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Abstract

Zero-knowledge protocols are often studied through specific problems, like GRAPH-ISOMORPHISM.
In many cases this approach prevents an important level of abstraction and leads to limited results,
whereas in fact the constructions apply to a wide variety of problems. We propose to address this issue
with a formal framework of non-interactive instance-dependent commitment schemes (NIC). We de-
fine NIC in both the perfect, statistical, and computational settings, and formally characterize problems
admitting NIC in all of these settings. We also prove other useful lemmas such as closure properties.
Consequently, results that previously applied only to specific problems are now strengthened by our
framework to apply to classes of problems. By providing formal yet intuitive tools, our framework facil-
itates the construction of zero-knowledge protocols for a wide variety of problems, in various settings,
without the need to refer to a specific problem. Our results are unconditional.

Keywords: cryptography, zero knowledge, instant-dependent commitment schemes

1 Introduction

Zero-knowledge protocols enable one party (the prover) to prove an assertion to another party (the verifier),
but without revealing anything to the verifier other than the truth of the assertion [20]. Intuitively, this is
made possible using a cryptographic primitive called a bit commitment scheme. Such a scheme allows a
sender to commit to a bit b such that the receiver cannot learn b from the commitment, and at the same time
the sender cannot change the commitment to another value. The first property is called hiding and the later
is called binding. Bit commitment schemes exist if and only if one-way functions exist [22, 30].

The key role that bit commitment schemes play in the study of zero-knowledge protocols explains why
languages such as GRAPH-ISOMORPHISM appear in many zero-knowledge constructions. Intuitively, the
graphs induce a primitive similar to a bit commitment scheme, and the primitive can be used to construct
the protocol. That is, given graphs 〈G0, G1〉, a commitment to a bit b can be computed by choosing a
random permutation π and outputting y = π(Gb), which perfectly hides b if the graphs are isomorphic, and

∗A preliminary version of this paper appeared in Track C of ICALP 2007 [24] under the title ”A Characterization of Non-
Interactive Instance-Dependent Commitment Schemes (NIC)”.
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perfectly binds to b otherwise. There are numerous examples of works that utilize variants of this idea to
construct zero-knowledge protocols (c.f., [38, 19, 5, 36, 5]). A sample of recent works includes the quantum
zero-knowledge protocol of Watrous [41] for GRAPH-ISOMORPHISM, the linear locality zero-knowledge
proof of Micali and Pass [27] for GRAPH-NONISOMORPHISM, the concurrent zero-knowledge protocol of
Micciancio et al. [28] (based on [34]) for a variant of STATISTICAL-DISTANCE [35] called SD1

1/2, and the
efficient-prover zero-knowledge protocol of Micciancio and Vadhan [29] for lattice problems.

The issue that we address in this paper is that many works (such as these mentioned above) construct
zero-knowledge protocols for specific problems. For example, the quantum zero-knowledge protocol of
Watrous [41] is designed specifically for GRAPH-ISOMORPHISM. This is an issue because these works
actually apply to a much larger class of problems, and therefore they can obtain stronger and more general
results. Our goal is to provide a framework that will allow achieving these stronger and more general
results. The other disadvantage in constructing zero-knowledge protocols for specific problems is that they
prevent us from formally reasoning about other settings. For example, in many cases the protocol inherits
its zero-knowledge property from the hiding property of the bit commitment scheme, and this can be argued
formally when using bit commitment schemes, but not when using a specific problem such as GRAPH-
ISOMORPHISM. Our framework will not suffer from this limitation. It will provide this level of abstraction
while still being simple.

1.1 Our Results - The NIC Framework

One may suggest that instead of constructing protocols using specific problems like GRAPH-ISOMORPHISM,
we should use the notions of random self-reducibility (RSR) [38, 2] or Σ-protocols [8]. The first issue
with this idea is that, since these definitions are complex, they make protocol construction and analysis
very cumbersome. Indeed, this may explain why most zero-knowledge works rather use the simpler and
more intuitive problem GRAPH-ISOMORPHISM. The second issue is that some of the specific problems
for which zero-knowledge protocols are constructed (such as variants of STATISTICAL-DISTANCE and the
lattice problems of [29]) are not known to satisfy these notions.

The notion of a non-interactive commitment scheme is significantly simpler than the notions of random
self-reducibility or Σ-protocols. Furthermore, commitment schemes are natural tools in the study of zero-
knowledge protocols. Thus, we propose that the issue of constructing zero-knowledge protocols for specific
problems be addressed using a primitive which we call a non-interactive instance-dependent commitment
scheme (NIC). More formally, a NIC is an efficient function f(x, b; r) that outputs a commitment to a bit
b using randomness r, just like a non-interactive bit commitment scheme. In addition, it takes an instance
x of a problem as an input, and the hiding and binding properties depend on whether x is a YES or a NO
instance of the problem. The binding is perfect, and the hiding property can be either perfect, statistical, or
computational (generalizing [23]).

To show that NIC can replace specific problems used in zero-knowledge constructions, we had to find a
property of these problems that implies NIC, be implied by NIC, and would apply in both the computational,
statistical, and perfect setting. As we mentioned earlier, random self-reducibility [38] and Σ-protocols [8]
are not suitable candidates because variants of STATISTICAL-DISTANCE and the lattice problems of [29]
are not known to satisfy these notions. Instead, we formalize a very simple property, which we call V-bit
protocols. Informally, these are 3-round protocols with perfect completeness where the message of the
verifier is one random bit. This property is already satisfied by all the problems we want to capture. We then
prove that this notion implies NIC and vice versa.
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Characterization of NIC (informal). A problem has a perfectly (respectively, statistically, computation-
ally) hiding NIC if and only if it has a V-bit perfect (respectively, statistical, computational) zero-knowledge.

This theorem yields NIC for a wide variety of problems, such as GRAPH-ISOMORPHISM, QUADRATIC-
RESIDUOUSITY, DISCRETE-LOGARITHM and any random self-reducible problem (RSR) [38, 2]. Problems
that are neither known to be RSR nor to admit Σ-protocols [8] are also included. For example, 1MOD4
and its variants [23], the version SD1

0 of STATISTICAL-DISTANCE (the general version is complete for
statistical zero-knowledge [35]), and problems with statistically hiding NIC such as SD1

1/2 and the lattice
problems SHORTEST VECTOR PROBLEM (SVP) and CLOSEST VECTOR PROBLEM (CVP) of [29]. Thus,
any protocol using the notion of a NIC would immediately apply to a wide variety of problems (as opposed
to a specific problem).

Our theorem facilitates the study of zero-knowledge protocols by providing useful abstractions. For ex-
ample, consider the non-black-box zero-knowledge protocol of Barak [4] applied to GRAPH-ISOMORPHISM.
If we use the graphs as explained earlier, instead of using a bit commitment scheme, then we obtain a
non-black-box perfect zero-knowledge protocol for GRAPH-ISOMORPHISM.1 However, if instead of using
GRAPH-ISOMORPHISM we replace the bit commitment scheme with a NIC, then we get a result that applies
to a wide variety of problems, in both the perfect and the statistical setting. Moreover, since the notion of
a NIC is very similar to that of a bit commitment-scheme, we can formally prove this claim by reusing the
proof given in [4]. Finally, by using the NIC framework we guarantee that if more problems admitting NIC
are discovered in the future, then our result would apply to these problems as well.

In the second part of this paper we extend our approach to closure results. That is, we consider works that
provide closure results for specific problems such as GRAPH-ISOMORPHISM, and we show that stronger and
more general results can be achieved by using the notion of a NIC. For example, Itoh et al. [23] constructed
what we call a perfectly hiding NIC for the OR and the AND variants of GRAPH-ISOMORPHISM. Instead,
we show that all the problems admitting NIC can be combined in any monotone boolean formula fashion.

Closure of NIC (informal). The class of problems possessing NIC is closed under arbitrary (as opposed
to fixed) monotone boolean formulae.

Hence, any protocol using a NIC would automatically apply to any monotone boolean formula over all
the problems admitting a NIC. The formula can combine problems with different hiding properties (e.g.,
perfect and statistical), and can be chosen after the input is given to the parties (as opposed to fixing the
protocol for one formula). Our result is also stronger and more general than that of De Santis et. al [36]. They
showed a zero-knowledge protocol for monotone boolean formula statements over random self-reducible
(RSR) problems, whereas our closure result includes problems that are not known to be RSR and problems
where the hiding property is statistical or computational. The literature offers a variety of related closure
results (c.f., [10, 11, 9]), but these apply to more restricted classes of problems and provide constructions
that do not preserve the properties of the building blocks.

1.2 Related Work

The idea of a commitment scheme whose hiding and binding properties depend on an instance were implicit
in [5, 36]. Itoh, Ohta, and Shizuya [23] were the first to formalize this notion and show that such schemes

1This is the first evidence that perfect (as opposed to computational) non-black-box zero-knowledge protocols are possible,
assuming only the existence of collision-resistant hash functions (as in [4]).
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can replace the bit commitment scheme in the protocols of [6, 19] for NP. We extend their definition from
the perfect setting to the statistical and the computational settings. We remark that a similar notion to our
statistically hiding NIC (using a variant of STATISTICAL-DISTANCE) appeared in the work of Micciancio
and Vadhan [29] and used in [28], but it is not suitable because it cannot be generalized to the computational
setting, and even in the perfect setting there are technical issues that prevent it from representing problems
that have NIC, like GRAPH-ISOMORPHISM.

One direction in our characterization result shows that NIC imply what we call V -bit zero-knowledge
protocols. This is proved by applying the technique of [23] from perfect zero-knowledge to all settings
(perfect, statistical, and computational). In the other direction, we adapt the technique of Damgård [12].
This technique was originally used in the context of Σ-protocols that are also proofs of knowledge for
NP-hard relations. We show that it also applies in the case of V -bit zero-knowledge protocols.

Our proof that problems admitting NIC are closed under arbitrary (as opposed to fixed) monotone
boolean formulae uses the technique of De Santis et. al [36], who used it in the context of random self-
reducible (RSR) problems, where the hiding property is perfect and therefore the construction can be ap-
plied many times without leaking any information. In our case, on the other hand, the hiding property can
be computational, statistical, or perfect, and we allow mixing NIC with different hiding properties. This in-
troduces several technical difficulties in the reductions, which we overcome by inductively summing up the
leakage and relating the size of the formula to the size of the input. Related results were given in [10, 11, 9],
but whereas we show how to combine NIC such that the resulting construction is also a NIC, they show how
to combine protocols such that the resulting construction does not belong to the same class of protocols.

The relationship between commitment schemes and zero-knowledge protocols is one of the long stand-
ing open questions in cryptography. On one hand, the existence of commitment schemes implies that of
zero-knowledge proofs (e.g., [6, 19]). On the other hand, Ostrovsky and Wigderson [33, 31] showed that
commitment schemes can be constructed from zero-knowledge proofs for hard on average problems (an
alternative proof was given in [35, 39, 40]). More recently, Ong and Vadhan [32] showed that a problem has
a constant-round instance-dependent commitment scheme if and only if it has a zero-knowledge proof, but
this equivalence does not apply to perfect zero-knowledge (PZK) proofs. Malka [26] showed an alternative
equivalence that applies to all settings, including PZK, but this equivalence does not have useful properties,
such as being constant-round.

1.3 Organization.

Section 2 gives standard definitions and Section 3 defines NIC. In Section 4 we prove that V -bit zero-
knowledge protocols imply and are implied by NIC. Section 5 shows that random self-reducibility implies
NIC, and Section 6 shows that NIC can be combined in monotone boolean formula fashion. Open questions
are given in Section 7. In Section A we prove that the notions of V -bit zero-knowledge proofs and Σ-
protocols are equivalent.

2 Definitions

2.1 Indistinguishability

The notion of zero-knowledge is based on indistinguishability of ensembles, which we now define. Let I
be a countable set of strings x, and let |x| denote the length of x. A sequence {Yx}x∈I of random variables
is called a probability ensemble. Indistinguishability is defined in terms of distance between ensembles. A
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function f(n) is negligible on I if for any polynomial p there is N such that for all x ∈ I of length at least
N it holds that f(|x|) < 1/p(|x|). When I is clear from the context we simply say that f(n) is negligible.

Given a circuit D : {0, 1}∗ → {0, 1} and two distributions Yx and Zx we define the advantage of D to
distinguish Yx from Zx to be the function

adv(D,Yx, Zx) def= |Pr[D(Yx) = 1]− Pr[D(Zx) = 1]|,
where Pr[D(X) = 1] denotes the probability that D outputs 1 on input an element chosen according to a
distribution X . Notice that if D takes randomness r as an input, then the probability is also over the uniform
distribution on r. We say that D is a polynomial-size circuit if there is a polynomial p such that on inputs of
length n the size of D is at most p(|n|).

We also need a definition of advantage in the stronger, information theoretic sense. Let X and Y be two
discrete distributions. The statistical distance between X and Y is defined as

∆(X, Y ) def= 1/2 ·
∑
α

|Pr[X = α]− Pr[Y = α]|.

Definition 2.1 (Indistinguishability) Let {Yx}x∈I and {Zx}x∈I be probability ensembles. We say that
{Yx}x∈I and {Zx}x∈I are statistically identical (respectively, statistically indistinguishable) if ∆(Yx, Zx)
is identically 0 (respectively, negligible) on I . We say that {Yx}x∈I and {Zx}x∈I are computationally
indistinguishable if adv(D, Yx, Zx) is negligible on I for all non-uniform, polynomial-size circuits D.

The notion of a NIC is related to the promise problem STATISTICAL-DISTANCE [35]. Formally, SDα,β

is the pair (SDα
Y , SDβ

N ), where SDα
Y

def= {(X, Y )|∆(X, Y ) ≥ α}, SDβ
N = {(X, Y )|∆(X, Y ) ≤ β}, and

〈X,Y 〉 is a pair of circuits viewed as distributions (under the convention that the input to the circuit is
uniformly distributed). In this paper we only consider the NP problem SD1,β for β ≤ 1/2 (the problem
SD def= SD2/3,1/3, called STATISTICAL-DISTANCE, is complete for SZK).

2.2 Interactive Protocols and Zero-Knowledge

We use the standard definitions of interactive protocols, proofs, and zero-knowledge. We start with the
notion of a protocol, which is a pair of parties communicating with each other.

Definition 2.2 (Interactive Protocols) An interactive protocol is a pair 〈P, V 〉 of functions. The interaction
between P and V on common input x is the following random process.

1. Let rP and rV be random inputs to P and V , respectively.

2. repeat the following for i = 1, 2, . . .

(a) If i is odd, let mi = P (x, z, m1, . . . ,mi−1; rP ).
(b) If i is even, let mi = V (x, z,m1, . . . , mi−1; rV ).
(c) If mi ∈ {accept,reject,fail}, then exit loop.

Each interaction yields a transcript 〈x, z, m1, . . . ,mp; rV 〉, and the strings mi are called messages. The
probability space containing all the transcripts is called the view of V on x, and is denoted 〈P, V 〉(x). We
say that V accepts x if mi = accept for an even i.

We say that 〈P, V 〉 is public coin if V always sends independent portions of rV , and its last message is
a deterministic function of the messages exchanged. We say that 〈P, V 〉 is constant round if there is c such
that the number of messages exchanged in any interaction is at most c.
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We define interactive proofs, and remark that we consider complexity classes of promise problems [14]
(or problems for short), as opposed to languages. A problem Π is a pair 〈ΠY ,ΠN 〉 of disjoint sets, and
the complement of Π is Π def= 〈ΠN , ΠY 〉. The set ΠY contains YES instances, and the set ΠN contains NO
instances. Notice that a language L can be defined as 〈L,L〉. Thus, using the notion of problems makes our
results more general.

Informally, a problem has an interactive proof if it has an interactive protocol with a polynomial-time
verifier that accepts YES instances, and rejects NO instances.

Definition 2.3 (Interactive proofs and arguments) Let Π = 〈ΠY , ΠN 〉 be a problem, and let 〈P, V 〉 be an
interactive protocol. We say that 〈P, V 〉 is an interactive proof for Π if there is a, and c(n), s(n) : N→ [0, 1]
such that 1− c(n) > s(n) + 1/na for any n, and the following conditions hold.

• Efficiency: V is a probabilistic Turing machine whose running time over the entire interaction is
polynomial in |x| (this implies that the number of messages exchanged is polynomial in |x|).

• Completeness: if x ∈ ΠY , then V accepts in 〈P, V 〉(x) with probability at least 1 − c(|x|). The
probability is over rP and rV (the randomness for P and V , respectively).

• Soundness: if x ∈ ΠN , then for any function P ∗ it holds that V accepts in 〈P ∗, V 〉(x) with probability
at most s(|x|). The probability is over the randomness rV for V .

If the soundness condition holds with respect to non-uniform polynomial-size circuits, then we say that
〈P, V 〉 is an interactive argument for Π.

The function c is the completeness error, and the function s is the soundness error. We say that 〈P, V 〉
has perfect completeness (respectively, perfect soundness) if c ≡ 0 (respectively, s ≡ 0).

We denote by IP the class of problems admitting interactive-proofs [20], and by AM the class of problems
admitting public-coin, constant-round interactive-proofs [3, 25].

Definition 2.4 (Efficient prover) Let 〈P, V 〉 be an interactive proof or argument for an NP problem Π =
〈ΠY ,ΠN 〉. We say that P is an efficient prover if on common input x ∈ ΠY it runs in time polynomial in
|x| given an arbitrary NP witness w for x.

Finally, an interactive proof (or an interactive argument) is zero-knowledge if there is a simulator such
that the view of the verifier and the output of the simulator are indistinguishable. In the following definition
the simulator is not allowed to fail so that we can work with the perfect setting (in the statistical and the
computational settings the simulator is allowed to fail). We use SV ∗ to denote a Turing machine S with
oracle access to Turing machine V ∗.

Definition 2.5 (Zero-knowledge protocols) A protocol 〈P, V 〉 for a problem Π = 〈ΠY , ΠN 〉 is perfect
(respectively, statistical, computational) zero-knowledge if there is a probabilistic, polynomial-time Turing
machine S, called the simulator, such that

{〈P, V ∗〉(x)}x∈ΠY
and {SV ∗(x)}x∈ΠY

are statistically-identical (respectively, statistically indistinguishable, computationally indistinguishable.)
The class of problems having perfect (respectively, statistical, computational) zero-knowledge protocols is
denoted PZK (respectively, SZK, CZK.) When the above ensembles are indistinguishable for V ∗ = V we
say that 〈P, V 〉 is honest-verifier, perfect (respectively, statistical, computational) zero-knowledge, and we
denote the respective classes by HVPZK,HVSZK, and HVCZK.

6



3 Non-interactive, Instance-Dependent Commitment-Schemes (NIC)

In this section we define non-interactive instance-dependent commitment schemes (NIC). Notice that our
definition applies to all settings (perfect, statistical, and computational) and that it can be used for studying
problems admitting NIC as well as problems whose complement admits a NIC.

As a warm up, we start with the familiar notion of a non-interactive bit commitment scheme. Intuitively,
such a scheme allows a sender to commit to a bit b such that the receiver cannot learn the value of b, yet
the sender cannot change b. More precisely, the scheme is an efficient function f(b; r), and to commit to
b the sender chooses randomness r, computes y = f(b; r), and sends y to the receiver. This is the commit
phase. In the reveal phase the sender sends b and r to the receiver, who computes f(b; r), thus confirming
that y is indeed a commitment to b. The receiver does not send anything (hence the term non-interactive).
The scheme is hiding if b cannot be determined from y, and binding if y binds the sender to b (that is,
f(0; r) 6= f(1; r′) for any r 6= r′).

Intuitively, a NIC for a problem Π is a non-interactive commitment scheme where the hiding and the
binding properties depend on instances of Π, and may not hold simultaneously. That is, instead of f(b; r)
we consider f(x, b; r), and the hiding and binding properties depend on whether x is a YES or a NO instance
of Π. NIC are attractive for many reasons. Firstly, since they are simple and non-interactive, they can be
used in various settings. Secondly, unlike bit commitment schemes, they can be constructed without any
assumptions, thus facilitating an unconditional study of zero-knowledge protocols. Finally, the hiding and
binding properties can be statistical (because, unlike in bit commitment schemes, these properties are not
required to hold simultaneously). This makes NIC suitable for the study of proofs in the statistical and
perfect settings. The following definition extends the positively opaque and negatively transparent scheme
of [23] to the statistical and the computational settings.

Definition 3.1 (NIC) Let Π = 〈ΠY,ΠN〉 be a promise-problem, and let f(x, b; r) be a probabilistic Turing
machine running in time polynomial in |x|. The inputs to f are a string x (denoting an instance of Π), a bit
b, and a string r (denoting the randomness of f ).

We say that f is binding on ΠN if for any x ∈ ΠN, and for any r and r′ it holds that f(x, 0; r) 6=
f(x, 1; r′). We say that f is perfectly (respectively, statistically, computationally) hiding on ΠY if the
ensembles {f(x, 0)}x∈ΠY

and {f(x, 1)}x∈ΠY
are statistically identical (respectively, statistically indistin-

guishable, computationally indistinguishable), where f(x, b) is a random variable obtained by uniformly
choosing r, and outputting f(x, b; r).

We say that f is a perfectly (respectively, statistically, computationally) hiding NIC for Π if f is binding
on ΠN, and perfectly (respectively, statistically, computationally) hiding on ΠY.

Perfectly and statistically hiding NIC are different from computationally hiding NIC. Firstly, in a per-
fectly or a statistically hiding NIC the hiding and the binding properties cannot hold at the same time,
whereas in a computationally hiding NIC they may [23, 17]. Secondly, if Π has a perfectly or a statistically
hiding NIC f , then as a class of problems NP contains Π. This is so because if x ∈ ΠY, then there is a
pair 〈r, r′〉 such that f(x, 0; r) = f(x, 1; r), and if x ∈ ΠN, then no such pair exists. However, Π may not
be in NP if f is computationally hiding. Finally, as was observed by [23], if a problem has a statistically
hiding NIC, then it cannot be NP-complete, unless the polynomial hierarchy collapses [16, 1, 7]. We give
an example of a NIC.

Example 3.2 A NIC for the language GRAPH-ISOMORPHISM [5, 23]. Let f(x, b; r) be a function that
given a pair of graphs x = 〈G0, G1〉 on n vertices uses r to define a random permutation π over {1, . . . , n},
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and outputs y = π(Gb). If the graphs are isomorphic, then y is isomorphic to both G0 and G1, and b cannot
be determined from y. Conversely, if the graphs are not isomorphic, then y cannot be isomorphic to both
G0 and G1. Thus, f is a perfectly hiding NIC for GRAPH-ISOMORPHISM.

Another example is the statistically hiding NIC for SD1,1/2 [29]. Instances of this problem are pairs
of circuits 〈X0, X1〉, treated as distributions (under the convention that the input to the circuit is uniformly
distributed). The statistical distance between X0 and X1 is 1/2 for YES instances, and 1 for NO instances.
Notice that statistical distance of 1 means that X0(r) 6= X1(r′) for any r and r′. Also, using techniques that
manipulate distributions, the statistical distance between X0 and X1 can be reduced from 1/2 to 1/2k [35,
29]. Hence, SD1,1/2 defines a statistically hiding NIC: to commit to b we uniformly choose r and output
Xb(r). Notice that if f is a perfectly hiding NIC, then 〈f(x, 0), f(x, 1)〉 is a pair of circuits with statistical
distance 0 when x is a YES instance, and statistical distance 1 when x is a NO instance. Thus, another way
to look at our main result is that SD1,0 is complete for the class of problems admitting perfectly hiding NIC
(equivalently, the class of problems admitting V -bit perfect zero-knowledge proofs). However, since the
NIC for GRAPH-ISOMORPHISM uses randomness drawn from a set of size n! (the set of all permutations
on graphs with n vertices), unless n! is a power of 2, this randomness cannot be represented by a bit string.
In other words, GRAPH-ISOMORPHISM is not known to be reducible to SD1,0

4 Characterizing NIC as V-bit Zero-Knowledge Protocols

To characterize the problems admitting NIC, we had to find a definition that would imply NIC, be implied
by NIC, and apply to both the computational, statistical, and perfect setting. The definition of random self-
reducibility [38] is not suitable because the variants of STATISTICAL-DISTANCE and the lattice problems
of [29] are not known to satisfy it. Similarly, these problems are not known to admit Σ-protocols [8],
and therefore this notion is not suitable either. Instead, we formalize a natural notion, which we term V-bit
protocols. Informally, these are 3-round public-coin protocols with perfect completeness, where the message
of the verifier (i.e., the second message) is one random bit.2 We then prove that this simple definition implies
NIC and vice versa. We only consider proofs, but our result also applies to arguments, in which case it yields
NIC where the binding property holds with respect to computationally bounded senders.

Theorem 4.1 A promise-problem Π has a perfectly (respectively, statistically) hiding NIC if and only if Π
has a V-bit PZK (respectively, SZK) proof. Similarly, Π ∈ NP and Π has a computationally hiding NIC if
and only if Π has a V-bit CZK proof.

This theorem shows that there is a tight relationship between natural types of zero-knowledge protocols
and commitment schemes. The notion of a V-bit protocol can be demonstrated using the protocol for
GRAPH-ISOMORPHISM [19], or the protocols of [6, 19] for NP. These protocols are public-coin, they have
perfect completeness, and they admit the following structure: the prover sends the first message m1, the
verifier sends back a random bit b, the prover replies with a message m2, and the verifier accepts or rejects.
Since V sends only one bit, we call these protocols V-bit protocols. Formally,

Definition 4.2 (V-bit protocol) Let 〈P, V 〉 be a proof or an argument for a problem Π = 〈ΠY, ΠN〉. We
say that 〈P, V 〉 is V-bit if for any x ∈ ΠY the interaction between P and V is as follows: P sends m1 to

2Notice that, unlike Σ-protocols, V -bit protocols make no reference to zero-knowledge, NP-relations, or special soundness.
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V , and V replies with a uniformly chosen bit b. P replies by sending m2 to V , and V accepts or rejects x
based on 〈x, m1, b, m2〉. If x ∈ ΠY , then V always accepts.

We have mentioned more than once that variants of STATISTICAL-DISTANCE and certain lattice prob-
lems admit V -bit protocols [29, 35], but are not known to admit Σ-protocols. Thus, we do not know if any
V -bit zero-knowledge protocol is also a Σ-protocol. However, from our characterization result it will follow
that a problem admits a V -bit zero-knowledge proof if and only if it admits a Σ-protocol. Thus, all the
consequences that follow from the NIC framework immediately extend to Σ-protocols. The proof for the
following lemma can be found in Appendix A.

Lemma 4.3 A problem Π has a V -bit HVPZK (respectively, HVSZK, HVCZK) proof if and only if Π has
a perfect (respectively, statistical, computational) Σ-protocol.

4.1 From NIC to V -bit Zero-Knowledge Protocols

We show that if a problem has a NIC, then it has a V -bit zero-knowledge protocol. Following [23], our
construction plugs the NIC into the zero-knowledge protocols of [6, 19] for NP. Combined with our lemma
from the next section (which proves that if a problem has a V -bit zero-knowledge proof, then it has a NIC),
our lemma yields a compiler that transforms any V-bit, zero-knowledge proof (i.e., honest-verifier, ineffi-
cient prover) into a malicious verifier V -bit zero-knowledge proof of knowledge with an efficient prover.
The idea is to extract the NIC for the V-bit zero-knowledge protocol and use it in the V-bit protocol of
Blum [6], which has an efficient prover, and is zero-knowledge against malicious verifiers.

Lemma 4.4 If a problem Π has a perfectly (respectively, statistically) hiding NIC, then Π has a public-coin
PZK (respectively, SZK) proof with an efficient prover. If Π ∈ NP, and Π has a computationally hiding
NIC, then Π has a public-coin CZK proof with an efficient prover.

Proof:(sketch) We use the zero-knowledge protocol of [6] for the NP-complete problem HAMILTONIAN-
CIRUIT (HC). Specifically, given input x ∈ ΠY ∪ ΠN , the prover and the verifier initially reduce x to an
instance G of HC, and then execute the protocol of [6] using the NIC f for Π as a bit commitment scheme.
Notice that the prover can transform its witness for x into a witness for G, and thus it is efficient. Now, if
x ∈ ΠY, then G has a Hamiltonian circuit, and thus the verifier accepts. Also, since f is hiding, the protocol
inherits its zero-knowledge property from the hiding property of the scheme. Thus, the protocol has an
efficient prover, it is zero-knowledge with respect to cheating verifiers, and it is V -bit because it has perfect
completeness. If x ∈ ΠN, then G does not have a Hamiltonian circuit, and the scheme is binding, which
implies that the verifier rejects with probability 1/2 over its random coin. Thus, the protocol is sound.

4.2 From V -bit Zero-Knowledge Protocols to NIC

In this section we show how to construct a NIC from a simulator S for any V-bit zero-knowledge protocol
〈P, V 〉. We adapt the technique of Damgård [12] for Σ-protocols and apply it to V -bit protocols (see Feige
and Shamir [15] for a similar technique). The differences are that [12] constructed an interactive commit-
ment scheme from a proof of knowledge for any NP-hard relation, provided that the proof is a Σ-protocol.
We, on the other hand, consider regular zero-knowledge proofs (as opposed to proofs of knowledge for
NP-hard relations) and construct a non-interactive (as opposed to interactive) instance-dependent commit-
ment scheme (as opposed to a bit commitment). Furthermore, the binding property of our NIC is statistical
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and follows from the soundness of the underlying V-bit protocol, whereas in [12] the binding property is
computational and follows from the hardness of the underlying problem.

We start with the following idea: to commit to a bit b, execute S(x) using randomness r, obtain a
transcript 〈m1, b

′, m2〉 such that b = b′ and V accepts, and output m1 as a commitment. Let us verify that
this NIC is hiding on YES instances and binding on NO instances. If x is a YES instance, then the perfect
completeness property guarantees that we always obtain transcripts where V accepts, and since b cannot be
determined from such m1, the commitment is hiding. Conversely, by the soundness property, if x is a NO
instance, then there are no transcripts 〈m1, 0,m2〉 and 〈m1, 1,m′

2〉 such that V accepts in both. However,
the issue with this idea is that b′ may not be equal to b. To overcome this issue we redefine the commitment
to be 〈m1, b

′ ⊕ b〉. That is, we execute S(x), obtain 〈m1, b
′,m2〉, and output 〈m1, b

′ ⊕ b〉. Intuitively, since
b′ is hidden, the bit b′ ⊕ b is also hidden. Our lemma follows.

Lemma 4.5 Let Π = 〈ΠY,ΠN〉 be a promise-problem. If Π has a V-bit, public-coin HVPZK (respectively,
HVSZK, HVCZK) proof, then Π has a NIC that is perfectly (respectively, statistically, computationally)
hiding on ΠY and perfectly binding on ΠN.

Proof: Fix a public-coin V-bit HVPZK (respectively, HVSZK, HVCZK) proof 〈P, V 〉 for Π. We assume
that 〈P, V 〉 has a simulator S that outputs either fail, or transcripts in which V accepts. Using S we define
a NIC f for Π as follows. Let f(x, b; r) be the function that executes S(x) with randomness r. If f obtains
a transcript 〈x, m′

1, b
′,m′

2〉 such that V (x, m′
1, b

′,m′
2) = accept, then f outputs 〈m′

1, b
′ ⊕ b〉. Otherwise,

f outputs b.
We show that f is binding on ΠN. Let x ∈ ΠN. Notice that for any r and b it holds that f(x, b; r)

outputs one bit if and only if f(x, b; r) = b. Thus, if f outputs one bit, then there are no r and r′ such that
f(x, 0; r) = f(x, 1; r′). For the case where f(x, b; r) outputs a pair 〈m̃1, b̃〉, recall that b̃ = b′ ⊕ b, where b′

is taken from some transcript 〈x,m′
1, b

′,m′
2〉. Thus, by the definition of f , for any m̃1, b̃, r and r′ it holds

that f(x, 0; r) = f(x, 1; r′) = 〈m̃1, b̃〉 if and only if there are m2 and m′
2 and such that V (x, m̃1, 0,m2) =

V (x, m̃1, 1, m′
2) = accept. However, 〈P, V 〉 is public coin, and by the soundness property of 〈P, V 〉 there

are no m1,m2 and m′
2 such that V (x,m1, 0,m2) = V (x,m1, 1, m′

2) = accept. Hence, if f does not
output one bit, then there are no r and r′ such that f(x, 0; r) = f(x, 1; r′). We conclude that f is perfectly
binding on ΠN.

The rest of the proof shows that f is hiding on ΠY. We start with the statistical setting. To show that f is
statistically hiding we need to calculate the statistical distance between commitments to 0 and commitments
to 1 over x ∈ ΠY. The following probabilities are over the randomness r for f .

∆(f(x, 0), f(x, 1)) =
1
2

∑
α

|Pr[f(x, 0) = α]− Pr[f(x, 1) = α]|

=
1
2

∑
m1

|Pr[f(x, 0) = 〈m1, 0〉]− Pr[f(x, 1) = 〈m1, 0〉]|+

1
2

∑
m1

|Pr[f(x, 0) = 〈m1, 1〉]− Pr[f(x, 1) = 〈m1, 1〉]|+

1
2

∑

b∈{0,1}
|Pr[f(x, 0) = b]− Pr[f(x, 1) = b]| .

Notice that the third sum (i.e., the sum over b) equals Pr[S(x) = fail], the probability that S fails. Now,
by Definition 2.5 of zero-knowledge, when S is a HVPZK simulator it never fails. Thus, Pr[S(x) =

10



fail] = 0. It remains to deal with the sums over m1. We show that the first sum is upper bounded by
∆(〈P, V 〉(x), S(x)) − Pr[S(x) = fail]/2, and since a symmetric argument applies to the second sum,
the total will be upper bounded by 2 · ∆(〈P, V 〉(x), S(x)). The following probabilities for 〈P, V 〉(x) and
S(x) are over the randomness to P, V and S, respectively.

1
2

∑
m1

|Pr[f(x, 0) = 〈m1, 0〉]− Pr[f(x, 1) = 〈m1, 0〉]| =
1
2

∑
m1

|
∑
m2

Pr[S(x) = 〈m1, 0,m2〉]−
∑
m2

Pr[S(x) = 〈m1, 1,m2〉]| =

1
2

∑
m1

|
∑
m2

Pr[S(x) = 〈m1, 0,m2〉]−
∑
m2

Pr[〈P, V 〉(x) = 〈m1, 0, m2〉]

−(
∑
m2

Pr[S(x) = 〈m1, 1,m2〉]−
∑
m2

Pr[〈P, V 〉(x) = 〈m1, 1,m2〉])| ≤

1
2

∑
m1,m2

(|Pr[S(x) = 〈m1, 0,m2〉]− Pr[〈P, V 〉(x) = 〈m1, 0,m2〉]|+
|Pr[S(x) = 〈m1, 1,m2〉]− Pr[〈P, V 〉(x) = 〈m1, 1,m2〉]|) =
∆(〈P, V 〉(x), S(x))− Pr[S(x) = fail]/2 .

In the first equality above we used the fact that S outputs transcripts in which V accepts. In the second equal-
ity we used the fact that 〈P, V 〉 is public-coin, which implies that for any m1 the probability of choosing an
element of 〈P, V 〉(x) whose prefix is 〈m1, 0〉 equals the probability of choosing an element of 〈P, V 〉(x)
whose prefix is 〈m1, 1〉. In the last equality we used the fact that 〈P, V 〉(x) never outputs fail, whereas
S(x) outputs fail with probability Pr[S(x) = fail]. We conclude that ∆(f(x, 0), f(x, 1)) ≤ 2 ·
∆(S(x), 〈P, V 〉(x)). Hence, if S is a HVPZK (respectively, HVSZK) simulator, then ∆(S(x), 〈P, V 〉(x))
is 0 for any x ∈ ΠY (respectively, negligible on ΠY), which implies that f is perfectly (respectively, statis-
tically) hiding on ΠY.

It remains to deal with the case that S is a HVCZK simulator. The analysis is analogues to the statistical
setting, but in reverse. We define the function f ′(·, b) just like f , except that instead of executing the
simulator, f ′ receives a transcript 〈m1, b

′,m2〉 and outputs 〈m1, b
′ ⊕ b〉. Thus, f ′(S(x), b) and f(x, b) are

identically distributed for any b ∈ {0, 1}. Assume towards a contradiction that there is a non-uniform family
D of polynomial-size circuits that distinguishes {f(x, 0)}x∈ΠY

and {f(x, 1)}x∈ΠY
. Thus, D distinguishes

{f ′(S(x), 0)}x∈ΠY
and {f ′(S(x), 1)}x∈ΠY

, and the following expression is non-negligible:

|Pr[D(f ′(S(x), 0)) = 1]− Pr[D(f ′(S(x), 1)) = 1]| ≤
|Pr[D(f ′(S(x), 0)) = 1]− Pr[D(f ′(〈P, V 〉(x), 0)) = 1]|+
|Pr[D(f ′(S(x), 1)) = 1]− Pr[D(f ′(〈P, V 〉(x), 1)) = 1]| .

Above we used the fact that 〈P, V 〉 is V-bit, which implies that f ′(〈P, V 〉(x), 0) and f ′(〈P, V 〉(x), 1) are
identically distributed for any x ∈ ΠY. It follows that there is b ∈ {0, 1} such that D distinguishes
{f ′(〈P, V 〉, b)}x∈ΠY

and {f ′(S(x), b)}x∈ΠY
. This contradicts the fact that S is a HVCZK simulator. We

conclude that f is computationally hiding on ΠY. The lemma follows.
Theorem 4.1, presented in the beginning of this section, immediately follows from Lemmas 4.4 and 4.5.

Thus, we get a characterization of V-bit zero-knowledge protocols as NIC. We remark that Theorem 4.1
can be extended to arguments, in which case it yields NIC where the binding property holds with respect
to computationally bounded senders. Also, it can be extended to relaxed notions of V -bit protocols (e.g.,
where perfect completeness or public-coins are not required), but we avoid these extensions because they
require changing the definition of a NIC.
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5 Random Self-Reducibility Implies NIC

We prove the folklore theorem that if a problem is random self-reducible (RSR), then it has a perfectly
hiding NIC. By replacing the notion of random-self reducibility with the simpler notion of a NIC, we make
protocol design and analysis simpler. Furthermore, we can include RSR problems in our closure result. This
allows combinations of RSR problems with problems that are not known to be RSR (such as versions of
SD, and the lattice problems of [29]). Thus, we strengthen and unify the results of [38, 36, 23] and achieve
all the improvements claimed in the introduction.

The notion of random self-reducibility [2] considers a set of strings x, each associated with a polynomial-
time relation Rx on pairs 〈z, w〉. Given x, there is an algorithm S that uses randomness r to sample the
domain of Rx (that is, it outputs y such that 〈y, w′〉 ∈ Rx for some w′). The heart of this notion consists
of two algorithms: A1, which converts a witness for y into a witness for z, and A2, which converts witness
for z into a witness for y. Both A1 and A2 use r. Also, there is an algorithm G that generates random pairs
〈z′, w′〉 from Rx. All of the algorithms are efficient. The following definition is similar to that of [36].

Definition 5.1 (A random self-reducible problem) Let N ⊂ {0, 1}∗ be a countable set such that Rx is
an NP-relation for each x ∈ N . The domain of Rx is denoted d(Rx) def= {z|∃w 〈z, w〉 ∈ Rx}. The
language L def= {〈x, z〉|x ∈ N ,∃w 〈z, w〉 ∈ Rx} is random self-reducible (RSR) if there are polynomial
time algorithms G, A1, A2, and S such that S(x, z; r) = y ∈ d(Rx) for any x ∈ N , z, and r, and the
following conditions hold.

1. If z ∈ d(Rx), and r is uniformly distributed, then y is uniformly distributed in d(Rx).

2. A witness for y yields a witness for z, and vice versa. That is, 〈z, A1(x, y, r, w′)〉 ∈ Rx for any
〈y, w′〉 ∈ Rx, and 〈y,A2(x, z, r, w′′)〉 ∈ Rx for any 〈z, w′′〉 ∈ Rx.

3. G(x; r) = 〈z′, w′〉 ∈ Rx, and if r is uniformly distributed, then z′ is uniformly distributed in d(Rx),
and w′ is uniformly distributed in {w|〈z, w〉 ∈ Rx}.

We prove that random self-reducible problems have a perfectly hiding NIC. Our proof uses the idea
behind the construction of the subroutine in the protocol of [36] (see Section 3.3 in [36]). Given N and Rx

as in Definition 5.1, we define the problem ΠL def= 〈ΠL
Y, ΠL

N〉, where ΠL
Y

def= {〈x, z〉|x ∈ N , ∃w 〈z, w〉 ∈ Rx},
and ΠL

N
def= {〈x, z〉|x ∈ N , ∀w 〈z, w〉 /∈ Rx}.

Lemma 5.2 If L is a random self-reducible language, then ΠL has a perfectly hiding NIC.

Proof: Let L def= {〈x, z〉|x ∈ N , ∃w 〈z, w〉 ∈ Rx} be a random self-reducible language. Consider the
algorithms S and G from Definition 5.1. Let G′(x; r) be the algorithm that executes G(x; r), obtains 〈z′, w′〉,
and outputs z′. We use S and G′ to commit to 0 and 1, respectively. Formally, we define our NIC to be
a probabilistic polynomial-time Turing machine f(x, z, b; r) that on input 〈x, z〉 ∈ ΠL

Y ∪ΠL
N, bit b, and

randomness r outputs S(x, z; r) if b = 0, and G′(x; r) if b = 1.
The efficiency of f follows from the efficiency of S and G. We show that f is perfectly hiding. By

Definition 5.1, S(x, z; r) = y is uniformly distributed over d(Rx) if r is uniformly distributed, and 〈x, z〉 ∈
ΠL

Y. Similarly, G(x; r) = 〈z′, w′〉, and z′ is uniformly distributed over d(Rx) if r is uniformly distributed
and x ∈ N . Since the output of f is uniformly distributed over d(Rx) for any b and 〈x, z〉 ∈ ΠL

Y, the
ensembles {f(x, z, 0; r)}〈x,z〉∈ΠL

Y
and {f(x, z, 1; r)}〈x,z〉∈ΠL

Y
are statistically identical, and therefore f is

perfectly hiding on ΠL
Y.
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We show that f is binding on ΠL
N. Let 〈x, z〉 ∈ ΠL

N. Assume towards a contradiction that there are
r and r′ such that S(x, z; r) = f(x, z, 0; r) = f(x, z, 1; r′) = G′(x; r). Let y = S(x, z; r). By the
definition of G′, there is w′ such that G(x; r) = 〈G′(x; r), w′〉 = 〈y, w′〉 ∈ Rx. By the property of A1 from
Definition 5.1, it follows that 〈z, A1(x, y, r, w′)〉 ∈ Rx. Hence, 〈x, z〉 ∈ ΠL

Y, in contradiction to the choice
of 〈x, z〉 ∈ ΠL

N. Thus, f is binding on ΠL
N.

Notice that in the above proof we did not use Algorithm A2 from Definition 5.1. Neither did we use the
fact that A1 runs in polynomial time, nor did we use the witness that G outputs.

6 Closure of Problems Possessing NIC under Monotone Boolean Formulae

In this section we show that the class of problems possessing NIC is closed under arbitrary (as opposed to
fixed) monotone boolean formulae. Such results have been traditionally proved in the perfect setting, where,
intuitively, no information is leaked at any stage. This is not the case here. We are proving closure where
the formula can be chosen after the protocol is fixed and our analysis applies to all settings. This makes the
proofs significantly more technical.

We start with notation, and formalize our theorem in Section 6.1. Intuitively, our goal is to show that
given instances x1, . . . , xn and a monotone boolean formula φ over n variables, the prover can prove to
the verifier that the instances satisfy the formula. Notice that we first fix the protocol, and then choose n,
x1, . . . , xn and φ. To formalize the above intuition we need the following definitions. A boolean variable is
a variable that can only take the values 0 or 1. We say that φ is a monotone boolean formula if φ is a boolean
variable, or φ is of the form φ0∧φ1 or φ0∨φ1, where both φ0 and φ1 are monotone boolean formulae. Given
a problem Π = 〈ΠY, ΠN〉 and x ∈ ΠY ∪ ΠN, we define the characteristic function χΠ of Π as follows: if
x ∈ ΠY, then χΠ(x) = 1, and if x ∈ ΠN, then χΠ(x) = 0. Let φ be a boolean formula over a1, . . . , am,
and let x1, . . . , xn ∈ ΠY ∪ ΠN for some n ≥ m. The evaluation of φ in ~x = 〈x1, . . . , xn〉 is denoted φ(~x),
and equals 1 if and only if φ is satisfied when ai is assigned χΠ(xi) for each 1 ≤ i ≤ m.

We say that a class C of problems is closed under arbitrary, monotone boolean formulae if Π ∈ C
implies that Φ(Π) ∈ C, where Φ(Π) is defined as follows.

Definition 6.1 Let Π = 〈ΠY, ΠN〉 be a problem. The problem Φ(Π) def= 〈Φ(Π)Y,Φ(Π)N〉 is defined as

Φ(Π)Y
def= {〈φ, x1, . . . , xn〉|φ(χΠ(x1), . . . , χΠ(xn)) = 1}

Φ(Π)N
def= {〈φ, x1, . . . , xn〉|φ(χΠ(x1), . . . , χΠ(xn)) = 0},

where φ is a monotone boolean formula over a1, . . . , am such that m ≤ n, and xi ∈ ΠY ∪ ΠN for all
1 ≤ i ≤ n. We define Φ(Π)k def= 〈Φ(Π)kY,Φ(Π)N〉, where Φ(Π)kY is defined as

Φ(Π)kY
def= {〈φ, x1, . . . , xn〉|φ(χΠ(x1), . . . , χΠ(xn)) = 1 ∧ ∀i |xi|k ≥ |φ, x1, . . . , xn|}.

The use of k in the definition is necessary for bounding the advantage of the adversary in the statistical and
the computational settings. This issue does not arise in the considerably simpler perfect setting.

6.1 Combining NIC in a Monotone Boolean Formula Fashion

Our closure result states that if a problem Π has a NIC, then the problem Φ(Π) also has a NIC. Notice that
the definition of Φ(Π) only considers instances of Π, but this was done only to simplify the presentation.

13



The proofs would work with instances from different problems. Consequently, we get that the class of
problems possessing NIC (equivalently, V -bit zero-knowledge proofs) is closed under arbitrary, monotone
boolean formulae. This is stronger than saying that the class of problems admitting NIC is closed under the
AND and the OR operators.

Theorem 6.2 For any problem Π that has a NIC f , and for any k ∈ N, there is a NIC f ′ such that

1. if f is a perfectly hiding NIC for Π, then f ′ is a perfectly hiding NIC for Φ(Π).

2. if f is a statistically (respectively, computationally) hiding NIC for Π, then f ′ is a statistically (re-
spectively, computationally) hiding NIC for Φ(Π)k.

We will prove the above theorem by constructing a new NIC for Φ(Π) from the NIC for Π. Compared
to Σ-protocols and random self-reducibility, the advantage of this approach is that we do not need to work
with involved notions such as interaction or zero-knowledge. Using the technique of [36] we construct NIC
as follows. If f is a NIC for Π, then a NIC for instances of the form z = 〈a ∧ b, x1, x2〉 can be defined by
f ′(z, b; r) = 〈f(x1, b), f(x2, b)〉. Thus, if both x1 and x2 are YES instances of Π, then f ′ is hiding (because
both f(x1, b) and f(x2, b) are hiding), and if x1 or x2 is a NO instance, then f ′ is binding (because at least
one of f(x1, b) and f(x2, b) is binding). Notice that we omitted the randomness for f , but the intention is
that f ′ uses independent randomness in each execution. A similar idea applies to the OR connector. That is,
a NIC for instances of the form z = 〈a ∨ b, x1, x2〉 can be defined by f ′(z, b; r) = 〈f(x1, b1), f(x2, b2)〉,
where b1 is uniformly chosen, and b2 is chosen such that b1 ⊕ b2 = b. Thus, if at least one of x1, x2 is a
YES instance of Π, then f ′ is hiding (because either f(x1, b1) or f(x2, b2) is hiding), and if both x1 and
x2 are NO instances, then f ′ is binding (because both f(x1, b1) and f(x2, b2) are binding). The following
construction generalizes these ideas to any monotone boolean formula.

Construction 6.3 We define a recursive function f ′(φ, ~x, b; r). Let f be a NIC, and let b ∈ {0, 1}. Let φ
be a monotone boolean formula over the variables a1, . . . , am, and let ~x = 〈x1, . . . , xn〉 be a vector of n
strings, where n ≥ m. The randomness r for f ′ is of length polynomial in |〈φ, ~x〉|, and the polynomial is
determined from the construction of f ′, described below.

1. If φ = ai for some 1 ≤ i ≤ m, then return f(xi, b, r).

2. Partition r into r0 and r1 (that is, the concatenation r0r1 equals r).

3. If φ = φ0 ∧ φ1, then return 〈f ′(φ0, ~x, b, r0), f ′(φ1, ~x, b, r1)〉.
4. If φ = φ0 ∨ φ1, then return 〈f ′(φ0, ~x, b0, r0), f ′(φ1, ~x, b1, r1)〉, where b0 ∈ {0, 1} is uniformly

distributed, and b1 is chosen such that b0 ⊕ b1 = b.

6.2 Proof of the Closure Result

In this section we prove Theorem 6.2 from the previous section. This theorem states that if f is a NIC
for a problem Π, then f ′ defined from f as in Construction 6.3 is a NIC for Φ(Π). We use the technique
of [36]. Intuitively, this technique admits a simple analysis in the perfect setting because the advantage of
the adversary remains zero at every stage of construction 6.3, and therefore it sums up to zero. However,
in the statistical and the computational settings the advantage is non-negligible, and the total may not be
negligible. This is why we introduced the constant k in Definition 6.1, and this is why we need to provide a
more involved analysis. We start with the binding property.
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Lemma 6.4 If a function f is binding on a set ΠN , then f ′ from Construction 6.3 is binding on Φ(Π)N .

Proof: We prove the lemma by induction on the number ` of connectives in φ. For the base case, ` = 0 and
therefore f and f ′ are identical. Since f is binding on ΠN , we get that f ′ is binding on Φ(Π)N . Assume
the induction hypothesis for all ` ≥ 1. Let φ be a monotone boolean formula with ` + 1 connectives, and
let 〈φ, ~x〉 ∈ Φ(Π)N . Consider the case where φ = φ0 ∧ φ1, and assume towards contradiction that there are
r0, r

′
0 and r1, r

′
1 such that

f ′(φ, 0; r0r
′
0) = 〈f ′(φ0, 0; r0), f ′(φ1, 0; r′0)〉 = 〈f ′(φ0, 1; r1), f ′(φ1, 1; r′1)〉 = f ′(φ, 1; r1r

′
1).

Since 〈φ, ~x〉 ∈ Φ(Π)N , we can fix b ∈ {0, 1} for which φb(~x) = 0. Hence, f ′(φ0, 0; rb) = f ′(φ0, 1; r′b), and
since φb has at most ` connectives, we get a contradiction to the induction hypothesis. The case where φ =
φ0 ∨ φ1 is similar. Specifically, assume towards contradiction that there are r0, r0, r1, r

′
1 and b0, b

′
0, b1, b

′
1 ∈

{0, 1} such that b0 ⊕ b′0 6= b1 ⊕ b′1, and

f ′(φ, b0 ⊕ b′0; r0r
′
0) = 〈f ′(φ0, b0; r0), f ′(φ1, b

′
0; r

′
0)〉 = 〈f ′(φ0, b1; r1), f ′(φ1, b

′
1; r

′
1)〉 = f ′(φ, b1 ⊕ b′1; r1r

′
1).

Thus, there is d ∈ {0, 1} such that bd 6= b′d and f ′(φ0, 0; rd) = f ′(φ0, 1; r′d). Since φd has at most `
connectives, we get a contradiction to the induction hypothesis.

In the following section we prove the hiding property in the statistical setting, hence obtaining Theo-
rem 6.2 for perfectly and statistically hiding NIC.

6.2.1 The Hiding Property in the Statistical Setting

Recall that f ′ outputs 〈f(x1, b), f(x2, b)〉 on input z = 〈a ∧ b, x1, x2〉 ∈ Φ(Π) and bit b, and that if both x1

and x2 are YES instances, then f ′ is hiding (because both f(x1, b) and f(x2, b) are hiding). This motivation
works in the perfect setting, but in the statistical setting the output of f(x1, b) and f(x2, b) may not perfectly
hide the bit b. Intuitively, both f(x1, b) and f(x2, b) may leak a small amount of information about b. Thus,
we need to quantify this amount. We use the following lemma, which is similar to the Direct Product
Lemma and the XOR Lemma from Vadhan’s thesis [39]. To simplify the presentation we omit ~x and r from
the parameters to f ′. The proof is technical, and appears in Appendix B.

Lemma 6.5 Let f ′ be a function, let ~x be a vector of strings, and let φ0 and φ1 be monotone boolean
formula. Then,

∆(f ′(φ0 ∧ φ1, 0), f ′(φ0 ∧ φ1, 1)) ≤ ∆(f ′(φ0, 0), f ′(φ0, 1)) + ∆(f ′(φ1, 0), f ′(φ1, 1)), and
∆(f ′(φ0 ∨ φ1, 0), f ′(φ0 ∨ φ1, 1)) ≤ ∆(f ′(φ0, 0), f ′(φ0, 1)) ·∆(f ′(φ1, 0), f ′(φ1, 1)).

Now we prove Theorem 6.2 in the statistical setting. The idea is to recursively apply the above lemma,
and to carefully add the the amount of information leaked at each stage of Construction 6.3. For this purpose
we introduce the notation of P (φ), which denotes the multiset containing all the indices of boolean variables
in a formula φ (e.g., if φ = (α1 ∨ α2) ∧ α1, then P (φ) = {1, 1, 2}).

Lemma 6.6 If a function f is perfectly (respectively, statistically) hiding on a set ΠY , then for any k ∈ N
Construction 6.3 of f ′ is perfectly (respectively, statistically) hiding on Φ(Π)Y (respectively, Φ(Π)k

Y ).
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Proof: Let k ∈ N. We start with the statistical setting, and the perfect setting will follow. Our goal is to
show that the statistical distance between commitments to 0 and commitments to 1 is negligible. Thus, as a
first step we prove that for any vector 〈φ, ~x〉 = 〈φ, 〈x1, . . . , xn〉〉 it holds that

∆
(
f ′(φ, ~x, 0), f ′(φ, ~x, 1)

) ≤
∑

i∈P (φ)

∆
(
f(xi, 0), f(xi, 1)

)
.

We prove the above hypothesis by induction on the number ` of connectives in φ. The base case is trivial
because ` = 0, and therefore f and f ′ are identical. Assume the induction hypothesis for all ` ≥ 1, and
let 〈φ, ~x〉 = 〈φ, x1, . . . , xn〉 ∈ Φ(Π)k

Y . Notice that regardless of whether φ equals φ0 ∧ φ1 or φ0 ∨ φ1, by
Lemma 6.5 it holds that

∆(f ′(φ, ~x, 0), f ′(φ, ~x, 1)) ≤ ∆(f ′(φ0, ~x, 0), f ′(φ0, ~x, 1)) + ∆(f ′(φ1, ~x, 0), f ′(φ1, ~x, 1)).

Now we apply the induction hypothesis to both φ0 and φ1. Hence, we get that

∆(f ′(φ, ~x, 0), f ′(φ, ~x, 1)) ≤
∑

i∈P (φ0)

∆(f(xi, 0), f(xi, 1)) +
∑

i∈P (φ1)

∆(f(xi, 0), f(xi, 1)).

Since P (φ) = P (φ0) ∪ P (φ1), the induction follows. Notice that if f is perfectly hiding, then the above
sum equals 0, and thus f ′ is perfectly hiding on Φ(Π)Y . In the statistical setting we are not done because
we need to show that this sum is negligible in the length of 〈φ, ~x〉. Thus, we proceed to the next step.

Let a ∈ N. Since f is statistically hiding on ΠY, there is N such that ∆(f(x, 0), f(x, 1)) ≤ 1/|x|ak+k

for any x ∈ ΠY of length at least N . Notice that by Definition 6.1 of Φ(Π)k, there is N ′ such that for any
〈φ, x1, . . . , xn〉 ∈ Φ(Π)k

Y of length at least N ′ it holds that |xi| ≥ N for each 1 ≤ i ≤ n. Hence, fixing
N ′ we are guaranteed that for any 〈φ, ~x〉 = 〈φ, x1, . . . , xn〉 ∈ Φ(Π)k

Y of length of at least N ′ it holds that
∆(f(xi, 0), f(xi, 1)) ≤ 1/|xi|ak+k for each 1 ≤ i ≤ n, and by the fact that we proved using induction,

∆(f ′(φ, ~x, 0), f ′(φ, ~x, 1)) ≤
∑

i∈P (φ)

∆(f(xi, 0), f(xi, 1)) ≤
∑

i∈P (φ)

1/|xi|ak+k.

It remains to show that
∑

i∈P (φ) 1/|xi|ak+k ≤ 1/|〈φ, ~x〉|a for any 〈φ, ~x〉 ∈ Φ(Π)k of length at least N ′.
This follows from Definition 6.1 of Φ(Π)k because for any 〈φ, x1, . . . , xn〉 ∈ Φ(Π)k

Y and 1 ≤ i ≤ n it
holds that |〈φ, x1, . . . , xn〉| ≤ |xi|k, which implies that for any 1 ≤ i ≤ n the total number of variables in φ
is at most |xi|k. Hence, for any 〈φ, x1, . . . , xn〉 ∈ Φ(Π)k

Y there is 1 ≤ j ≤ n such that
∑

i∈P (φ)

1/|xi|ak+k ≤ |P (φ)| · 1/|xj |ak+k ≤ |xj |k · 1/|xj |ak+k ≤ 1/|〈φ, x1, . . . , xn〉|a.

We conclude that ∆(f ′(φ, ~x, 0), f ′(φ, ~x, 1)) ≤ 1/|〈φ, ~x〉|a for any a ∈ N and sufficiently long 〈φ, ~x〉 ∈
Φ(Π)k

Y . Thus, f ′ is statistically hiding on Φ(Π)k
Y .

6.2.2 The Hiding Property in the Computational Setting

In the computational setting we need a lemma analogous to Lemma 6.5. Roughly speaking, we use a
distinguisher D on φ = φ0 ∧ φ1 to construct circuits C0 and C1 such that either C0 is a distinguisher on φ0

or C1 is a distinguisher on φ1. Notice that we also need to make sure that the size of C0 and C1 is related
to the size of D, so that later, when we apply this lemma inductively, the size of the resulting distinguisher
will still be polynomial. The proof is technical, and can be found in Appendix C.
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Lemma 6.7 Let f ′ be the function from construction 6.3, let φ0 and φ1 be monotone boolean formulae, and
let ~x be a vector of strings. Given a circuit D, for each i ∈ {0, 1} there are circuits Ci and Ei of size at
most |D|+ |f ′|+ |φi|+

∑
j∈P (φi)

|xj | each such that

adv(D, f ′(φ0 ∧ φ1, 0), f ′(φ0 ∧ φ1, 1)) ≤ adv(C0, f
′(φ0, 0), f ′(φ0, 1)) + adv(C1, f

′(φ1, 0), f ′(φ1, 1)),
and adv(D, f ′(φ0 ∨ φ1, 0), f ′(φ0 ∨ φ1, 1)) ≤ adv(Ei, f

′(φi, 0), f ′(φi, 1)).

Finally, we prove Theorem 6.2 in the computational setting. The proof is complicated because we start
with a distinguisher D whose input contains an instance of Φ(Π)k, and from this distinguisher we need to
construct a distinguisher C whose input is an instance of Π. To do this, we will define an infinite sequence
of x ∈ ΠY from the sequence Φ(Π)k

Y , making sure that the size of C is polynomial in the size of D.

Lemma 6.8 If f is a computationally hiding NIC on a set ΠY , then for any k ∈ N Construction 6.3 of f ′ is
computationally hiding on Φ(Π)k

Y .

Proof: Let k ∈ N. Our goal is to show that if a circuit D distinguishes commitments of formula φ (i.e.,
commitments to 0 and commitments to 1), then there is a circuit Ci that distinguishes commitments on one
of the xi, and the size of Ci is polynomial in the size of D. First, we prove that for any circuit D and any
vector 〈φ, ~x〉 there are circuits Ci, each of size at most |D|+ |P (φ)| · |f ′|+ |φ|+ ∑

j∈P (φ) |xj |, such that

adv
(
D, f ′(φ, ~x, 0), f ′(φ, ~x, 1)

) ≤
∑

i∈P (φ)

adv
(
Ci, f(xi, 0), f(xi, 1)

)
.

We prove the above hypothesis by induction on the number ` of connectives in φ. The base case is trivial
because ` = 0, and φ is a boolean variable (i.e., φ = ai). Thus, f and f ′ are identical, and we can take
Ci = D. Assume the induction hypothesis for all ` ≥ 1, let D be a circuit, and let 〈φ, ~x〉 = 〈φ, x1, . . . , xn〉
be a vector. We only treat the case φ = φ0 ∧ φ1 because the case φ0 ∨ φ1 is similar. Omitting ~x, by
Lemma 6.7, there are circuits C0 and C1 such that

adv(D, f ′(φ0 ∧ φ1, 0), f ′(φ0 ∧ φ1, 1)) ≤ adv(C0, f
′(φ0, 0), f ′(φ0, 1)) + adv(C1, f

′(φ1, 0), f ′(φ1, 1)),

and the size of C0 is at most |D| + |f ′| + |φ1| +
∑

j∈P (φ1) |xj |. Thus, by the induction hypothesis for φ0,
there are circuits C0

i such that

adv
(
C0, f

′(φ0, ~x, 0), f ′(φ0, ~x, 1)
) ≤

∑

i∈P (φ0)

adv
(
C0

i , f(xi, 0), f(xi, 1)
)
,

and the size of each of the circuits C0
i is at most

(|D|+ |P (φ1)| · |f ′|+ |φ1|+
∑

j∈P (φ1) |xj |
)

+ |P (φ0)| ·
|f ′| + |φ0| +

∑
j∈P (φ0) |xj |, which equals |D| + |P (φ)| · |f ′| + |φ| + ∑

j∈P (φ) |xj |. A similar argument
applies to C1. Thus, denoting the circuits corresponding to C1 by C1

i we get that

adv(D, f ′(φ0 ∧ φ1, 0), f ′(φ0 ∧ φ1, 1)) ≤
∑

i∈P (φ0)

adv
(
C0

i , f(xi, 0), f(xi, 1)
)

+

∑

i∈P (φ1)

adv
(
C1

i , f(xi, 0), f(xi, 1)
)
.

Since the size of the circuits C0
i and C1

i is as stated in hypothesis, the induction follows.
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In the rest of the proof we show that the advantage is negligible in the length of 〈φ, ~x〉. Formally, we
assume towards a contradiction that there is a ∈ N, a polynomial-size circuit D, and an infinite sequence I
of vectors 〈φ, ~x〉 ∈ Φ(Π)k

Y such that adv(D, f ′(φ, ~x, 0), f ′(φ, ~x, 1)) ≥ 1/|〈φ, ~x〉|a for all 〈φ, ~x〉 ∈ I , and
then we show that this contradicts the fact that f is a computationally hiding NIC on ΠY .

Fix D, I and a. Recall that for any vector 〈φ, ~x〉 it holds that |P (φ)| ≤ |〈φ, ~x〉|, and that the size
of D and f ′ is polynomial in the size of |〈φ, ~x〉|. Thus, by the fact that we proved using induction there
is a polynomial p such that for each 〈φ, ~x〉 ∈ I there are circuits Ci of size at most p(|〈φ, ~x〉|) and∑

i∈P (φ) adv
(
Ci, f(xi, 0), f(xi, 1)

) ≥ adv
(
D, f ′(φ, ~x, 0), f ′(φ, ~x, 1)

) ≥ 1/|〈φ, ~x〉|a. Now, by Defini-

tion 6.1 of Φ(Π)k, for any 〈φ, ~x〉 = 〈φ, x1, . . . , xn〉 ∈ Φ(Π)k
Y and 1 ≤ j ≤ n it holds that |xj |k ≥ |〈φ, ~x〉|.

Thus, for each each 〈φ, ~x〉 ∈ I there is 1 ≤ j ≤ n and a circuit Cxj of size at most p(|xj |k) such that
adv

(
Cxj , f(xj , 0), f(xj , 1)

) ≥ |xj |−k · 1/|〈φ, ~x〉|a ≥ 1/|xj |ak−k. Since there are infinitely many such xj ,
we get a contradiction to the premise that f is a computationally hiding NIC on ΠY .

7 Open Questions

In this paper we showed a V -bit protocol for any problem that has a NIC. This protocol has soundness
error 1/2, which is inherent to public-coin black-box zero-knowledge protocols [18]. Our open question
is whether the soundness error can be reduced to 1/2n while maintaining a constant number of rounds.
Indeed, the protocol of [5] achieves this for random-self reducible problems, but it does not seem to apply
to problems admitting NIC.

Acknowledgements. We thank Oded Goldreich, Allan Scott, Warren Shenkenfelder, Salil Vadhan, and
Ivan Visconti for helpful discussions on this version. Also, many thanks to the referees of Crypto 2005 and
ICALP 2007 for their comments on earlier versions of this paper.
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[1] William Aiello and Johan Håstad. Statistical zero-knowledge languages can be recognized in two
rounds. J. of Computer and System Sciences, 42(3):327–345, June 1991.

[2] Dana Angluin and David Lichtenstein. Provable security in cryptosystems: a survey. Technical Report
288, Department of Computer Science, Yale University, 1983.
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A Σ-protocols

Sigma protocols play an important role in cryptography. Such protocols were given by Schnorr [37] and
Guillou and Quisquater [21], and the notion of Σ-protocols was later formalized in the thesis of Cramer [8].
We recall the definition of Σ-protocols, and discuss their relationship to V -bit protocols.

Definition A.1 (Σ-protocol [13]) Let p be a polynomial, and let R be a relation such that |w| ≤ p(|x|) for
any 〈x,w〉 ∈ R. An interactive protocol 〈P, V 〉 is a Σ-protocol for R if V runs in polynomial time, and the
following properties hold.

• Public-coin, 3-round: on common input x, the prover P sends a, the verifier V replies with a uni-
formly chosen string e, the prover sends back z, and V accepts or rejects based on 〈x, a, e, z〉.

• Perfect completeness: if there is w such that 〈x,w〉 ∈ R, then V accepts x with probability 1 over
the randomness for P and V .

• Special soundness: there is a polynomial-time Turing machine M such that for any x, if 〈a, e, z,accept〉
and 〈a, e′, z′,accept〉 are in 〈P, V 〉(x) and e 6= e′, then M(a, e, e′, z, z′) = w and 〈x,w〉 ∈ R.

• Special honest-verifier zero-knowledge: there is a probabilistic, polynomial-time Turing machine
S, called the simulator, such that for any 〈x,w〉 ∈ R and e, the output of S(x, e) is identically
distributed to 〈P, Ve〉(x), where Ve is the verifier that sends e as its random string.

Definition 4.2 of a V -bit protocol is similar to that of a Σ-protocol in that both of them consider 3-round,
public-coin protocols with perfect completeness. The difference between the notions is that V -bit protocols
make no reference to relations, zero-knowledge, or special soundness.

Notice that in V -bit protocols the verifier sends only one bit, whereas in Σ-protocols the verifier sends a
string e. However, as was observed by Damgård, a protocol remains Σ-protocol even if instead of sending
e the verifier sends one bit b, and e is defined as b followed by zeroes [13]. Thus, if a relation R has a
Σ-protocol, then R has a V -bit zero-knowledge protocol. Now we show that the opposite is also true, thus
proving Lemma 4.3.

Proof of Lemma 4.3: (sketch) Let Π = 〈ΠY , ΠN 〉 be a problem, and let 〈P, V 〉 be a V -bit zero-knowledge
proof for Π. We show that Π has Σ-protocol with the same zero-knowledge property. We start with the
observation that as a class of promise problems, Π is in NP. This is so because if x ∈ ΠY , then there are
prover messages m1,m2,m

′
2 such that V accepts on both transcripts 〈x,m1, 0,m2〉 and 〈x,m1, 1, m′

2〉, and
if x ∈ ΠN , then no such transcripts exist. Thus, 〈m1, m2,m

′
2〉 is a witness for x. By our characterization

result, Π has a NIC f . Thus, the protocol 〈P ′, V ′〉 of Blum [6], where P ′ proves to V ′ that x ∈ ΠY using
the witness 〈m1, m2,m

′
2〉, is a zero-knowledge proof for Π. Notice that the resulting proof inherits its zero-

knowledge property from the hiding property of the NIC, and it has perfect completeness. Since the proof
is also V -bit, it follows that it satisfies the special soundness and the special honest-verifier zero-knowledge
conditions.
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B Proof of Lemma 6.5

We start with the case where φ = φ0 ∧ φ1. Recall that for any bit b it holds that Pr[f ′(φ, b) = 〈α, β〉] =
Pr[f ′(φ0, b) = α] · Pr[f ′(φ1, b) = β]. Hence,

∆(f ′(φ, 0), f ′(φ, 1)) =∑

α,β

|Pr[f ′(φ0, 0) = α] · Pr[f ′(φ1, 0) = β]− Pr[f ′(φ0, 1) = α] · Pr[f ′(φ1, 1) = β]| =
∑

α,β

|Pr[f ′(φ0, 0) = α] · Pr[f ′(φ1, 0) = β]− Pr[f ′(φ0, 1) = α] · Pr[f ′(φ1, 0) = β] +

Pr[f ′(φ0, 1) = α] · Pr[f ′(φ1, 0) = β]− Pr[f ′(φ0, 1) = α] · Pr[f ′(φ1, 1) = β]| ≤∑

α,β

|Pr[f ′(φ0, 0) = α] · Pr[f ′(φ1, 0) = β]− Pr[f ′(φ0, 1) = α] · Pr[f ′(φ1, 0) = β]|+
∑

α,β

|Pr[f ′(φ0, 1) = α] · Pr[f ′(φ1, 0) = β]− Pr[f ′(φ0, 1) = α] · Pr[f ′(φ1, 1) = β]| =
∑

β

Pr[f ′(φ1, 0) = β] ·
(∑

α

|Pr[f ′(φ0, 0) = α]− Pr[f ′(φ0, 1) = α]|
)

+

∑
α

Pr[f ′(φ0, 1) = α] ·
(∑

β

|Pr[f ′(φ1, 0) = β]− Pr[f ′(φ1, 1) = β]|
)

=

∆(f ′(φ0, 0), f ′(φ0, 1)) + ∆(f ′(φ1, 0), f ′(φ1, 1)).

The case where φ = φ0 ∨φ1 is different because the bit b is shared between two bits b0 and b1. Specifically,

Pr[f ′(φ, 0) = 〈α, β〉] =
1
2
· Pr[f ′(φ0, 0) = α] · Pr[f ′(φ1, 0) = β] +

1
2
· Pr[f ′(φ0, 1) = α] · Pr[f ′(φ1, 1) = β]

and

Pr[f ′(φ, 1) = 〈α, β〉] =
1
2
· Pr[f ′(φ0, 0) = α] · Pr[f ′(φ1, 1) = β] +

1
2
· Pr[f ′(φ0, 1) = α] · Pr[f ′(φ1, 0) = β].

Hence,

Pr[f ′(φ, 1) = 〈α, β〉]− Pr[f ′(φ, 0) = 〈α, β〉] =
1/2(Pr[f ′(φ0, 0) = α] · Pr[f ′(φ1, 0) = β] + Pr[f ′(φ0, 1) = α] · Pr[f ′(φ1, 1) = β])−
1/2(Pr[f ′(φ0, 0) = α] · Pr[f ′(φ1, 1) = β] + Pr[f ′(φ0, 1) = α] · Pr[f ′(φ1, 0) = β]) =
1/2 · Pr[f ′(φ1, 0) = β](Pr[f ′(φ0, 0) = α]− Pr[f ′(φ0, 1) = α])−
1/2 · Pr[f ′(φ1, 1) = β](Pr[f ′(φ0, 0) = α]− Pr[f ′(φ0, 1) = α]) =
1/2 · (Pr[f ′(φ1, 0) = β]− Pr[f ′(φ1, 1) = β])(Pr[f ′(φ0, 0) = α]− Pr[f ′(φ0, 1) = α]).
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Using the above equality we conclude that

∆(f ′(φ, 0), f ′(φ, 1)) =
1
2

∑

〈α,β〉
|Pr[f ′(φ, 1) = 〈α, β〉]− Pr[f ′(φ, 0) = 〈α, β〉]| =

1
2
· 1
2

∑

〈α,β〉
|(Pr[f ′(φ1, 0) = β]− Pr[f ′(φ1, 1) = β])(Pr[f ′(φ0, 0) = α]− Pr[f ′(φ0, 1) = α])| =

(1
2

∑

β

|Pr[f ′(φ1, 0) = β]− Pr[f ′(φ1, 1) = β]|
)
·
(1

2

∑
α

|Pr[f ′(φ0, 0) = α]− Pr[f ′(φ0, 1) = α]|
)

= ∆(f ′(φ1, 0), f ′(φ1, 1)) ·∆(f ′(φ0, 0), f ′(φ0, 1)).

C Proof of Lemma 6.7

Fix φ0, φ1, ~x and D. To simplify the presentation we omit ~x. We start with the ∧ operator. Let C0 (respec-
tively, C1) be the circuit that on input y obtains a random sample y′ of f ′(φ0, 0) (respectively, f ′(φ1, 1)),
and outputs D(y′, y) (respectively, D(y, y′)). Thus, by Construction 6.3 of f ′,

adv(D, f ′(φ0 ∧ φ1, 0), f ′(φ0 ∧ φ1, 1)) =
|Pr[D(〈f ′(φ0, 0), f ′(φ1, 0)〉) = 1]− Pr[D(〈f ′(φ0, 1), f ′(φ1, 1)〉) = 1]| =
|Pr[D(〈f ′(φ0, 0), f ′(φ1, 0)〉) = 1]− Pr[D(〈f ′(φ0, 0), f ′(φ1, 1)〉) = 1] +
Pr[D(〈f ′(φ0, 0), f ′(φ1, 1)〉) = 1]− Pr[D(〈f ′(φ0, 1), f ′(φ1, 1)〉) = 1]| ≤
adv(C0, f

′(φ1, 0), f ′(φ1, 1)) + adv(C1, f
′(φ0, 0), f ′(φ0, 1)).

We turn our attention to the ∨ operator. Let E0 (respectively, E1) be the circuit that on input y uniformly
picks b′ ∈ {0, 1}, obtains a random sample y′ of f ′(φ1, b

′) (respectively, f ′(φ0, b
′)), and outputs b′⊕D(y, y′)

(respectively, b′ ⊕D(y′, y)). We only consider the case of E0 because the case of E1 is symmetric. Thus,
by Construction 6.3 of f ′,

Pr[D(f ′(φ0 ∨ φ1, 0)) = 1] =
1/2 · Pr[D(〈f ′(φ0, 0), f ′(φ1, 0)〉) = 1] + 1/2 · Pr[D(〈f ′(φ0, 1), f ′(φ1, 1)〉) = 1], and
Pr[D(f ′(φ0 ∨ φ1, 1)) = 1] =
1/2 · Pr[D(〈f ′(φ0, 1), f ′(φ1, 0)〉) = 1] + 1/2 · Pr[D(〈f ′(φ0, 0), f ′(φ1, 1)〉) = 1],

and therefore

adv(E0, f
′(φ0, 0), f ′(φ0, 1)) =

|Pr[E0(f ′(φ0, 0)) = 1]− Pr[E0(f ′(φ0, 1)) = 1]| =
|1/2 · Pr[D(〈f ′(φ0, 0), f ′(φ1, 0)〉) = 1]− 1/2 · Pr[D(〈f ′(φ0, 0), f ′(φ1, 1)〉) = 1]−
1/2 · Pr[D(〈f ′(φ0, 1), f ′(φ1, 0)〉) = 1] + 1/2 · Pr[D(〈f ′(φ0, 1), f ′(φ1, 1)〉) = 1]| =
|Pr[D(f ′(φ0 ∨ φ1, 0)) = 1]− Pr[D(f ′(φ0 ∨ φ1, 1)) = 1]| =
adv(D, f ′(φ0 ∨ φ1, 0), f ′(φ0 ∨ φ1, 1)).
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It remains to show that the size of Ci and Ei is as stated. Notice that each circuit takes a string y as input, and
invokes D on y and y′, where y′ is obtained by using Construction 6.3 of f ′, with φi and {xj |j ∈ P (φi)}
hardwired into it. Thus, the size of each of Ci and Ei is at most |D|+ |f |+ |φi|+

∑
j∈P (φi)

|xj |.
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