,\{f\}}} - V_{j,\text{out}}K_{i,j}x_{i,j})/H_{L,j}$ 。(1) 式中:f,进料液体下标;L,液体流量,mol/s;V, 气体流量,mol/s; $L_{j,\{f\}}$,进料液体流量,mol/s; $V_{j,\text{out}}$,采出气体流量,mol/s; $x_{i,j}$,液相浓度; $K_{i,j}$,平衡常数; $H_{L,j}$, j板滞液量,mol; t,时 间,s。

在某一个计算步长内,设从采出板进入歧化 器的 $H_2/HD/D_2$ 气体组成为 $x_{1,0}, x_{2,0}, x_{3,0}$,经 过歧化裂解器后气体组成为 x_1, x_2, x_3 ,在达到 平衡后,满足下面条件:

$$x_1 + x_2 + x_3 = 1$$
.
 $K (HD) = \frac{x_2^2}{x_1 \times x_3}$. (2)

 $x_{2,0} - x_2 = 2 \times (x_1 - x_{1,0})$

3 个等式分别是:气体组成的归一化条件,即 3 个 组分的摩尔分数之和为 1;反应平衡条件;最后 1 个条件公式右边有 1 个因子 2,这是因为 2 个 HD 转化成 1 个 H₂ 和 1 个 D₂。由于 $x_{1,0}$, $x_{2,0}$, $x_{3,0}$ 和 K (HD)已知,可以利用上述 3 个关系式求出 3 个未知数 x_1 , x_2 , x_3 。

进料气体中 $H_2/HD/D_2$ 的摩尔分数分别为 0.969 9,0.030 0,0.000 1,计算中采用的系统运 行参数列入表 1。温度的计算可采用泡点法^[10], 有侧线反馈的低温精馏分离计算流程示于图 2。

表 1 系统运行参数

Table 1 Operating parameters o	f	distillation system
--------------------------------	---	---------------------

	p/Pa	总板数	进料板	侧线采出板	再入板	回流比	流量(Flow rate)/
		(Total stages)	(Feed stage)	(Extraction stage)	(Re-feed stage)	(Reflux ratio)	$(mol \cdot s^{-1})$
_	101 325	40	30	35	32	3	0.001

图 2 计算流程图 Fig. 2 Scheme of computing process

2 结果和讨论

2.1 动态行为

利用前面建立的理论模型,编制了相关的计 算程序,以 H₂/HD/D₂ 3 组分体系进行了计算, 计算步长为 10 s,系统运行时间 100 h。再沸器和 冷凝器中各组分摩尔分数(*x*)的变化示于图 3。 由图 3 可知,再沸器中 H₂ 摩尔分数随时间逐渐 降低,D₂ 摩尔分数在初始 20 h 内变化不大,随后 以较快速率逐渐升高。D₂ 的增长由 2 部分组成, 一个是原料气中 D₂ 的富集,另一部分是由 HD 裂解而来,因为原料气中 HD 摩尔分数比 D₂ 摩 尔分数高 2 个数量级,因此由 HD 裂解部分对 D₂ 增长贡献占主导地位。HD 摩尔分数的变化受 2 个因素制约,一个是原料气中 HD 在再沸器中富 集引起的增加,另一个是 HD 发生裂解引起的降 低,在前期以第一个效应为主,在后期 HD 累积到 一定程度后以第二个效应为主,因此 HD 摩尔分 数经历了先升后降的过程。再沸器中 D₂ 和 HD 摩尔分数分别为 0.80 和 0.20,由于 HD 中只有 一个 D 原子,所以最后再沸器中氘丰度约为 0.90,在冷凝器中,H₂ 为主要组分。

为从另一个角度揭示侧线反馈对分离性能的 影响,进一步计算了无侧线反馈情况下系统的分 离行为,再沸器和冷凝器中各组分摩尔分数的变 化示于图 4。由图 4 与图 3 比较可见,2 种分离模 式分离效果差别明显。无侧线反馈情况下,D₂ 摩 尔分数没有明显的增长,在这种模式下,D₂ 仅来 源于料气中的 D₂,因此增长极为缓慢;HD 摩尔 分数线性增长,在 40 h 已达到饱和,不再随时间 变化;与之相适应,H₂ 摩尔分数下降,再沸器中 D₂ 很少,最后再沸器中几乎全部为 HD,氘丰度 不超过 0.50,因此达不到彻底分离 H 和 D 的目 的。2 种模式下,冷凝器中 HD 和 D₂ 摩尔分数随 时间均会增长,引起脱氘率下降。无侧线在 40 h 时的脱氘率急剧下降,而有侧线到 80 h 才开始下 降,因此对于系统操作模式选择具有重要意义。

2.2 浓度和温度分布

在精馏柱上各组分的摩尔分数空间分布和不

同时刻的温度分布示于图 5。由图 5(a)可知,在 精馏柱上,H₂ 摩尔分数从顶端到底端逐渐降低, 而 D₂ 摩尔分数则逐渐升高,在进料板 30 处,HD 摩尔分数有一个拐点。由图 5(b)可知,在精馏柱 上,从顶端到底端的温度是逐渐升高的,而且,随 时间的推移精馏柱温度整体抬高,这是因为,高沸 点的组分 D₂ 摩尔分数随时间不断增长。

图 3 有侧线反馈情况下再沸器(a)和冷凝器(b)中各组分摩尔分数的变化

Fig. 3 Dynamic change of composition mole fraction in reboiler(a) and condenser(b) with feedback sidestream $1 - - H_2$, 2 - - HD, $3 - - D_2$

图 4 无侧线反馈情况下再沸器(a)和冷凝器(b)中各组分摩尔分数的变化

Fig. 4 Dynamic change of composition mole fraction in reboiler(a) and condenser(b) without feedback sidestream $1 - - H_2$, 2 - - HD, $3 - - D_2$

2.3 侧线流量的影响

实际上,侧线采出的流量、位置和再入精馏柱 位置等因素也会对分离性能产生一定的影响,进 一步计算了侧线流量对系统分离性能的影响。定 义采出比参数为r,计算如下式:

$$r = \frac{F_{\rm e}}{F_{\rm f}} \,. \tag{3}$$

式中, F_{e} ,侧线采出流量,mol/s; F_{f} ,原料气进料流量,mol/s。

脱氘率(Y)随侧线采出比(r)的变化示于图 6,由图 6 可知,在 r=1 时,系统脱氘率最高可达 0.953,以此为依据操作时选取合适的侧线采出 流量。

图 6 脱氘率(Y)随侧线采出比(r)的变化 Fig. 6 Change of deuterium stripping efficiency (Y) with r

3 结 论

建立了带有侧线反馈的低温精馏氢同位素分 离模型,以 H₂/HD/D₂ 体系计算了影响分离性能 的各种参数,并与无侧线情况进行了比较。结果 表明,2 种分离模式存在显著差异:

(1) 有侧线反馈情况下,再沸器中以 D₂ 为
 主, 氘丰度可达到 0.90, 而无侧线反馈情况下, 再
 沸器中以 HD 为主, 氘丰度不超过 0.50;

(2) 有侧线反馈条件下,系统运行 40 h 左右
 HD向 D₂ 转化达到峰值,而在无侧线情况下,HD
 浓缩在 40 h 已达到饱和;

(3) 侧线采出比为1时,脱氘率最高。

参考文献:

- [1] 杨国华,曾权兴.稳定同位素分离[M].北京:原子能 出版社,1985:263-278.
- [2] Davidson R B, Hatten P V, Schaub M, et al. Commisioning and First Operating Experience at Darlington Tritium Removal Facility[J]. Fusion Tech nol, 1988, 14(2, part2A): 472-479.
- Sherman R H, Bartlit J R. Operation of the TSTA Isotope-Separation System With 100 Gram Tritium
 [J]. Fusion Technol, 1988, 14: 1 273-1 276.
- [4] Embury M C, Watkins R A, Hinckley R, et al. A Low Temperature Distillation System for Separating Mixtures of Protium, Deuterium, and Tritium Isotopes[J]. Fusion Technol, 1985, 8: 2 168-2 174.
- [5] Embury M C, Erwin M G, Levan D A. Operating Experience With the Hydrogen Isotope Separation System at MOUND[J]. Fusion Technol, 1988, 14 (2, part2A): 431-437.
- [6] Kinoshita M. Studies on Cryogenic Distillation Columns for Hydrogen Isotope Separation: JAERI-M-84-160[R]. Japan: JAERI, 1984.
- [7] Busigin A, Sood S K. Flowsheet-a Computer Program for Simulating Hydrogen Separation Systems
 [J]. Fusion Technol, 1988, 14: 529-535.
- [8] Bartlit J R, Denton W H, Sherman R H. Hydrogen Isotope Distillation for the Tritium System Test Assembly: LA-UR-78-1325[R]. USA: LANL, 1978.
- [9] Haange R, Bell A. General Overview of the Active Gas Handling System at JET[J]. Fusion Technol, 1988, 14: 461-465.
- [10] 刘芙蓉,金鑫丽,王 黎,等.分离过程及系统模拟 [M].北京:科学出版社,2001:26-31.