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Abstract. We present a fast and secure mental poker protocol. It is twice
as fast as Barnett-Smart's and Castellà-Roca's protocols. This protocol is
provably secure under DDH assumption.

1. Introduction

1.1. Mental Poker. Mental poker is the study of protocols that allows players
to play fair poker games over the net without a trusted third party. It can be
considered as a kind of multiparty computation. In the study of mental poker,
there are very few assumptions on the behavior of adversaries. Adversaries are
typically allowed to have coalition of any size and can make active attacks.

The apparent application of mental poker is playing online poker game over the
Internet. However, it is not easy to design a fast enough protocol to satisfy prac-
tical needs. Despite many protocols have been proposed ([1, 2, 6, 8, 7, 13, 14,
16, 18, 19, 21, 23, 26, 27, 28]), online poker rooms are still based on client-server
architectures. Therefore, online players are assumed to trust the server. How-
ever, it is not uncommon for players to question the integrity of online games.
These players might be right. In fall 2007, there is a major employee cheat-
ing scandal occurred at a famous online poker room, Absolute Poker. In 2008,
similar scandal occurred at another famous online poker room, UltimateBet (see
http://en.wikipedia.org/wiki/Online_poker for detail and news sources).

Therefore, an e�cient decentralized poker protocol is desirable. We present a
fast protocol in this paper.

1.2. Previous Works. The �rst mental poker protocol was proposed by Shamir
et al in 1979 ([23]), which allows only two players to play. Unfortunately, it has
a security �aw (see [22, 18]). The �rst secure mental poker protocol is proposed
by Crépeau in 1987 ([14]). Since then, several other secure protocols have been
proposed([1, 2, 6, 8, 7, 13, 14, 16, 18, 19, 21, 23, 26, 27, 28], see [6] for a survey).

Barnett-Smart's protocol is proposed in 2003 ([2]). It can be implemented by
using either ElGamal or Paillier encryption scheme. However, Paillier encryption
based version depends on Boneh-Franklin's protocol ([3, 5]), which is only secure
under the assumption that adversaries are coalition of size at most N−1

2 , where N is
the number of players. In this paper, we consider active adversaries with coalition
of size up to N − 1. Therefore, in the rest of this paper, we consider only the
ElGamal based version.

Castellà-Roca's protocol is proposed in 2004 ([6]). It is similar to Barnett-Smart,
but faster than Barnett-Smart in shu�e.

Both Barnett-Smart's and Castellà-Roca's are secure and e�cient.
1
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1.3. Our Result. We present a fast and secure mental poker protocol. It shares
the similar basic structure with Barnett-Smart's and Castellà-Roca's protocol.

The di�erence between these protocols is the card encryption and decryption
procedure. The di�erence is crucial, therefore, the security proof of Barnett-Smart
and Castellà-Roca does not work on our protocol.

In Barnett-Smart and Castellà-Roca, every player uses two kinds of secrets to
shu�e a deck. Loosely speaking, the �rst secret is used to turn the cards face down
at the beginning of the game. When shu�ing, players mix up the cards and use the
second secret to hide the permutation of the cards. The second secret is di�erent
in each round of shu�e and never used again. Only the �rst secret is needed to
decrypt a card. Therefore, we can prove the security of the shu�e, card dealing and
opening separately. Then use composition theorem to show the security of whole
protocol.

In our protocol, however, every player uses only one secret to turn the cards
face down and mix them up at the same time. The same secret is also used for
decrypting cards.

Before further discussion, let us brie�y describe the idea of the card encryption
procedure in our protocol. Let G be a cyclic group and g ∈ G a generator. Each
card i is represented by an element ai ∈ G. These ai are chosen from G randomly
via a multiparty protocol, so that ai are indistinguishable from independent uniform
random variable (under DDH assumption, which we discuss below). A face-up deck
of M cards can be considered as the set {ai}i≤M . When a player, say Player j,

wishes to shu�e the deck {ai}, he privately chooses a secret xj and then encrypts
the deck as

{
a

xj

i

}
and the generator as gxj .

At some point of dealing a card, other players send an element b ∈ G to Player

j. Player j then send back bx−1
j to other players. The owner of the card then

use this information to decrypt the card. Obviously, if b can be freely chosen by
other players, they can easily break Player j's shu�e. Therefore, there must have
some restrictions on b in the card dealing protocol.So, there is no way to prove the
security of the shu�e alone without investigating the card dealing protocol.

On the other hand, each card encryption requires only one exponentiation in
our protocol. In Barnett-Smart and Castellà-Roca, each card encryption requires
two exponentiation. Therefore, our protocol is is roughly twice as faster. Detail
comparison can be found in Section 4.

The security of our protocol depends on a computation intractability assumption,
namely Decisional Di�e-Hellman (DDH) assumption. This assumption is widely
used in cryptography. There are many cryptographic primitives based on DDH
assumption. For example, ElGamal encryption scheme ([15]), Di�e-Hellman key
exchange, Cramer-Shoup cryptosystem ([11]). The security of Barnett-Smart and
Castellà-Roca is also depends on DDH assumption.

Let Γ be a family of cyclic groups. DDH assumption (for Γ) states that, for any
generator g ∈ G ∈ Γ, the following two distributions

•
(
g, ga, gb, gab

)
, where a, b are independent uniformly random;

•
(
g, ga, gb, gc

)
, where a, b, c are independent uniformly random;

are indistinguishable.
DDH assumption is believed to be true for some families of groups. The typical

example is the group of quadratic residues modulo a safe prime (i.e., prime of the
form 2p + 1 where p is a prime). It is also believe to hold on a prime-order elliptic
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curve E over the �eld GF (p), where p is prime and E has large embedding degree.
More detail can refer to [4].

It is well known that DDH assumption implies that the following two distribu-
tions

• (a0, a1, a2, · · · , aM , ax
0 , ax

1 , · · · , ax
M ) where ai, x are uniformly random;

• (a0, a1, a2, · · · , aM , b0, b1, · · · , bM ) where ai, bi are uniformly random;

are indistinguishable.
This is because for any given a, b, c, d ∈ G, we can generate ai = aticsi , bi = btidsi

for random si, ti. Observe that logai
bi = loga b for all i ≤ M i� logc d = loga b

(except some negligible case). Thus, if we can answer whether logai
bi = loga b for

all i, then we can answer the DDH problem.
In other words, DDH assumption implies that the �shu�ed deck�, {ax

i } is in-
distinguishable from random variables {bi}. This evidence strongly suggests the
security of our protocol. However, as we discuss above, this result alone is not
enough to prove the security of whole protocol. The proof is given in Section 3.

2. Protocol Description

2.1. Overview. The basic structure and usage of our protocol is same as those of
Barnett-Smart and Castellà-Roca. Detail considerations and theoretical description
can be found in [2].

The poker protocol can be divided into four parts: Deck Preparation (Protocol
1), Shu�e (Protocol 3), Card Drawing (Protocol 5) and Card Opening (Protocol
6).

To play a card game, players �rst use Deck Preparation to prepare a deck of
cards. Players only need to prepare the deck once. After a deck being prepared,
players can shu�e the deck or draw cards from the deck many times.

Players use Shu�e to shu�e the deck. When dealing cards, players can draw
cards from the shu�ed deck using Card Drawing. By using Card Opening, a
player can show his hole cards to other players. Dealing a community card can be
simulated by Card Drawing and Card Opening.

2.2. Deck Preparation. Let us �x a family of cyclic groups Γ that satis�es DDH
assumption. We assume that there is a way to e�ciently generate a group G ∈ Γ
for arbitrary large order and the group operation of G can be computed e�ciently.
For example, DDH assumption is generally believed to be true for the group of
quadratic residues modulo a safe primes (a prime of the form 2p + 1 where p is a
prime). For more detail consideration on the e�ciency of G and Γ, please refer 4.1
of [12].

Let us �x a large prime n and a group G ∈ Γ of order n. Consider there are N
players playing with a deck of M cards. We name the cards in the deck as Card 1,
Card 2, . . . , Card M .

Protocol 1. Deck Preparation

(1) Players generate distinct generators ai ∈ G for every 0 ≤ i ≤ M via
some multiparty protocol, so that ai are indistinguishable from independent
uniform random variables (from the view of any proper subset of players).

(2) (ai)0≤i≤M = a0, a1, a2, . . . , aM is the prepared deck of M cards.
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(ai)0≤i≤M can be considered as the �face up� representation of the deck. a0 is
used as a �base� and for every i ≥ 1, Card i is represented by ai.

At step 1, players can choose any suitable protocol to generate ai. For example,
the following protocol is secure under DDH assumption.

Protocol 2. Generate a random element

(1) For j = 1, . . . , N , one by one, Player j does the following:
(a) randomly choose generators gj , hj ∈ G and randomly choose 0 < xj <

n..
(b) broadcast gj,g

xj

j , hj.

(2) For j = 1, . . . , N , one by one, Player j does the following:
(a) broadcast h

xj

j .

(b) use an auxiliary input zero-knowledge argument ([10, 2] for example)
to convince other players that loggj

g
xj

j = loghj
h

xj

j .

(3) The result element h =
∏

h
xj

j is indistinguishable from a uniform random
variable.

The result h is indistinguishable from an independent uniform random variable
if at least one player is honest.

2.3. Shu�e. Let (ai)0≤i≤M be a prepared deck of cards. To shu�e the deck, a

player �rst encrypts the deck as (ax
i )0≤i≤M with a secret x. The encrypted deck

(ax
i )0≤i≤M can be considered as a �face down� representation of the deck. Then the

player can mix the cards up, so that the shu�ed deck becomes

ax
0 , ax

π(1), a
x
π(2), . . . , a

x
π(M),

where π is a permutation. Conversely, given a properly shu�ed deck

(bi)0≤i≤M = b0, b1, b2, . . . , bM ,

we can recover x = loga0
b0 and π by comparing ax

i and bi (with unbounded compu-
tation power). That is, there is a unique face up deck corresponding to a properly
shu�ed deck. The player can use Protocol 4, which is a zero-knowledge proof, to
convince other players that the result of his shu�e is proper.

Following is the detail description of the Shu�e protocol.

Protocol 3. Shu�e

(1) Let B0 = (b0,i), where b0,i = ai.
(2) For j = 1, . . . , N , one by one, Player j does the following:

(a) randomly choose a secret integer 0 < xj < n;
(b) randomly choose a permutation πj of (0, 1, 2, . . . ,M), such that πj (0) =

0;
(c) compute Bj = (bj,i), where bj,i =

(
bj−1,π(i)

)xj
;

(d) broadcast Bj to other players;
(e) execute Protocol 4 with other players to prove his shu�e.

(3) B = BN = (bN,i)1≤i≤M is the shu�ed deck.

Player j use the following protocol to prove his shu�e to other players at step
2(e) of Protocol 3.

Protocol 4. Shu�e Veri�cation

(1) Player j randomly chooses integers 0 < y1, y2, · · · , yK < n.
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(2) Player j randomly chooses permutations π′1, π
′
2, · · · , π′K of (0, 1, 2, 3, . . . ,M).

(3) Player j computes Ck = (ck,i)0≤i≤M , where ck,i = byk

j,π′k(i) for k = 1, 2, . . . ,K.

(4) For each k = 1, 2, · · · ,K
(a) Player j broadcasts Ck to other players.
(b) Other players cooperatively generate a bit ek via some multiparty pro-

tocol, so that the of ek is indistinguishable from a random bit.
(c) Send ek to Player j.
(d) If ek = 0, Player j broadcasts yk, π′k and every player compute dk,i =(

bj,π′k(i)

)yk

for every i.

(e) If ek = 1, Player j broadcasts xkyk, π′kπj and every player compute

dk,i =
(
bj−1,π′kπj(i)

)xkyk

for every i.

(f) If dk,i 6= ck,i for any i, then Player j does not pass the veri�cation.
(5) Player j passes the shu�e veri�cation.

The same veri�cation scheme is also used in Barnett-Smart's and Castellà-Roca's
protocol. Shu�e Veri�cation is a zero-knowledge proof and if Player j does not
shu�e properly, then the probability of players accepting Player j's shu�e is at
most 2−K + ε, where ε is negligible.

2.4. Card Drawing and Opening. Fix an arbitrary e�cient auxiliary input zero-
knowledge argument of equality of discrete logarithms (see [10, 2] for example).
Player j0 can use the following protocol to draw a card from the shu�ed deck B.

Protocol 5. Card Drawing

(1) Player j0 picks a c0 ∈ B.
(2) For j = 1, 2, · · · , N , one by one, Player j does the followings:

(a) if j 6= j0, then compute cj = c
x−1

j

j−1;

(b) if j = j0, then compute cj = cj−1;
(c) broadcast cj;
(d) if j 6= j0, use the zero-knowledge argument to convince other players

that logcj
cj−1 = logbj−1,0

bj,0.

(3) Player j0 computes c = c
x−1

j0
N and �nds the i for which ai = c.

(4) Card i is the card Player j0 drew.

After Player j0 has drew a Card i, he can reveal the card to other players by the
following protocol.

Protocol 6. Card Opening
Player j0 claims that he has Card i and use the auxiliary input zero-knowledge

argument to show that logai
cN = logbj0−1,0

bj0 .

3. Security Analysis

3.1. Overview. Let us �rst consider an ideal model of card game, the physically
secure ideal card game, or ideal game in short.

In a physically secure ideal card game, the shu�e is done by a trusted third party
and no player can track the shu�e. No player can mark, steal, duplicate, or forge
cards. No player can peek any face down card other than his own cards. However,
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players can communicate to each other via reliable and safe private channels and
open channel.

Players, including malicious players, are modeled as auxiliary input polynomial
time Turing machines. The goal of a mental poker protocol is to allow players to
play a card game over the network resemble an ideal game. We use the terminology
�game history� to denote the complete information of the idea game that the mental
game tries to mimic. The game history can be considered as the �pure card game�
part of the transcript of a mental game.

To prove the security of our protocol, we show that cheaters can do no better in a
mental card game than in an ideal game. Let us explain what we mean by �better�.
Let A be an event of the card game, that is, A is an event that can be decided by
the game history alone. Denote by Prmental(A), Prideal (A) the probability of A in
a mental game, and an ideal game, respectively.

De�nition 1. Let Z be a group of players. Assume all other players are honest
and play the same way in the mental game as in the ideal game. Let A be an
arbitrary event of card game and C be the event that Z is caught on cheating
in the mental game. Say Z does no better in the mental game for event A if
for any polynomial time strategy S of the mental game for Z, we can e�ciently
derive an expected polynomial time strategy S′ of the ideal game for Z, so that
Prmental (A\C)− Prideal (A) < ε, where ε is negligible.

For convenience, we consider the event C in above de�nition as an event of
card game and Prideal (C) = 0. If all players play honestly, we should have
Prmental (A) = Prideal (A). A can be any event of the card game. However, we
are mostly interested in those can be e�ciently decided, i.e., can be decided by an
auxiliary input polynomial time machine and game history.

Note that S′ is expected polynomial time, not a polynomial time strategy like
S. This is a situation not unlike that of the de�nition of zero-knowledge. Since
the de�nition of zero-knowledge is generally accepted, this may not be a big issue.
However, one may still wish to have the same notion of e�ciency for both S and
S′. It is possible to allow both S and S′ being in a wider class of e�cient machine
(see [17, 20] or what we suggested in [25]).

We prove in Theorem 2 that if there is at least one honest player, then for
any event A that can be decided e�ciently, no cheater can do better in mental
games. Therefore, no player can increase his chance of winning a poker (or bridge,
blackjack) game in our protocol by cheating. No player can lose a mental game
more than he can in an ideal game. The information that a player learns in a
mental game does not help his future games more than what he can learn in an
ideal game.

Since players can private communication channels, there is no way to prevent
coalitions entirely. What a mental poker protocol can do is to �minimize the e�ect
of coalitions�, as stated in Crépeau's requirements ([13]). That is, having coalitions
should get no more advantage in a mental game than in an ideal game.

To simplify the proof of Theorem 2, we consider the worst scenario for the honest
player. We can assume that there are 3 players in the card game and Player 2 is the
only honest player, Bob. Player 1 and Player 3 are both played by the adversary,
Alice. It is easy to check that it is enough to prove the security for this setting.

In order to to simplify our proof, we introduce a sequence of games in Section
3.2. This a common technique to present an otherwise complicate security proof
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(see [24] for more information). Fix an event A of the card game. We de�ne a series
of games played by Alice and Bob, where the �rst game, Game 0, is the mental
game and last game, Game 8, is the ideal game. For every k, Alice wins Game k if
A occurs and she is not caught on cheating.

Fix a strategy S0 of Game 0 for Alice. We show in Theorem 2 that there is a
correspondence strategy Sk for Game k, such that Alice does no worse in Game k
then in Game k − 1.

3.2. Games. Let us �x a card game of 3 players. Fix an event A = A\C of the card
game that can be e�ciently decided, where C is the event Alice being caught on
cheating. Following games are played by the honest player Bob and the adversary
Alice. Since Bob is honest, he has a card game strategy that depends only on game
history and and other information he supposed to know in the ideal game, like his
hole cards. He use the same card game strategy to play all following games.

3.2.1. Game 0. Alice and Bob play the card game using our mental poker protocol.
Bob plays the card game as Player 2. Player 1 and Player 3 are played by Alice.
Bob follows the protocol properly but Alice may cheat. Alice wins Game 0 i� event
A occurs.

3.2.2. Game 1. Game 1 is similar to Game 0, but after step 2(e) of Shu�e (Protocol
3), Bob attempts to extract x′1 and x′3 from Alice, where x′j = logbj−1,0

bj,0. Note

that if Alice follows the Protocol 3 properly, then x′j = xj , for j = 1, 2, 3.
If Alice does not pass Shu�e Veri�cation (Protocol 4), then Bob wins.
Otherwise, Alice passes the Shu�e Veri�cation. Let (ek) be the bits generated

at step 4(b) of Shu�e Veri�cation. Bob then uses Alice as a blackbox to extract
x′j :

Protocol 7. Extract xj

For each k = 1, 2, . . . ,K,

(1) Rewinds Alice back to step 4(b) for k of Shu�e Veri�cation.
(2) Run step 4(b)-4(f) of Shu�e Veri�cation and let e′k be the random bit gen-

erated at step 4(b).
(3) If Alice does not passes the veri�cation at step 4(f) of Shu�e Veri�cation,

got to step 1.

If some e′k is di�erent from the ek, then Bob knows both yk and xjyk and he can
easily calculate x′j = xjyk/yk. Note that if Bob can extract x′j , then Bj is properly
shu�ed by 4(d)(e) of Protocol 4.

Let A1 be the event that Alice passes Shu�e Veri�cation but Bob can not extract
both x′1, x

′
3. Alice wins Game 1 i� event A\A1 occurs.

3.2.3. Game 2. Similar to Game 1, but Bob uses the knowledge of x1 = x′1 and
x3 = x′3 to detect cheating. That is, in addition to the zero-knowledge argument at
step 2(d) in Card Drawing (Protocol 5) and Card Opening (Protocol 6), Bob also
checks whether logcj

cj−1 = xj directly for j = 1, 3 if j 6= j0.
Let A2 be the event that Alice is caught on cheating by the additional cheating

detection. Alice wins Game 2 i� A\ (A1 ∪A2).
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3.2.4. Game 3. Same as Game 2, except that Bob uses a di�erent way to decrypt
cards at step 2(a) and 3 of Card Drawing (Protocol 5). Suppose c0 = bN,π3π2π1(i).
Bob �rst use the knowledge of x1, x3 to recover π1, π3 e�ciently.

If j0 6= 2, instead of computing c2 = c
x−1
2

1 , Bob compute c2 as{
ax1x3

i if j0 = 1
ax3

i if j0 = 3

at step 2(a) of Protocol 5.

If j0 = 2, instead of computing c = c
x−1
2

3 , Bob compute c = ai at step 3 of
Protocol 5.

Note that the value of c2 and c remain the same, Bob merely uses a di�erent
way to compute them. Alice wins Game 3 i� A\ (A1 ∪A2).

3.2.5. Game 4. Same as Game 3, except that

(1) At step 2(d) of Card Drawing (Protocol 5), Bob does not execute the zero-
knowledge argument to prove logc2

c1 = logb1,0
b2,0. Instead, Bob runs the

simulator for the zero-knowledge argument and generates a transcript that
is indistinguishable to the real transcript.

(2) Bob does not use Shu�e Veri�cation(Protocol 4) to prove his shu�e at
2(e) of Shu�e ) (Protocol 3). Instead, Bob uses the following simulator to
generate a transcript:

Protocol 8. Simulator for Shu�e Veri�cation
For each k = 1, 2, . . . ,K

(a) Choose a random bit e′, a random 0 < y < n and a random permuta-
tion π′

(b) If e′ = 0, compute (ci)0≤i≤M , where ci = by
j,π′(i).

(c) If e′ = 1, compute (ci)0≤i≤M , where ci = by
j−1,π′(i).

(d) Use Alice as a blackbox and run step 4(b) of Shu�e Veri�cation to
generate a random bit e by treating (ci)0≤i≤M as Ck.

(e) If e 6= e′, go to step (a).
(f) Write (ci)0≤i≤M , the transcript generated in step 2(d), e, y, π′ into

the transcript.

Alice wins Game 4 i� A\ (A1 ∪A2) occurs.

3.2.6. Game 5. Same as Game 4 except that Bob uses a di�erent way to generate
B2 = (b2,i)0≤i≤M in Shu�e (Step 2(a)-(c) of Protocol 3).

Bob does not do Step 2(a)-(c) of Protocol 3. Instead, recall that (ai)0≤i≤M is

the face up deck generated in Deck Preparation (Protocol 1). Bob generates a
random x and let fi = ax

i . He uses the knowledge of x1 to recover π1 and computes
b2,i = fπ2◦π1(i), where π2 is a random permutation that π2 (0) = 0.

3.2.7. Game 6. Same as Game 5, except that Bob generates uniformly random fi

and does not generate x. Alice wins Game 6 i� A\ (A1 ∪A2) occurs
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3.2.8. Game 7. Same as Game 6, except that Bob uses a di�erent way to encrypt
cards. Instead of computing b2,i = fπ2(i), Bob computes b2,i = fi. Bob still
generates π2 privately, which is used for card drawing (see the description of Game
3).

Put all modi�cation together, Alice and Bob play Game 7 as following:
Deck Preparation: Protocol 1.
Shu�e:

Protocol 9. Game 7 Shu�e

(1) Let B0 = (b0,i), where b0,i = ai.
(2) Run step 2 of Shu�e (Protocol 3) to generate B1.
(3) Rewind the game to extract x1 from Alice (Protocol 7).
(4) Generate a random B2 = (b2,i)0≤i≤M .

(5) Simulate the Shu�e Veri�cation and generate an indistinguishable tran-
script (Protocol 8).

(6) Run step 2 of Shu�e (Protocol 3) to generate B3 from B2.
(7) Rewind the game to extract x3 from Alic (Protocol 7).
(8) Let B = (bN,i)1≤i≤M be the shu�ed deck.

Moreover, Bob also privately generates a permutation π2 such that π2 (0) = 0.

After the shu�e, Bob can recover π1, π3 by x1 and x3. Let π = π3π2π1. When
Alice and Bob run steps from the original protocols, Alice runs the steps the same
way as she would in Game 0.

Card Drawing:

Protocol 10. When Player j0 draws a face down card c0 = bi′ from a shu�ed deck
B.

(1) Bob computes i = π−1 (i′)
(2) If j0 6= 2 (when Alice draws the card):

(a) Run step 2(a)-(d) of Card Drawing (Protocol 5) to generate c1.
(b) Bob broadcasts

c2 =

{
ax1x3

i if j0 = 1
ax3

i if j0 = 3

and uses the simulator to generate a fake transcript of zero-knowledge
argument.

(c) Run step 2(a)-(d) of Card Drawing (Protocol 5) to generate c3.
(d) Alice can run step 3, 4 of Card Drawing (Protocol 5) to �nd out i.

(3) If j0 = 2 (when Bob draws the card):
(a) Run step 2 of Card Drawing (Protocol 5).
(b) Bob knows that the card he drew is Card i.

Card Opening:
Alice uses Card Opening (Protocol 6). Bob opens the card by showing i and

then use the simulator to generate a fake transcript of zero-knowledge argument.
Alice wins Game 7 i� A\ (A1 ∪A2) occurs.

3.2.9. Game 8. Alice and Bob play the card game using the following protocol.
Shu�e: Bob randomly choose a π.
Drawing: Player j0 picks a number i0 ≤ M . Bob sends π−1 (i0) to Player j0.
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Opening: When a player wish to open a face down card i0, Bob announces
π−1 (i0).

This is the idea game where Bob acts as a trusted party. Bob uses the same card
game strategy of Game 0 to play Game 8. Alice uses the partial information of π
that Bob sent her and the real game history of Game 8 to simulate a correspondent
Game 7. Then she copies her next move in the simulation to play Game 8. If Alice
is caught on cheating or A2∪A1 occurs in the simulated game, then Alice continues
to play Game 8 randomly.

Alice wins Game 8 i� event A occurs.

3.3. Security Proof.

Theorem 2. Assume K is bounded by a polynomial of n and 2−K is negligible,
where K = K (n) is the parameter in Shu�e Veri�cation (Protocol 4). Assume the
running time T of the card game is bounded by a polynomial of n and all players are
modeled as auxiliary input polynomial time Turing machine. If there is at least one
honest player, then cheaters can do no better in mental game than in ideal game
for any event of card game that can be e�ciently decided.

Proof. As discussed in Section 3.1, we �x a card game of 3 players. Alice plays
as Player 1 and Player 3. Bob plays as Player 2 honestly. Both Alice and Bob
are modeled as auxiliary input polynomial time Turing machines. Fix an event
A = A\C of the card game that can be e�ciently decided, where C is the event
Alice being caught on cheating.

Let Pk be the probability that Alice wins Game k. We need to show that
Pk ≤ Pk+1 + ε for k = 0, . . . , 7, where ε is a negligible function.

(|P0 − P1| < ε)
Game 1 and Game 0 are otherwise the same except A1 occurs. We have |P0 − P1| ≤

Pr (A1).
Recall that A1 is the event that Alice passes the Shu�e Veri�cation but Bob can

not extract both x′1, x
′
3.

Let Gt be the event that a Shu�e Veri�cation starts at time t (in Game 0) and
Alice, as a prover, passes the Shu�e Veri�cation.

Also let Et be the event that Gt occurs and Bob can not extract x′1 or x′3 for the
Shu�e Veri�cation starts at time t.

Note that there are at most T executions of Shu�e Veri�cation in a mental game,
so Pr (A1) ≤ ς · supt Pr (Et), where ς is the polynomial time bound of T . Therefore,
we only need to show that supt Pr (Et) is negligible. The following lemma implies
that supt Pr (Et) is negligible

Lemma. For every m, for large enough n, Pr (Et) < n−m for all t..

Proof. Fix an arbitrary m. Let E′
t,k be the event that a Shu�e Veri�cation starts

at time t and Alice, as a prover, passes the step 4(f) in Shu�e Veri�cation for k.
Assume Et occurs. Denote by st,k the transcript of Game 0 before step 4(b) for

k in the Shu�e Veri�cation. Let

S = {(zk) |Pr ((st,k) = (zk) |Gt) > 0} ,

the space of all possible transcripts.
Recall that Bob extracts x′j by repeatedly rewinding Alice until Alice passes the

step 4(f) again for every k.
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Since the bit generated in step 4(b) is indistinguishable from a random bit, we
have

Pr (e′k = ek|st,k = zk) ≤
1
2 + ε

Pr
(
E′

t,k|st,k = z
) ,

for all possible transcript (zk) ∈ S and some negligible ε. Note that the event
e′k = ek depends only on st,k.

Bob can extract x′j unless e′k = ek for all 1 ≤ k ≤ K. Therefore,

Pr (Et| (st,k) = (zk)) ≤
(

1
2 + ε

)K∏
k Pr

(
E′

t,k|st,k = zk

) .

Let ε =
(

1
2 + ε

)K
, which is negligible.

Let

S1 =

{
(zk) ∈ S|0 <

∏
k

Pr
(
E′

t,k|st,k = zk

)
< n2m · ε

}
,

S2 =

{
(zk) ∈ S|n2m · ε ≤

∏
k

Pr
(
E′

t,k|st,k = zk

)}
.

When (zk) ∈ S2,

Pr (Et| (st,k) = (zk)) ≤ ε

n2m · ε
= n−2m.

Let event Ft = Gt ∩ (st,k) ∈ S1 and F ′
t = Gt ∩ (st.k) ∈ S2. Note that Et only

depends on (st,k), not on Gt, so

Pr (Et| (st,k) = (zk) ∩Gt) = Pr (Et| (st,k) = (zk)) .

We have

Pr (Et|F ′
t ) =

∑
z∈S2

Pr (Et| (st,k) = (zk)) Pr ((st,k) = (zk) |F ′
t )

≤ n−2m.

On the other hand, For �x an arbitrary (zk) ∈ S1, since

Pr
(
E′

t,k ∩ st,k = zk

)
= Pr

(
E′

t,k|st,k = zk

)
Pr (st,k = zk)

and

Pr (st,k = zk) = Pr
(
st,k = zk|E′

t,k−1 ∩ st,k−1 = zk−1

)
Pr

(
E′

t,k−1 ∩ st,k−1 = zk−1

)
,

we have

Pr
(
E′

t,K ∩ st,K = zK |st,1 = z1

)
≤ n2mε

K∏
k=2

Pr
(
st,k = zk|E′

t,k−1 ∩ st,k−1 = zk−1

)
.

Observe that, for any zk−1,∑
z′k

Pr
(
st,k = z′k|E′

t,k−1 ∩ st,k−1 = zk−1

)
= 1.

So, let S0 = {(z′k) ∈ S|z′1 = z1}, we have∑
(z′k)∈S0

K∏
k=2

Pr
(
st,k = z′k|E′

t,k−1 ∩ st,k−1 = z′k−1

)
= 1.
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Therefore,

Pr
(
E′

t,K ∩ (st,k) ∈ S1 ∩ st,1 = z1

)
=

∑
(z′k)∈S0

Pr
(
E′

t,K ∩ st,K = z′K
)

≤ n2mε Pr (st,1 = z1) .

Since Gt = E′
t,K , we have Ft = E′

t,K ∩ (st,k) ∈ S1 and

Pr (Ft) =
∑

z1
Pr (Ft|st,1 = z1) Pr (st,1 = z1)

≤ n2mε
∑
z1

Pr (st,1 = z1)

≤ n2mε.

Thus,

Pr (Et|Gt) = Pr (Ft|Gt) Pr (Et|Ft) + Pr (F ′
t |Gt) Pr (Et|F ′

t )
≤ Pr (Ft) / Pr (Gt) + Pr (Et|F ′

t )
< n2mε/ Pr (Gt) + n−2m

and

Pr (Et) = Pr (Et|Gt) · Pr (Gt)
≤ n2mε + n−2m

< n−m

essentially. �

(|P2 − P1| = ε)
|P2 − P1| ≤ Pr (A2). Because of the soundness, Pr (A2) ≤ ε · ς, where ε is the

possibility that the cheating prover convinces the veri�er a false statement being
true in the zero-knowledge argument and ς is the polynomial bound of the running
time of Game 0. Thus, Pr (A2) is negligible.

(P2 = P3)
Bob uses a di�erent way to decrypt cards that does not a�ect the result. There-

fore, P2 = P3.
(|P3 − P4| = ε)
In Game 4, zero-knowledge arguments are replaced by simulations.
For the modi�cation described in (2) of Game 4, note that e′ is independent to

(ci). Thus, the distribution of the transcript generated by the simulator identical
to the real one. So, this modi�cation does not a�ect the game.

Therefore, we only need to consider the modi�cation in (1) of Game 4.
Let s be the transcript of Game 3 and s′ be the transcript of Game 4. Since the

running time T of Game 0 is bounded by a polynomial of n, the length of s and s′

is also bounded by a polynomial of n, say L0.
Fix an arbitrary auxiliary input expected polynomial time Turing machineα, we

shall show that

|Pr (α (s) = 1)− Pr (α (s′) = 1)|
is negligible.

Let t be a transcript of Game 3 or Game 4 and l ≤ L0. Denote by tl the shortest
initial segment of t, such that the sub-transcripts of the zero-knowledge argument
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or the simulation are not being truncated, and the length of tl is at least l. We call
tl a truncated transcript.

Given a truncated transcript tl, Alice and Bob can continue playing Game 4
and complete the transcript. Then, run α for the generated transcript. The whole
procedure can be viewed as an auxiliary input expected polynomial time algorithm
β. The expected running time of β is bounded by Tβ = T4 + Tα, where T4, Tα are
the time bound of Game 4 and α, respectively.

Fix a transcript tl and view it as auxiliary input of length at most L0. We have

|Pr (β (tl + u) = 1)− Pr (β (tl + u′) = 1)| < ε0

for a negligible function ε0, where u is the transcript generated by the zero-knowledge
argument and u′ is the transcript generated by simulation. By the following lemma,

|Pr (α (s) = 1)− Pr (α (s′) = 1)| ≤ Lε0.

Therefore, s and s′ are indistinguishable. In particular, |P3 − P4| is negligible.

Lemma.

|Pr (β (sl) = 1)− Pr (β (s′l) = 1)| < lε0.

In particular

|Pr (α (s) = 1)− Pr (α (s′) = 1)| ≤ Lε0.

Proof. We prove this by induction. The case l = 0 is clearly true. Suppose when
l ≤ l0,

|Pr (β (sl) = 1)− Pr (β (s′l) = 1)| < lε0.

Fix an arbitrary truncated transcript tl0 . Let u = u (tl0) be the random variable
so that tl0+1 = tl0 + u if we generate tl0+1 from t0 by running Game 3. Let
u′ = u′ (tl0) be the random variable so that tl0+1 = tl0 + u′ if we generate tl0+1

from t0 by running Game 4.
If u, u′ are the transcript of the zero-knowledge argument and the one generated

by simulation, then

|Pr (β (tl0 + u) = 1)− Pr (β (tl0 + u′) = 1)| < ε0.

Otherwise, the distributions of u and u′ are identical.
Thus, since sl0+1 = sl0 + u (sl0), we have

|Pr (β (sl0+1) = 1)− Pr (β (sl0 + u′ (sl0)) = 1)| < ε0.

For any truncated transcript t, observer that u′ (t) is what Game 4 would gen-
erate next after t, so β (t + u′ (t)) = β (t). Thus, by induction hypothesis, we have∣∣Pr (β (sl0 + u′ (sl0)) = 1)− Pr

(
β

(
s′l0+1

)
= 1

)∣∣
=

∣∣Pr (β (sl0) = 1)− Pr
(
β

(
s′l0

)
= 1

)∣∣
< l0ε0 .

Therefore, ∣∣Pr (β (sl0+1) = 1)− Pr
(
β

(
s′l0+1

)
= 1

)∣∣ < (l0 + 1) ε0.

�
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(P4 = P5)
Bob uses a di�erent way to generate B2 that does not a�ect the result. Therefore,

P4 = P5.
(|P5 − P6| = ε)
DDH assumption implies that the distribution of (fi)0≤i≤M in Game 5 and Game

6 are indistinguishable. Since the game is played e�ciently, |P5 − P6| = ε.
(P6 = P7)
Since (fi)i≤M is random, this is only a conceptional change to emphasize that π

is information theoretically secure. Clearly, P6 = P7.
(P7 ≤ P8 + ε)
The �rst di�erence between Game 7 and Game 8 is that (ai)i≤M in Game 7 is

generated by Deck Preparation (Protocol 1). Since, (ai)i≤M is indistinguishable to
random distribution from the Alice's point of view, this di�erence is negligible.

The second di�erence is that when Alice is caught on cheating or A1∪A2 occurred
in Game 7, then Alice plays randomly.

Since Alice loses Game 7 if A1 ∪A2, we have P7 ≤ P8 + ε. �

In some sense, the theorem states that under the game history of Game 8 and
Game 0 are indistinguishable unless the event C, Alice being caught on cheating ,
occurs. In particular, if Prmental (C) is negligible, then the game history of Game 8
and Game 0 are indistinguishable. Moreover, the transcript of Game 0 and Game
7 are also indistinguishable.

Sometimes, we may wish to study the utility function of cheaters.

Corollary 3. Let X be a bounded random variable that can be computed e�ciently
from the game history. Assume E [X|C] = 0 and X ≥ 0. Then we have E0 [X] ≤
E8 [X] + ε, where Ek [X] is the expectation of X for Game k.

Proof. Let m be an arbitrary integer and A be the event that i
nm < X ≤ i+1

nm ,
where i is considered as an auxiliary input. By Theorem 2, P0 < P8 + ε. Since we
may assume

i = arg max
j

∣∣∣∣Pr
(

j

nm
< X ≤ j + 1

nm

)
− Pr

(
j

nm
< X ≤ j + 1

nm

)∣∣∣∣ ,

we have

E0 [X] < E8 [X] + nmε + n−m < E8 [X] +
1
2
n−m

essentially. Therefore, E0 [X] ≤ E8 [X] + ε. �

4. Efficiency Analysis

4.1. Computational cost. In this section, we compare the computational cost
(time) of our protocol to similar protocols, namely, Castellà-Roca ([6]), and Barnett-
Smart ([2]).

All these protocols are discrete logarithm based. The most time consuming
operations in these protocols are exponentiation and zero-knowledge argument of
equality of discrete logarithms. In order to compare with the result of [6], the
computational cost of multiplication is also considered. The computational cost
of other operations are assumed to be much cheaper and can be ignored. Denote
by z, e, m the computational cost of a zero-knowledge proof, an exponentiation, a
multiplication respectively.
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Assume the game played by N players with a deck of M cards. The cost of the
Shu�e is compared in 4.2, and the cost of Card Opening and Drawing is compared
in 4.2.

To give some ideas of empirical execution time and how practical these protocols
might be, we make some estimations of execution time in 4.4.

4.2. Shu�e. Shu�e is usually the most time consuming part of a mental poker
protocol.

Recall the security parameter K in Shu�e Veri�cation (Protocol 4). We have
the following table (the calculation of the computational cost of Castellà-Roca and
Barnett-Smart can be found in [6]) .

Table 1. Computational cost for Shu�e

Total cost Cost for each player

Protocol 3 (KN + 1) (M + 1) Ne + 1
2KNm (KN + 1) (M + 1) e + 1

2Km
Castellà-Roca 2 (KN + 1) MNe + 1

2KMNm 2 (KN + 1) Me + 1
2KMm

Barnett-Smart 2 (KN + 1) MN(e + m) + Mm 2 (KN + 1) Me +
(
2KN + 2 + 1

N

)
Mm

Our shu�e is roughly twice as fast as others. If the computational cost m of
multiplication is ignored, then Castellà-Roca and Barnett-Smart have the same
cost.

4.3. Card Opening and Drawing. Card Opening and Drawing are much cheaper
compare to Shu�e. The following table compares the computational cost of Card
Opening and Card Drawing.

Table 2. Total computational cost for drawing and opening

Card Opening Card Drawing

Ours z (N − 1) z + Ne

Castellà-Roca z + (N − 1) e (N − 1) z +
(
N + M

2

)
e

Barnett-Smart z + N (N − 1) m (N − 1) z + Ne + Nm

Our protocol is faster than the rest, but only slightly. If the computation cost m
of multiplication is ignored, then the computational cost of ours and Barnett-Smart
are the same.

4.4. Execution time. To give some sense of empirical execution time, let us as-
sume M = 52 and N = 9, which is typical for a full table poker game.

On an AMD X2 3800+ 2Ghz, which is fairly mediocrity in today's PC hardware
standard, e and m are about 4.4×10−4 and 1.3×10−6 seconds for 512 bits integers
(when using both cores). We have the following estimation.

Table 3. Computational cost (seconds) for each player (512 bits)

K = 10 K = 20 K = 100
Protocol 3 2.12 4.22 21.01

Castellà-Roca 4.16 8.28 41.23
Barnett-Smart 4.18 8.31 41.35
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On the same machine, e and m is about 3× 10−3 and 3× 10−6 seconds for 1024
bits integers. We have the following estimation.

Table 4. Computational cost (seconds) for each player (1024 bits)

K = 10 K = 20 K = 100
Protocol 3 14.47 28.78 143.26

Castellà-Roca 28.39 56.47 281.12
Barnett-Smart 28.42 56.53 281.39

The di�erence between Castellà-Roca and Barnett-Smart are less than 1% and
ours is roughly twice as fast.

Considering it is reasonable to expect a human player taking 10 to 15 seconds
to shu�e and cut a deck physically, these protocols seems to be nearly practical
when using 512 bits primes and lower security parameter K. Since our protocol is
the fastest, it is more close to be practical than others.

When using 1024 bits primes and K = 100, all protocols are too slow.
To estimate the execution time of Card opening and Card Drawing, assume

using Chaum-Pedersen's protocol (see [9]) as the zero-knowledge argument. Thus,
z = (2N − 1) (2e + m). We have the following table.

Table 5. Total computational cost when using Chaum-Pedersen

Opening + Drawing

Our protocol
(
4N2 −N

)
e +

(
2N2 −N

)
m

Castellà-Roca
(
4N2 − 1 + M

2

)
e +

(
2N2 −N

)
m

Barnett-Smart
(
4N2 −N

)
e +

(
3N2 −N

)
m

Note that theoretically, Chaum-Pedersen's protocol is only known to be honest
veri�er zero-knowledge. However, it is widely used and it serves well for a rough
estimation of empirical execution time. We have the following table.

Table 6. Total computational cost (seconds) when using Chaum-Pedersen

Opening + Drawing (512 bits) Opening + Drawing (1024 bits)

Our protocol 0.139 0.945
Castellà-Roca 0.154 1.047
Barnett-Smart 0.139 0.946

The computational cost of ours and Barnett-Smart are roughly the same, while
Castellà-Roca is about 10% slower. The speed of Card Drawing and Opening of
these protocols seems to be acceptable for practical use.

5. Conclusion

Our protocol is proved to be secure in Section 3 under DDH assumption. Theo-
rem 2roughly states that cheating will be detected and other than that, the mental
game is indistinguishable from the ideal game.
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However, there are limitations of the security proof. For example, we assume
the cheater loses if he is caught on cheating for every event A. To make this
assumption practical, the penalty and compensation of cheating should be high
enough. Moreover, the execution time of Game 8 is longer than Game 0. We
implicitly assume the di�erence is insigni�cant.

Our protocol is fast. Considering the advance of computer hardware, e�cient
protocols like Castellà-Roca and Barnett-Smart may become fast enough to be prac-
tical in a few years. Our protocol is even faster, requires only half of the computing
power to achieve same performance. We didn't discuss the communication costs of
our protocol. However, for it can be easily verify that the communication cost of
our protocol is also cheaper, roughly half as much compares to other protocols.

We hope our contribution can shorten the gap between theoretical study and the
practical application of mental poker.
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