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Consistency Analysis of EKF-based SLAM by

Measurement Noise and Observation Times
LI Hui-Ping1 XU De-Min1 ZHANG Fu-Bin1 YAO Yao1

Abstract Inconsistency is a fundamental problem in simultaneous localization and mapping (SLAM). Previous works from prede-
cessors have studied the inconsistent problem of extended Kalman filter (EKF) SLAM algorithm focusing on the linearization errors.
In this paper, we studied the inconsistency issue of EKF SLAM in theory based on measurement noise and observation time. In a
simplified situation, we deduced some useful theorems of estimated covariance matrix. Then, we made use of them to investigate the
inconsistency issue. We showed that the measurement noise and the observation times can drive the EKF SLAM out of consistency.
Moreover, we demonstrated the explicit effects of measurement noise and observation times on inconsistency of the EKF SLAM. Our
simulation experiments verified the results.

Key words Simultaneous localization and mapping (SLAM), extended Kalman filter (EKF), consistency, measurement noise,
observation times

Simultaneous localization and mapping (SLAM) is the
process of the robot building a map of an environment,
while concurrently localizing itself in it. A solution to the
SLAM problem has been seen as a “holy grail” for the
mobile robotics community as it would provide a means
to make a robot truly autonomous. The stochastic solu-
tion to SLAM was proposed by Smith[1], which was the
first to formally address measurement error correlations
that arise during the map-building process. Many differ-
ent solutions[1−7] to SLAM have been proposed during the
past 20 years, for SLAM algorithm is the main solution to
SLAM problem[8−9], for EKF SLAM has been formulated
and solved as a theoretical problem in a number of different
forms. To implement the EKF SLAM in practice, many
variants[2−5, 7] were put forward to reduce computational
complexity, and others[10−12] dealt with data association.
However, in spite of its clear success in practical applica-
tions, the fundamental consistency of the SLAM algorithm
has received little attention. Earlier works[13−20] on EKF-
SLAM consistency showed that eventual inconsistency of
the algorithm is inevitable for large-scale maps, and the
estimated uncertainty will become optimistic when com-
pared to the true errors. Julier[15] took a counter example
to show the inconsistency issue in EKF SLAM. Then, some
papers[13, 19−20] showed that the inconsistent estimate is be-
cause of the errors introduced by the linearization process
and can be inevitable. Bailey[16] used Monte Carlo simula-
tions to investigate whether the degree of inconsistency was
always significant and under what conditions EKF-SLAM
might produce reasonable results. Huang[14] has provided
a theoretical explanation to inconsistency and gained some
theoretical results: the violation of some fundamental con-
straints governing the relationship between various Jaco-
bians, when they are evaluated at the current state estimate
may cause inconsistency. Based on the analysis on incon-
sistency, some algorithms[18, 21−22] have been proposed to
improve the consistency of EKF SLAM. However, no previ-
ous work has investigated whether the measurement noise
could cause the inconsistency, what is the effect on incon-
sistency and why it is inevitable when observation time in-
creases. In this paper, we will provide explicit formula for
the covariance matrices for a basic scenario in the nonlin-
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ear two-dimensional EKF SLAM problem with point land-
marks observed using a range-and-bearing sensor. Theo-
retical proofs of measurement noise effect and observation
time effect on inconsistency are given. Through explicit
analysis, our results are: 1) The measurement noise is a
factor to cause EKF SLAM inconsistency; with increase
in the value of measurement noise, the degree of inconsis-
tency will decrease; with the observation times increase,
the algorithm will inevitably become inconsistent, but the
inconsistency caused by it will reach an upper bound; 2)
The degree of improvement to consistency by increasing the
measurement noise is greater than the degree of damage to
consistency by increasing the observation time.

1 EKF SLAM algorithm

In this section, to make use of some results in [14], we
use the same robot model suitable for theoretical analysis.
We specify the SLAM state as the robot pose (heading and
position) and localization of stationary landmarks observed
in the environment. The state at time k is represented by
a joint state-vector XXX(k) as

XXX(k) =




φ(k)
XXXr(k)

mmm


 (1)

where φ(k) is the robot heading orientation, XXXr(k) =[
xr(k) yr(k)

]T
is the robot position, and mmm =[

XXX1(k) XXX2(k) · · · XXXN (k)
]T

is the positions of land-
marks.

1.1 Process model and observation model

To describe the robot motion, we use the kinematical
model for the trajectory of the front wheel of a bicycle
subjected to rolling motion constraints (i.e., assuming zero
wheel slip). The robot is shown in Fig. 1. The discrete form
of robot model is represented by

[
φ(k + 1)

XXXr(k + 1)

]
= fff(φ(k),XXXr(k),uuur(k)) (2)

fff(φ(k),XXXr(k),uuur(k)) =



φ(k) +
(ν(k) + δν)T sin(γ(k) + δγ)

L
xr(k) + (ν(k) + δν)T cos(φ(k))
yr(k) + (ν(k) + δν)T cos(φ(k))


 (3)

where uuu =
[
ν(k) γ(k)

]T
are termed control inputs. L is

the wheelbase between the front and rear axles. δν and
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δγ are zero-mean Gaussian white noises on ν(k) and γ(k),
respectively. T is the time interval between the two steps.

Fig. 1 The robot model

Landmarks are assumed to be stationary, so the process
model of landmarks is represented by

XXXi(k + 1) = XXXi(k), i = 1, 2, · · · , N (4)

So the full system process model of SLAM can be repre-
sented by

XXX(k + 1) = FFF (XXX(k), ν(k), γ(k), δν, δγ) (5)

FFF (XXX(k), ν(k), γ(k), δν, δγ) =



φ(k) +
(ν(k) + δν)T sin(γ(k) + δγ)

L
xr(k) + (ν(k) + δν)T cos(φ(k))
yr(k) + (ν(k) + δν)T cos(φ(k))

XXX1(k)
XXX2(k)

...
XXXN (k)




(6)

For a range-bearing measurement from the robot to a land-

mark mmmi =
[
xi yi

]T
, the observation model is represented

by range ri and bearing θi as follows:

ZZZi(k) = HHHi(XXX(k)) + ωωω(k) (7)

HHHi(XXX(k)) =




√
(xi(k)− xr(k)) + (yi(k)− yr(k))

arctan

(
yi(k)− yr(k)

xi(k)− xr(k)

)

 (8)

where ωωωi(k) = [ωνi ωγi ]
T is assumed to be Gaussian white

noise with zero-mean and the covariance Ri(k).

1.2 EKF SLAM process

1.2.1 Prediction

State prediction:

XXX(k + 1|k) = FFF (X̂XX(k), ν(k), γ(k), 0, 0) (9)

Covariance prediction:

P (k + 1|k) = ∇FX(k)P (k|k)∇FT
X(k) +∇FνγQ(k)FT

νγ (10)

where Q(k) is the covariance of control noises δν and δγ.
∇FX(k) and ∇Fνγ are given as follows:

∇FX(k) =

[∇FφXr(k) 0
0 I

]
, ∇Fνγ =

[∇fνγ

0

]
(11)

1.2.2 Update

The estimate state vector can be updated as follows:

S(k + 1) = ∇HiP (k + 1|k)∇HT
i + Rriθi (12)

µµµ(k + 1) = ZZZi(k + 1)−HHHi(X̂XX(k + 1|k)) (13)

W (k + 1) = P (k + 1|k)∇HT
i S−1(k + 1) (14)

X̂XX(k + 1|k + 1) = X̂XX(k + 1|k) + W (k + 1)µµµ(k + 1) (15)

The state covariance matrix can be updated by

K(k) = P (k + 1|k)∇HT
i (∇HiP (k + 1|k)∇HT

i + Ri(k))−1

(16)

P (k + 1|k + 1) = (I −K(k)∇Hi)P (k + 1|k) (17)

If we use information matrix to update covariance, it can
be done as follows:

Ω(k + 1|k) = P (k + 1|k)−1 (18)

Ω(k +1|k +1) = Ω(k +1|k)+∇HT
i P (k +1|k)−1∇Hi (19)

Ω(k + 1|k + 1) = P (k + 1|k + 1)−1 (20)

The Jacobin matrix of measurement function ∇Hi is rep-
resented by

∇Hi =




0 −dx

dy
−dy

r
0 · · · dx

r

dy

r
0 · · ·

−1
dy

r2
−dx

r2
0 · · · −dy

r2

dx

r2
0 · · ·




(21)

where dx = xi − xr(k + 1), dy = yi − yr(k + 1), and r =√
(dx)2 + (dy)2.

1.2.3 Augmentation

If the robot observes a landmark which is a new one, it
needs to add the landmark as a new state into the system
state vectors. When the robot observes the new landmark,
the augmentation process can be done as follows:

X̂XXaug(k) =

[
X̂XX(k|k)

gi(φ̂(k|k), X̂XXr(k|k), ZZZi(k))

]
(22)

Paug(k|k) =
[

P (k|k) P (k|k)∇gT
iX

∇giXP (k|k) ∇gT
iXP (k|k)∇giX +∇gT

iZRi(k)∇giZ

]

(23)

where gggi(φ̂(k|k), X̂XXr(k|k), ZZZi(k)) is represented as

gggi(φ̂(k|k), X̂XXr(k|k), ZZZi(k)) =
[
x̂r(k|k) + ri cos(φ̂(k|k) + γi(k))

ŷr(k|k) + ri sin(φ̂(k|k) + γi(k))

]
(24)

∇giX and ∇giZ are Jacobin matrices of gggi(φ̂(k|k),

X̂XXr(k|k), ZZZi(k)).
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2 Preparations

2.1 Symptoms of inconsistency

The inconsistency manifests in two related symptoms.
The first symptom is odd update characteristics of the state
mean, resulting in jumps in the vehicle path and linearly
constrained localization of the landmark estimates. The
second one is wrong information gain (i.e., reduction in
uncertainty), such that the estimated covariance is less than
the true covariance. In this paper, we focus on the second
symptom to analyze the inconsistency. In general, if we can
get the true state covariance and the estimated covariance,
we can compare the difference between them. Given the
true state covariance P (k) and estimated one P (k|k), it is
possible to check whether the difference is positive semi-
definite. If P (k|k)−P (k) > 0, then we say it is consistent,
otherwise it is inconsistent.

However, in general, it is difficult to know exactly the
true state and true covariance, so we need to design some
particular scenarios of EKF SLAM, in which we can easily
know the true state and true covariance.

2.2 Particular scenario description

The considered scenario is the same as that of Julier
and Uhlmann[15], where the robot keeps stationary and ob-
serves just one landmark n times. In that scenario, we

assume the position of the landmark is
[
xm ym

]T
, the

robot pose is
[
φ x y

]T
. When it is the first time to ob-

serve the landmark, we need to append the landmark to
the state following (22) and (23). The Jacobin matrices in
this scenario represented by ∇giX and ∇giZ then become

∇g0X =

[−r sin(φ + r) 1 0
r cos(φ + r) 0 1

]
(25)

∇g0Z =

[
cos(φ + r) −r sin(φ + r)
sin(φ + r) r cos(φ + r)

]
(26)

Denote the inverse of ∇g0Z as G. We can easily get G as

G =
1

r2

[
r cos(φ + r) r sin(φ + r)
− sin(φ + r) cos(φ + r)

]
(27)

Denote a useful matrix T as T = G∇g0X and another ma-
trix B as

B =

[
TT

GT

]
(28)

The Jacobin matrices defined by (21) is

∇H =




0 −dx

dy
−dy

r

dx

r

dy

r

−1
dy

r2
−dx

r2
−dy

r2

dx

r2


 (29)

Denote some temporal matrices as follows:

A =




dx

r

dy

r

−dy

r2

dx

r2


 , eee =

[
0
1

]
(30)

Ae =
[
A−1eee I

]
(31)

where dx = xm − x, dy = ym − y, and r =
√

dx2 + dy2.

2.3 Theorems to analyze inconsistency

Theorem 1. If the robot is stationary at a point and
observes a landmark n times, at the same time the Jacobin
matrices are evaluated in the true state, and the landmarks
are initialized by (22) and (23), then the covariance matrix
of robot pose and the covariance matrix of landmark satisfy
the following equation

P = Ptemp − PtempB(R + BTPtempB)−1BTPtemp (32)

where B is denoted as (28). R is the covariance of the
measurement noise and Ptemp is the same as P n

end denoted
in [3] as follows:

Ptemp =




P0 P0A
T
e

AeP0 AeP0A
T
e +

A−1RA−T

n− 1


 (33)

where P0 is the initial robot pose uncertainty, Ae as denoted
in (31) and A as represented in (30).

Proof. If the initial uncertainty of the robot is P0, the

initial position states are
[
φ x y

]T
and the covariance of

the measurement noise is R, then when the robot observes
the landmark for the first time, we need to use (22) and
(23) to do initialization and append the landmark to system
states. The new covariance is as follows:

P1 =

[
P0 P0∇gT

0X

∇g0XP0 ∇gT
0XP0∇g0X +∇gT

0ZR∇g0Z

]
(34)

where ∇g0X and ∇g0Z are denoted in (25) and (26), re-
spectively. By using matrix inverse lemma in Appendix A,
we get

Ω1 = P−1
1 =

[
P−1

0 + TTR−1T TTR−1G
GTR−1T GTR−1G

]
(35)

where T is denoted as above and G is denoted as (27).
When the robot sees the landmark the second time to n-
th time, we use (10) to predict and use (18) ∼ (20) to do
covariance update iteratively. For the robot is stationary,
we can get

P (k + 1|k) = P (k|k) (36)

By using (18) ∼ (20) and (36) n times, we can get

Ωn = Ω1 + (n− 1)∇HTR−1∇H =[
P−1

0 + TTR−1T TTR−1G
GTR−1T GTR−1G

]
+

(n− 1)

[−HT

AT

]
R−1 [−H A

]
= (37)

[
TTR−1T TTR−1G
GTR−1T GTR−1G

]
+

[
P−1

0 + (n− 1)HTR−1H −(n− 1)HTR−1A
−(n− 1)ATR−1H (n− 1)ATR−1A

]
=

BR−1BT + Ωtemp

where Ωtemp is the inverse of Ptemp. By using the matrix
inverse lemma in Appendix A, we get

P = Ω−1 =

(BR−1BT + Ωtemp)−1 = (38)

Ptemp − PtempB(R + BTPtempB)−1BTPtemp

¤
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Theorem 1 gives the equation that the estimated covari-
ance matrix must obey. It is shown that the covariance
matrix is different with the result in [14]. This is because
that we have done landmark initialization and augmenta-
tion and considered the effect of measurement noise in the
first step.

Theorem 2. Assume Rα = αI2 (0 < α < +∞)
in (32). If 0 < α1 < α2 < +∞, then P (α2) >
P (α1) > 0, where P (α) = Ptemp(α) − Ptemp(α)B(Rα +
BTPtemp(α)B)−1BTPtemp(α).

Proof. By (38), we easily get P (α) > 0 and P−1(α) =
BR−1

α BT + Ωtemp(α), where Ωtemp(α) = P−1(α) is repre-
sented by

Ωtemp(α) =

[
P−1

0 + TTR−1
α T TTR−1

α G
GTR−1

α T GTR−1
α G

]
(39)

Computing the difference between P−1(α1) and P−1(α2),
and we get

P−1(α1)− P−1(α2) =(
1

α1
− 1

α2

) [
BBT + (n− 1)∇HT∇H

]
> 0 (40)

Because of 0 < α1 < α2 < +∞, by Appendix B, we easily
get P (α2) > P (α1) > 0. ¤

Theorem 2 means that the estimated state covariance
matrix decreases monotonically as the measurement noise
covariance decreases monotonically. This indicates that the
measurement noise covariance matrix can increase the ac-
curacy of the full covariance, and it contains rich update
information, however it may also contain too much infor-
mation, which results in EKF SLAM inconsistency. The
results can be seen in Fig. 2.

Fig. 2 Different robot poses uncertainty when given different
measurement noise (Seeing Theorem 2, the initial robot pose

uncertainty is P0 = diag{0.5, 2, 2}. All the Jacobin matrices are
evaluated in the true state, and the observation time is fixed

as 200.)

Theorem 3. If Rα = αI2 (0 < α < +∞) in (32),
then 0 < Pk+1(α) < Pk(α), where Pk(α) = P k

temp −
P k

tempB(R + BTP k
tempB)−1BTP k

temp, P k
temp = Ptemp | n =

k (k = 1, 2, · · · , n− 1).
Proof. Computing the difference between P−1

k+1(α) and

P−1
k (α), we get

P−1
k+1(α)− P−1

k (α) =
1

α
∇HTH > 0 (41)

Because Pk (α) > 0 (k = 1, 2, 3, · · · , n − 1), by Appendix
B, we get 0 < Pk+1(α) < Pk(α). ¤

Theorem 3 shows that as the measurement time in-
creases, the full-estimated covariance matrix decreases
monotonically. This means that by increasing the obser-
vation times, it can increase useful information to reduce
the uncertainty of the full system states. However, it also
may contain redundant information to update the full sys-
tem, which results in inconsistency. The results can be seen
in Fig. 3.

(a) Robot poses uncertainty

with different n

(b) Magnifying version of

small part in (a) ( Seeing

Theorem 3, the initial robot

pose uncertainty is

P0 = diag{0.5, 2, 2}. All the

Jacobin matrices are evaluated

in the true state and the

measurement noise covariance

is R = diag{0.01, 0.01}.)
Fig. 3 Different robot poses uncertainties by different

observation times when given measurement noise

Corollary 1. Assume that the robot is stationary at
a point and observes a landmark for n times. If it uses
basic EKF SLAM algorithm with (22) and (23) to do ini-
tialization and augmentation, and uses the same true state
to compute Jacobin matrices, when n → +∞, then the
full-state covariance matrix can reach the lower bound as
follows:

P∞ = P∞temp − P∞tempB(R + BTP∞tempB)−1BTP∞temp (42)

where

P∞temp =

[
P0 P0A

T
e

AeP0 AeP0A
T
e

]
(43)

Proof. By Theorem 3, when n → +∞, (42) can be
easily derived from (32) and (33). ¤

This corollary shows the lower bound of the full-state
covariance matrix, when given the measurement noise. It
is useful to analyze the effect of observation times on con-
sistency, and it implies that the effect of observation time
on the degree of inconsistency has an upper bound. The
result can be seen in Fig. 4.
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Fig. 4 The lower bound of robot pose uncertainty when
observation times n → +∞ (Seeing Corollary 1, the initial
robot uncertainty is P0 = diag{0.5, 2, 2}. The measurement

noise is R = diag{0.01, 0.01} and all the Jacobin matrices are
evaluated in true state.)

Corollary 2. If Rα = αI2 (0 < α < +∞) in (32), when
α → +∞, limn→+∞ α

n
= 0, then the full-state estimated

covariance matrix becomes a fixed one as

P∞(∞) =

[
P0 P0A

T
e

AeP0 AeP0A
T
e

]
(44)

Proof. By Theorem 1, when α → +∞, limn→+∞ α
n

= 0,
(44) can be easily derived from (32) and (33). ¤

Corollary 2 gives a useful result, which can be used to
investigate the integrated effect of observation time and
measurement noise on the inconsistency.

3 Consistency analysis

Based on these theorems above, we give an important
theorem to investigate the inconsistency caused by mea-
surement noise and observation time. Then, we use simu-
lations to analyze the results.

3.1 Theoretical analysis on inconsistency

Theorem 4. Assume that the robot is stationary at
a point and only observes a landmark for n times. If it
uses basic EKF SLAM algorithm with (22) and (23) to
do initialization and augmentation and uses the same true
state to compute Jacobin matrices, then the EKF SLAM
inconsistency is mainly affected by the measurement noise
covariance matrix and observation time. The degree of the
inconsistency is also determined by R and observation time
n.

Proof. After n steps, we can compute the ultimate es-
timated information matrix as follows:

Ωn = Ω1 +

n∑
j=2

∇H̃T
j R−1∇H̃j =

[
P−1

0 + TTR−1
α T TTR−1

α G
GTR−1

α T GTR−1
α G

]
+

n∑
j=2

[−H̃T
j

ÃT
j

]
R−1 [−H̃j Ãj

]
(45)

where ∇H̃j is the Jacobin matrix computed in predicted

state, and H̃j and Ãj are the same parts in ∇H̃j computed
by predicted state.

By assumption that all the Jacobins are computed in
true state values, so H̃j = H, Ãj = A (j = 2, 3, · · · , n),

then (45) becomes (37). By Theorem 1, we can get the
ultimate results of estimated covariance matrix as

P = Ptemp − PtempB(R + BTPtempB)−1BTPtemp (46)

In (46), Rα = αI (0 < α < +∞). When α → +∞, we get

Pn(∞) =

[
P0 P0∇gT

0X

∇g0XP0 +∞
]

(47)

By Corollary 2, when 0 < α < +∞, n < +∞, we can get

Pn(α) < Pn(∞) =

[
P0 P0∇gT

0X

∇g0XP0 +∞
]

(48)

By the property in (3) in Appendix B, we can get

PnφXr (α) < P0 (49)

where PnφXr (α) is the estimated covariance of the robot
pose.

This means that the uncertainty of the robot pose is
decreased. However, it is known that when the robot is
stationary and only observes one landmark, in which it
can not change the uncertainty of the robot pose[14−15].
So this is incorrect (inconsistent). Furthermore, by Theo-
rem 2, when observation time is fixed, it is shown that the
larger the measurement noise, the larger the estimated co-
variance matrix. This means increase in the measurement
noise can reduce the inconsistency. So, when observation
time is fixed, the degree of the inconsistency is determined
by measurement noise R. When R → +∞, it almost has
no effect on inconsistency. In the other aspect, if given
Rα = αI (0 < α < +∞), then when 1 < k < n, by Theo-
rem 3, we get

Pk(α) < P1(α)=

[
P0 P0∇gT

0X

∇g0XP0 ∇gT
0XP0∇g0X +∇gT

0ZR∇g0Z

]

(50)
By the property in (3) in Appendix B, we can get

PkφXr (α) < P0 (51)

This means that given a measurement noise, as the ob-
servation time increases, the uncertainty of the robot
pose is decreased. While this is contradicted with the
fact that the robot is stationary and the pose can not
be changed. So this is wrong (inconsistent). It can
be seen that when observation time increases, the in-
consistency is inevitable. Furthermore, by Theorem 3
and given measurement noise, the more the observa-
tion time, the less the estimated state covariance. This
means that increase in observation time increases the
inconsistency. So, when measurement noise is fixed,
the degree of inconsistency is determined by observation
time. ¤

Theorem 4 demonstrates the two kinds of important in-
formation in our considering situation. The first one is that
the observation time and measurement noise can cause the
EKF SLAM to be inconsistent. The second one is that it
shows the individual effect of measurement noise or obser-
vation time to inconsistency given the other.

In fact, by Corollaries 1 and 2 and Theorem 4, we can
further investigate the integrated effect of the two factors on
the inconsistency. By Corollary 1, we know that given mea-
surement noise, when the observation time n →∞, the es-
timated state covariance matrix will approximate the lower
bound by (42), and it will become the most inconsistent.
However, by Corollary 2, when α → +∞, limn→+∞ α

n
= 0,
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the estimated robot pose covariance matrix becomes the
initial one, and the algorithm will become consistent. By
Theorem 4, it is implied that increasing the measurement
noise can reduce the inconsistency of the algorithm and at
the same time can reduce the inconsistency caused by ob-
servation time. In other words, the degree of increasing the
consistency by magnifying the measurement noise is greater
than the degree of decreasing the consistency by increasing
the observation time.

3.2 Simulation analysis

We assume the robot is stationary and only observes a
landmark. To focus on the effects of measurement noise
and observation time on inconsistency, we compute all the
Jacobin matrices in the true states. Fig. 5 shows the in-
dividual effect of observation time on inconsistency. In
Fig. 5, we assumed the robot was at (1, 1), the landmark
was located at (3, 3) and the measurement noise was fixed
as R = diag{0.01, 0.01}. We used the algorithm to run 2,
20, and 200 times. It was showm that with the observa-
tion times increasing, the algorithm became inconsistent.
The more observation time, the more inconsistency, but
the velocity of decreasing consistency was slow when the
observation time became large. Fig. 6 shows the indepen-
dent effect of measurement noise on inconsistency. The
initial value was the same as Fig. 5. The difference was
that we fixed observation time as 200 while varying the
measurement covariance matrices. Fig. 6 shows that given
the observation time, increasing the measurement noise can
increase the algorithm consistency. Fig. 7 shows the results
of the integrated effects of measurement noise and obser-
vation time on inconsistency. In that simulation, except
the landmark localization was (5, 5), the others were the
same as Fig. 6. In Fig. 7, we can see that increasing the ob-
servation time very greatly while increasing the covariance
matrix of the measurement noise a little can still decrease
the inconsistency. This means that the rate of decreasing
the inconsistency by increasing the measurement noise is
much greater than that of increasing the inconsistency by
increasing observation time. So, magnifying the measure-
ment noise can compensate for the inconsistency caused by
increasing observation time.
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(a) Robot poses uncertainty

with different n

(b) Magnifed figure of small

part in (a) (Seeing Theorem 4,

all the Jacobin matrices are

evaluated in the true state.)

Fig. 5 The effect of observation time on inconsistency

Fig. 6 The effect of measurement noise on inconsistency
(Seeing Theorem 4, all the Jacobin matrices were evaluated in

the true state.)

Fig. 7 The integrated effect of measurement noise and
observation time on inconsistency (All the Jacobin matrices

were evaluated in true state.)

4 Discussion

Consistency issue is a fundamental problem in SLAM.
It has been shown recently that EKF SLAM can produce
inconsistent (overconfident) estimations by a number of re-
searchers. The theoretical results in this paper not only
confirm those claims but also give new insights in under-
standing the problem. Previous investigations of EKF-
SLAM consistency[13, 15, 18−20] claimed that the algorithm′s
failure is time dependent, but they only gave some simu-
lation results. Our results agree with them, at the same
time, we give an explicit theoretical explanation to them.
We show that with the observation time increasing, the
inconsistency is inevitable. Most recently, Bailey[16] uses
Monte Carlo simulation to analyze the inconsistency prob-
lem, and gave two symptoms of inconsistency and derived
the some special results. Huang[14] gave some theoretical
explanations to inconsistency caused by linearization er-
rors and large heading orientation and they well explained
the results in [11, 13, 15, 19−20]. However, they ignored the
landmark appending process and did not consider the effect
of process noise and measurement noise. Moreover, no ear-
lier work pointed out whether the measurement noise can
cause the inconsistency or how it affects the inconsistency.
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In this paper, we analyzed the effect of measurement noise
on inconsistency in theory. Our results are that the mea-
surement noise is also a factor to cause inconsistency and
the larger the covariance matrix of measurement noise, the
less effect on inconsistency.

In Theorem 4, we assumed the Jacobin matrix is com-
puted at the true state values, and we got some useful re-
sults of inconsistency caused by observation time and mea-
surement noise. In fact, if we assume R → ∞, then (45)
reduces to (66) in [14]. So we could derive the same results
as [14] to analyze the effects of heading orientation and
Jacobin matrices evaluated in different states on inconsis-
tency. This means that without considering the effect of
measurement noise and ignoring the effects of observation
times, our analysis could also get the same results as in
[14, 16].

The common ideas this paper based on to analyze the
inconsistency is “keep observing new landmarks does not
help in reducing the robot pose uncertainty”, which is also
the basic idea used in [14−16]. In this paper, we give the
theoretical results of inconsistency caused by the observa-
tion time and measurement noise. One should pay atten-
tions to the assumptions: 1) All the results are based on
that the robot is stationary; 2) The map is points and the
measurements are range and bearing which is ideal; 3) The
landmark initialization and state augmentation are based
on (22) and (23); and 4) The data association is assumed
to be known.

Although this paper only analyzes the situation that the
robot is stationary, in fact, it is a particular situation of
movement without considering the effects of process noise
and nonlinearity of robot model on consistency. So the
theoretical results in this paper are also useful in moving
situation in some aspects: 1) The measurement noise and
observation time are also the factors to cause inconsistency
in robot moving situation; 2) When the other parameters
have enough small effects on inconsistency, the theoretical
results in this paper are almost true to moving situation;
3) The results in this paper may provide possible founda-
tion to analyze the independent effects of process noise and
nonlinearity of robot model, and even effects of all param-
eters on inconsistency in robot moving situation. However,
to investigate the inconsistency in moving situation, besides
measurement noise and observation time, effects of process
noise and nonlinearity of robot model on consistency should
be considered. Moreover, the possible coupling of the four
factors should also be analyzed.

Inconsistency analysis can give some insights to use EKF
SLAM in practice. Through our theoretical investigations,
it is shown that when the observation time becomes great,
the inconsistency is inevitable. So to get robust and con-
sistent SLAM algorithms, we can choose some EKF SLAM
variants to minimize the inconsistency. Furthermore, it is
also shown that increasing the measurement noise can cause
less inconsistency. The rate of improvement to consistency
by increasing the measurement noise is greater than that of
the damaging the consistency by increasing the observation
time. So in some situations, we can magnify the measure-
ment noise to compensate for inconsistency by observation
time and to reduce the inconsistency.

5 Conclusions

In this paper, we investigated the effects of measurement
noise and observation time on inconsistency of EKF SLAM
in theory. The algorithm uses points as landmarks and ob-
servations with range-bearings. Using simple and basic sce-

nario and general augmentation method, we deduced some
theorems on inconsistency of the full-estimated state co-
variance matrix. Through analysis, we got the results of
effects of measurement noise and observation time on in-
consistency. We showed that the observation time and mea-
surement noise are factors to cause inconsistency in our sit-
uation. Moreover, with the observation time increasing, the
inconsistency will increase and it will become inevitable,
but it will have an upper bound. At the same time, in-
creasing the measurement noise can slow the accumulation
of inconsistency and prolong the SLAM time. Investigating
the effects of measurement noise, process noise, and obser-
vation time on inconsistency when the robot moves in the
environment needs further work.

Appendix A

Matrix inversion lemma

Lemma A1. Suppose the partitioned matrix

M =

[
A B
C D

]
(A1)

where A and D are square matrices. Then the inversion of M
can be evaluated by

M−1 =

[
X Y
U V

]
(A2)

Here, if A is invertible, then

X = A−1 −A−1B(D − CA−1B)−1CA−1

Y = −A−1B(D − CA−1B)−1

U = −(D − CA−1B)−1CA−1

V = (D − CA−1B)−1

(A3)

If D is invertible, then

X = (A−BD−1C)−1

Y = −(A−BD−1C)−1BD−1

U = −D−1C(A−BD−1C)−1

V = D−1 −D−1C(A−BD−1C)−1BD−1

(A4)

Thus, if both A and D are invertible, then

(A−BD−1C)−1 = A−1 + A−1B(D − CA−1B)−1CA−1 (A5)

when B = CT, then

(A + BD−1C)−1 = A−1 + A−1B(D + CA−1B)−1CA−1 (A6)

Appendix B

Property of positive semi-definite matrices (psd)

1) If A ∈ Rn×n is psd, then for any matrix B ∈ Rn×n, BABT

is psd.
2) Given A ∈ Rn×n, A > 0, B ∈ Rn×n, and B > 0, if A > B,

then A−1 < B−1.
3) Given A ∈ Rn×n, A > 0, B ∈ Rn×n and B > 0, if A >

B, A =

[
A11 A12

A21 A22

]
, and B =

[
B11 B12

B21 B22

]
, then A11 > B11

and A22 > B22, where A11, A22 and B11, B22 are sub-square
matrices.
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