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A new robust technique for high-resolution reconstructive imaging is developed as required for enhanced remote sensing (RS) with
imaging array radar or/and synthetic aperture radar (SAR) operating in an uncertain RS environment. The operational scenario
uncertainties are associated with the unknown statistics of perturbations of the signal formation operator (SFO) in turbulent
medium, imperfect array calibration, finite dimensionality of measurements, uncontrolled antenna vibrations, and random carrier
trajectory deviations in the case of SAR. We propose new descriptive experiment design regularization (DEDR) approach to
treat the uncertain radar image enhancement/reconstruction problems. The proposed DEDR incorporates into the minimum risk
(MR) nonparametric estimation strategy the experiment design-motivated operational constraints algorithmically coupled with
the worst-case statistical performance (WCSP) optimization-based regularization. The MR objective functional is constrained
by the WCSP information, and the robust DEDR image reconstruction operator applicable to the scenarios with the low-rank
uncertain estimated data correlation matrices is found. We report and discuss some simulation results related to enhancement of
the uncertain SAR imagery indicative of the significantly increased performance efficiency gained with the developed approach.
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1. INTRODUCTION

Modern applied theory of reconstructive radar imaging is
now a mature and well-developed research field, presented
and detailed in many works (see, e.g., [1, 2] and references
therein). The classical imaging with array radar or SAR im-
plies application of a method called “matched spatial filter-
ing” to process the recorded data signals [1, 3, 4]. Stated
formally [1], such a method implies application of the
adjoint signal formation operator (SFO) to the recorded
data, squared detection of the filter outputs, and their
averaging over the actually recorded samples (the so-
called snapshots [5]) of the independent data observations.
Although a number of authors have proposed different linear
and nonlinear postprocessing approaches to enhance the
images formed using such matched estimator (see, e.g., [3, 5–
8]), all those are not a direct inference from the Bayesian
statistically optimal estimation theory [4]. Other approaches
had focused primarily on designing the constrained regu-
larization techniques for improving the resolution of the
closely spaced components in the power spatial spectrum

pattern (SSP) obtained by ways different from the matched
spatial filtering [9–12], but again without aggregating the
regularization principles with the minimum risk estimation
strategy. Although the existing theory offers a manifold
of statistical and descriptive regularization techniques for
reconstructive imaging, in many application areas there still
remain some unresolved crucial theoretical and processing
problems related to large scale sensor array radar/SAR
reconstructive imaging in uncertain operational scenarios.

The predominant challenge of this study is to solve the
SSP reconstruction problem in context of the uncertain
environment. Thus, the problem of enhanced imaging of
the extended large-scale scenes remotely sensed with an
array radar/SAR operating in the uncertain remote sensing
(RS) environment is stated and treated as an ill-conditioned
statistical nonlinear inverse problem. The operational uncer-
tainties are associated with the unknown statistics of pertur-
bations of the SFO in the turbulent medium, imperfect array
calibration, finite dimensionality of measurements, uncon-
trolled antenna vibrations, and random carrier trajectory
deviations in the case of SAR. New descriptive experiment
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design regularization (DEDR) approach to radar imaging
in the uncertain environment is addressed to perform the
enhanced reconstruction of the power spatial spectrum pat-
tern (SSP) of the scattered wavefield from the uncertain data
measurements. The proposed DEDR incorporates into the
minimum risk (MR) nonparametric estimation strategy the
DEDR-motivated constraints of the observability of the ini-
tial scene scattering wavefield algorithmically coupled with
the worst-case statistical performance (WCSP) optimization-
based regularization. The MR objective function is con-
strained by the WCSP information, and the DEDR technique
for robust image reconstruction applicable to the scenarios
with the low-rank uncertain estimated data correlation
matrices is found. Pursuing such an approach, we establish
a family of the robust DEDR-related estimators that encom-
pass a manifold of the imaging techniques ranging from
traditional array matched spatial filtering to new DEDR-
related robust adaptive array beamforming. We also present
the robust DEDR-related imaging algorithms that manifest
enhanced resolution of the reconstructed array images with
substantially decreased computational load. The efficiency
of two general DEDR-related algorithms (the robust spatial
filtering (RSF) algorithm and the robust adaptive spatial
filtering (RASF) algorithm) is illustrated through computer
simulations of reconstructing the digital images provided
with the SAR operating in some typical uncertain remote
sensing scenarios.

2. DESCRIPTIVE EXPERIMENT DESIGN
REGULARIZATION FORMALISM

2.1. Problem model

Consider a coherent RS experiment in a random medium
and the narrowband assumption [1, 4, 6] that enables us to
model the extended object backscattered field by imposing its
time invariant complex scattering (backscattering) function
e(x) in the scene domain (scattering surface) X � x. The
measurement data wavefield u(y) = s(y) + n(y) consists of
the echo signals s and additive noise n and is available
for observations and recordings within the prescribed time-
space observation domain Y = T × P, where y = (t, p)T de-
fines the time-space points in Y . The model of the obser-
vation wavefield u is defined by specifying the stochastic
equation of observation (EO) of an operator form [1, 13]:
u = ˜Se + n; e ∈ E; u,n ∈ U; ˜S : E→U, in the Hilbert
signal spaces E and U with the metrics structures induced
by the inner products, [u1,u2]U = ∫

Yu1(y)u∗2 (y)dy and
[e1, e2]E =

∫

Xe1(x)e∗2 (x)dx, respectively. The operator model
of the stochastic EO in the conventional integral form [1, 13]
may be written as

u(y) = (˜Se
(

x)
)

(y) + n(y) =
∫

X

˜S(y, x)e(x)dx + n(y). (1)

The random functional kernel ˜S(y, x) of the stochastic
integral SFO ˜S given by (1) defines the signal wavefield for-
mation model. Its mean, S(y, x) = 〈˜S(y, x)〉, is referred to as
the nominal SFO in the RS measurement channel specified

by the time-space modulation of signals employed in a par-
ticular radar system [3, 8] and the variations about the mean
δS(y, x) = ˜S(y, x) − S(y, x) model the model uncertainties
and random perturbations of the wavefield at different
propagation paths (the so-called extended Rytov’s model
[1]).

We assume an incoherent nature of the backscattered
field e(x). This is naturally inherent to the RS experiments
and leads to the δ-form of the object field correlation
function, Re(x, x′) = b(x)δ(x − x′), where e(x) and b(x) =
〈|e(x)|2〉 are referred to as the scene random complex
scattering function and its average power scattering function
or spatial spectrum pattern (SSP), respectively. The radar

imaging problem is to derive an estimate ̂b(x) of the SSP

b(x) = (Be)(x) = Aver(2){e(x)
} = 〈e(x)e∗(x)

〉

(2)

(referred to as the desired RS image) by processing the
available finite dimensional array radar/SAR measurements
of the data wavefield u(y), where B defines the second-order
statistical averaging operator.

2.2. Projection formalism for data representation

Viewing it as an approximation problem leads one to a
projection concept for a reduction of the data field u(y) to
the M-D spatial-temporal data recordings:

u = vec
m

{

um =
[

u,hm
]

U; m = 1, . . . ,M
}

(3)

composed of the expansion/decomposition coefficients
{um = [u,hm]U; m = 1, . . . ,M}, where {hm(y)} defines
the set of orthogonal normalized basis functions in the M-
D data approximation subspace U(M) = PU(M)U [13]. These
are defined via corresponding compositions of the calibrated
antenna array tapering functions and sampling filters that
explicitly specify the corresponding data projection operator
PU(M) (see [13–15] for details).

In analogy to (3), one can define now the K-D vector-
form approximation of the scene random scattering function
as follows:

e = vec
k

{

ek =
[

e, gk
]

E; k = 1, . . . ,K
}

. (4)

The elements of vector (4) are composed of the decomposi-
tion coefficients {ek = [e, gk]E; k = 1, . . . ,K} with respect
to some chosen normalized orthogonal set of expansion
functions {gk(x)} that span such K-D signal approximation
subspace E(K) = PE(K)E and specify the corresponding scene
wavefield projection operator PE(K).

The descriptive experiment design (DED) aspects of the
SSP reconstruction problem involving the analysis of how to
choose the basis functions {gk(x)} that span the signal repre-
sentation subspace E(K) = PE(K)E = Span{gk} for a given
observation subspace U(M) = Span{hm} were investigated
in more details in the previous studies [13, 15]. Following
[15], in the rest of this study, we consider the conventional
(i.e., ordinary rectangular pixel format) representation basis
over a Kx2 × Kx1 regular pixel-formatted lattice [14, 16],
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where Kx1 defines the dimension of the rectangular grid over
the horizontal (azimuth) coordinate x1, and Kx2 defines its
dimension over the orthogonal (range) coordinate x2 (the
number of the slant range gates projected onto the scene
frame). Such regular lattice of points is next specified by
the ordered multi-index k = (kx1, kx2); kx1 = 1, . . . ,Kx1;
kx2 = 1, . . . ,Kx2; k = 1, . . . ,K = Kx1 × Kx2.

2.3. Uncertain finite-dimensional observations

In the DED formalism, an imperfect calibration of the array
(due to displacements of some array elements with respect
to the presumed nominal positions, as well as distorted
antennas shapes [4, 9]) is attributed to the unknown distur-
bances {δhm;m = 1, . . . ,M} in the decomposition functions

{˜hm = hm + δhm} in (3). In imaging SAR applications,
such disturbances incorporate the deviations of a carrier
from the nominal trajectory and antenna vibration [3, 17].
These disturbances and propagation perturbations result in
the uncertain SFO matrix:

˜S = S + Δ. (5)

In (5), the nominal M × K SFO matrix S is composed of
the elements {Smk = [Sgk,hm]U}, while all problem model
uncertainties are attributed to the distortion term, in which
the elements of the uncertainty matrix Δ are treated as
unknown values (realizations of random variables) with an
unknown probability density function (pdf) p(Δ).

2.4. Vector-form equation of observation

Now, we proceed from the stochastic integral-form EO (1) to
its finite-dimensional approximation (vector) form:

u = ˜Se + n = Se + Δe + n, (6)

in which the disturbed SFO matrix is defined by (5),
and e, n, u represent zero-mean vectors composed of the
decomposition coefficients ek, nm, and um, respectively.
These vectors are characterized by the correlation matrices:
Re = D = D(b) = diag{b} (a diagonal matrix with vector
b at its principal diagonal), Rn, and Ru = 〈˜SRe˜S+〉p(Δ) + Rn,
respectively, where 〈·〉p(Δ) defines the averaging performed
over the randomness of Δ characterized by the unknown
probability density function p(Δ). Vector b is composed of
the elements, bk = B(ek) = 〈eke∗k 〉 = 〈|ek|2〉; k = 1, . . . ,K
and is referred to as a K-D vector-form representation of the
SSP.

We refer to the estimate, ̂b, as a discrete-form represen-
tation of the desired SSP, that is, the brightness image of the
wavefield sources distributed over the pixel-formatted object
scene remotely sensed with an employed array radar/SAR.
Thus, the uncertain SSP reconstruction problem can be
reformulated now as follows: to derive an estimator for
reconstructing the K-D approximation:

̂b(K)(x) =
K
∑

k=1

̂bk
∣

∣gk(x)
∣

∣

2 = gT(x)diag
{

̂b
}

g(x) (7)

of the SSP distribution in the environment X � x. Note
that in applications, we employ the ordinary pixel expansion
format [16], while all theoretical results are valid also for any
feasible decomposition function basis, g(x) = vec

k
{gk(x)}, in

(7).

3. DEDR STRATEGY

3.1. Formulation of DEDR estimation strategy

In the descriptive statistical formalism, the desired SSP vector
̂b is recognized to be a vector of the principal diagonal of an

estimate of the correlation matrix Re(b), that is, ̂b = {̂Re}diag.

Thus, one can seek to estimate the desired SSP ̂b(K)(x) =
gT(x)diag{̂b}g(x) given the data correlation matrix Ru pre-
estimated via averaging of some J independent sampled
correlations [6]:

Y = ̂Ru = aver
j∈J
{

u( j)u+
( j)

} = 1
J

J
∑

j=1

u( j)u+
( j), (8)

and determining the solution operator (SO) F such that

̂b(K)(x) = gT(x)diag
{{

FYF+}

diag

}

g(x). (9)

To optimize the search for the desired SO F, we formulate
here the following DEDR strategy:

F = arg min
F

{

R(F)
}

(10)

subject to
〈‖Δ‖2〉

p(Δ) ≤ δ, (11)

where the conditioning term represents the worst-case statis-
tical performance (WCSP) regularizing constraint imposed
on the unknown second-order statistics 〈‖Δ‖2〉p(Δ) of the
random distortion component Δ of the SFO matrix (5), and
the DEDR “generalized risk” function is defined as

R(F) = tr
{〈

(

F˜S− I
)

A
(

F˜S− I
)+〉

p(Δ)

}

+ αtr
{

FRnF+},

(12)

where superscript + defines conjugate transpose. The DEDR
strategy (10), (11) implies the minimization of the α-
weighted sum of the systematic error measure (specified by
the first term in the risk function (12)) and noise error
(specified by the second term in the risk function (12)) in
the desired RSS estimate (9), in which the unknown distur-
bances of the SFO are treated through the WCSP bounding
constraint (11) imposed onto the averaged squared norm
of Δ. The selections (adjustments) of the regularization
parameter α and the diagonal-form weight matrix A (the so-
called metrics inducing matrix [13, 16]) with the diagonal
composed of positive numbers {akk > 0; k = 1, . . . ,K}
provide the additional DEDR “degrees of freedom” assigning
the weights akk to the particular SSP vector components
bk. These weights {akk} are the user-defined parameters
that may incorporate any descriptive metrics properties of
a solution [7, 8, 16]. In the simplest case of no preference
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to reconstruction of particular SSP components over the
observation scene frame, the uniform metrics is typically
induced by setting A = I, that is, the identity matrix. In
Section 3.2, we will consider the adaptive DEDR case and
specify the corresponding solution-dependent A. Neverthe-
less, independent on any feasible choice of α, A in the risk
function (12), the conditional optimization problem (10),
(11) can be reformulated as

F = arg min
F

max
〈‖Δ‖2〉p(Δ)≤δ

{

R(F)
}

. (13)

3.2. Decomposition of DEDR risk

To proceed with the derivation of the estimator (9), (13),
we now decompose the risk (12) incorporating directly the
WCSP uncertainty constraint into the DEDR strategy. The
first term in the risk function (12) specifies the systematic
error component as it measures “how far” the desired SO
F is from the pseudoinverse of ˜S in the averaged operator
metrics. We next, decompose this term into the following:

tr
{〈

(

F˜S− I
)

A
(

F˜S− I
)+〉

p(Δ)

}

= ∥∥FS− I
∥

∥

2
A +

〈∥

∥FΔ
∥

∥

2
A

〉

p(Δ),

(14)

where ‖C‖2
A = tr{CAC+} denotes the A-weighted squared

operator norm of a matrix, C. The second term in (14) has
the statistical meaning of the average noise energy in the
resulting solution (9); hence it specifies the fluctuation error
measure. This term can be bounded applying the Loewner
ordering [16] of the weight matrix A ≤ yI with the Loewner
ordering factor γ = min{γ : A ≤ γI} > 0 that yields

〈‖FΔ‖2
A

〉 ≤ γ
〈‖FΔ‖2〉 ≤ γ‖F‖2〈‖Δ‖2〉, (15)

where the second inequality follows from the Cauchy-
Schwarz inequality [16], and ‖C‖2 = ‖C‖2

I = tr{CC+} de-
fines a conventional squared norm of a matrix, C. Using the
constraint (11), we next evaluate the maximum value that
may take the last term in the inequality (15), that is,

max
〈‖Δ‖2〉p(Δ)≤δ

{

γ‖F‖2〈‖Δ‖2〉

p(Δ)

}

= ε‖F‖2 (16)

valid for any given bounding factor ε = δγ ≥ 0. With
this evaluation (16), the WCSP-constrained DEDR strategy
(13) is transformed into the following nonconstrained opti-
mization problem:

F = arg min
F

{

RDEDR(F)
}

(17)

with the aggregated DEDR risk functional:

{

RDEDR(F)
} = tr

{

(FS− I)A(FS− I)+} + αtr
{

FRΣF+},
(18)

where

RΣ = RΣ(β) = (Rn + βI
)

; β = ε

α
≥ 0. (19)

4. DEDR ESTIMATORS OF SSP

4.1. General-form SSP estimator

Routinely solving the minimization problem (17), we obtain
the desired DEDR-optimal SO:

FDEDR = KA,α,βS+R−1
Σ (20)

with the self-adjoint robust reconstruction operator:

KA,α,β =
(

S+R−1
Σ (β)S + αA−1)−1

(21)

dependent on three degrees of freedom: α, β, and A.
Note, that the derived robust SO (20) involves the Her-

mitian conjugate S+ of the regular SFO S (i.e., it satisfies the
DED-observability requirements [15]) and does not involve
the inversion of Y (i.e., it is applicable to the reconstructive
SAR imaging problems with only one-recorded realization
of the trajectory data signal available for further processing,
J = 1).

The general-form DEDR-optimal SO (20) enables us
now to derive the corresponding general-form robust SSP
estimator putting (20) into (9) that yields

̂b(K)(x)

= ̂b(K)(x | A,α,β)

= gT(x)diag
{

{

KA,α,βS+R−1
Σ (β)YR−1

Σ (β)SKA,α,β
}

diag

}

g(x).

(22)

This general-form DEDR estimator for the SSP can also be
represented in the alternative form as

̂b(K)(x) = gT(x)diag
{{

KA,α,βaver
j∈J
{

q( j)q+
( j)

}

KA,α,β

}

diag

}

g(x),

(23)

where q( j) = S+R−1
Σ u( j) is recognized to be an output of

the DEDR-regularized matched spatial processing algorithm
with noise whitening that assumes the given composed
correlation matrix, RΣ = RΣ(β). In practical RS scenarios,
it is a common practice [3–5, 14] to accept the robust white
observation noise model, that is, R−1

n = (1/N0)I and treat the
noise intensity N0 together with the uncertainty factor β in
the composed model of RΣ defined by (19).

4.2. Family of the DEDR-related algorithms

A family of the DEDR-related algorithms for estimating the
SSP can be derived now from (22) via controlling the reg-
ularization parameters α, β, and the weight matrix A that
constitute the degrees of freedom of the developed DEDR
method.

4.2.1. Robust spatial filtering algorithm

Consider the white zero-mean noise in observations and no
preference to any prior model information, that is, putting
A = I. Let the regularization parameter be adjusted as the
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Table 1: IOSNR gained with different DEDR-related reconstruction algorithms (results are reported for the first uncertain operational
scenario and second scene).

Scenario 1: ΔΨ(1)
a (x1) = 10; ΔΨr(x2) = 3; kΔ = β/N0 = 0.1

μ [dB]
Nonconstrained RSF Constrained RSF Nonconstrained RASF Constrained RASF (WCSP-optimized)

IOSNR(2) IOSNR(3) IOSNR(4) IOSNR(5)

5 1.85 2.158 2.2 2.45

10 2.4 2.68 2.32 2.89

15 2.56 2.76 2.67 3.4

20 2.73 3.37 3.02 4.2

25 3.47 4.23 3.1 5.32

30 3.85 4.95 3.64 5.46

Table 2: IOSNR gained with different DEDR-related reconstruction algorithms (results are reported for the second uncertain operational
scenario and second scene).

Scenario 2: ΔΨ(1)
a (x1) = 14; ΔΨr(x2) = 6; kΔ = β/N0 = 0.05

μ [dB]
Nonconstrained RSF Constrained RSF Nonconstrained RASF Constrained RASF (WCSP-optimized)

IOSNR(2) IOSNR(3) IOSNR(4) IOSNR(5)

5 1.71 2.17 1.9 2.41

10 1.85 2.61 1.92 2.88

15 1.9 2.9 2.2 3.45

20 1.93 3.4 2.18 4.16

25 2.01 3.78 2.6 4.56

30 2.11 4.3 3.08 5.32

inverse of the signal-to-noise ratio (SNR), that is, α = (N0 +
β)/b0, where b0 is the prior average gray level of the SSP, and
the uncertainty factor β is attributed to α. In that case, the SO
F is recognized to be the Tikhonov-type robust spatial filter
(RSF):

FRSF =
(

S+S +
((

N0 + β
)

/b0
)

I
)−1

S+. (24)

4.2.2. Matched spatial filtering algorithm

Consider the model from the previous example for an
assumption, α � ‖S+S‖, that is, the case of a priority of
the second error measure (suppression of noise) over the
systematic error in the optimization problem (17). In this
case, we can roughly approximate (20), (24) as the matched
spatial filter (MSF):

FMSF ≈ const. S+, (25)

where the normalizing constant is irrelevant as it specifies
the constant image scaling factor that does not influence the
overall reconstructed image pattern.

4.2.3. Robust adaptive spatial filtering algorithm

Consider the case of an arbitrary zero-mean noise with the
composed correlation matrix RΣ, equal importance of two
error measures in (18), that is, α = 1, and the solution-
dependent weight matrix A = ̂D = diag{̂b}. In this case, the

SO becomes the robust adaptive (i.e., solution-dependent)
spatial filter (RASF) operator:

FRASF = (S+R−1
Σ S + ̂D−1)

−1
S+R−1

Σ . (26)

The three SSP reconstruction techniques that employ the
SOs (24), (25), and (26) compose the family of the DEDR-
related estimators:

̂b
(p)
(K)(x) = gT(x)diag

{

{

F(p)YF(p)+}

diag

}

g(x), p = 1, 2, 3

(27)

with F(1) = FMSF, F(2) = FRSF, and F(3) = FRASF, respec-
tively. Any other feasible adjustments of the DEDR degrees
of freedom (the regularization parameters α, β, and the
weight matrix A) provide other possible DEDR-related SSP
reconstruction techniques numbered further on as p = 4, . . ..
As an important example, in the sequential subsection, we
show that such DEDR family encompasses also the celebrated
minimum variance distortionless response (MVDR) beam-
forming method transformed into the high-resolution RSS
estimation technique with the proper MVDR SO FMVDR =
F(4) specified further on by (31).

4.3. Relationship with the robust MVDR beamformer

The conventional MVDR beamformer [7] “reconstructs”
the RS image by minimizing the power or variance of the
adaptive array output for all search directions, k = 1, . . . ,K ,
under the constraint that the gain in the particular look
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(a) (b)

(c) (d)

(e) (f)

Figure 1: First operational scenario, first scene (μ = 20 dB): (a) artificially synthesized original scene; (b) degraded uncertain scene image
formed applying the MSF method; (c) image reconstructed applying the nonconstrained RSF algorithm; (d) image reconstructed with the
constrained RSF algorithm; (e) image reconstructed applying the nonconstrained RASF algorithm; and (f) image reconstructed applying the
constrained RASF (WCSP-optimized) algorithm.

direction is equal to a constant (one, for simplicity). This
results in the well-known conventional MVDR algorithm
[7, 10]:

̂bk =
(

s+
k Y−1sk

)−1
; k = 1, . . . ,K , (28)

where sk represents the so-called “steering vector” for the kth
look direction, which in our notations is essentially the kth
column vector of the nominal SFO matrix S.

For the purposes of establishing a relationship between
the MVDR beamformer and the DEDR-related SSP estima-
tors (27), we now rewrite the conventional MVDR algorithm
(28) as

̂bMVDR =
{

[

diag
{{

S+Y−1S
}

diag

}]−1
}

diag
(29)

that can be considered as a solution to the equation, ̂D =
̂DS+Y−1S ̂D. Expressing now Y−1 = Y−1YY−1 and using the
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(a) (b)

(c) (d)

(e) (f)

Figure 2: Second operational scenario, first scene (μ = 20 dB): (a) artificially synthesized original scene; (b) degraded uncertain scene image
formed applying the MSF method; (c) image reconstructed applying the nonconstrained RSF algorithm; (d) image reconstructed with the
constrained RSF algorithm; (e) image reconstructed applying the nonconstrained RASF algorithm; and (f) image reconstructed applying the
constrained RASF (WCSP-optimized) algorithm.

second-form representation [15] for the operator, ̂DS+Y−1 =
(S+R−1

n S + ̂D−1)
−1

S+R−1
n , we obtain the alternative represen-

tation form for the MVDR algorithm (28), that is,

̂bMVDR =
{

FMVDRYF+
MVDR

}

diag (30)

with

FMVDR = F(4) = ̂DS+Y−1 = (S+R−1
n S + ̂D−1)

−1
S+R−1

n .
(31)

Examining the formulae (20), (21), and (31), one may
deduce that FMVDR = F(4) coincides with FDEDR for the non-
robust adaptive case, that is, β = 0, A = ̂D.

5. SIMULATIONS AND DISCUSSIONS

We simulated a conventional side-looking SAR with the
fractionally synthesized aperture, that is, the array was syn-
thesized by the moving antenna. The regular SFO of such
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SAR is factored along two axes in the image plane [17,
18]: the azimuth or cross-range coordinate (horizontal axis,
x1) and the slant range (vertical axis, x2). In the sim-
ulations, we considered the conventional triangular SAR
range ambiguity function (AF) Ψr(x2) and two approxi-
mations of the SAR azimuth AF: (i) “sinc” approximation,
Ψ(1)

a (x1) = |sinc(x1/a)|, and (ii) Gaussian “bell” approxima-
tion, Ψ(2)

a (x1) = exp (−(x1)2/a2), with the adjustable frac-
tional parameters a [15]. Note that in the imaging radar
theory [3, 8], the AF is referred to as the continuous-form
approximation of the ambiguity operator matrix Ψ = S+S
and serves as an equivalent to the point spread function
in the conventional image processing terminology [16, 19].
In this paper, we present the simulations performed with
two characteristic scenes. The fist one of the 512-by-512
pixel format was artificially generated. The second one of
the same 512-by-512 pixel format was borrowed from the
real world high-resolution terrain SAR imagery (south-west
Guadalajara region, Mexico [20]). The first scene was used
as a test for adjustment of the degrees of freedom of the
developed RSF and RASF algorithms to attain the desired
improvement in the image enhancement performances (the
IOSNR defined below). In the reported simulations, the
representation formats along the x2 (slant range) and x1

(cross range, i.e., azimuth) directions were adjusted to the
same effective pixel width. In the x1 direction, the fractional
parameter a was controlled to adjust different effective
widths ΔΨa(x1) of the azimuth AF. The corresponding
adjustment of different effective width of the range AF
ΔΨr(x2) was performed over the slant range direction (x2).

For the purpose of objectively testing the performances of
different DEDR-related SSP estimation algorithms, a quan-
titative evaluation of the improvement in the SSP estimates
(gained due to applying the DEDR-related reconstructive
solution operators F(p); p = 2, . . . , instead of the MSF, i.e.,
the adjoint operator F(1) = S+) was accomplished. In analogy
to image reconstruction quality metrics [16, 19], we adopt
here the quality metric defined as an improvement in the
output signal-to-noise ratio (IOSNR):

IOSNR(p) = 10 log10

∑K
k=1

(

̂b(MSF)
k − bk

)2

∑K
k=1

(

̂b
(p)
k − bk

)2 , p = 2, 3, 4, 5,

(32)

where bk represents a value of the kth element (pixel) of

the original SSP b, ̂b(MSF)
k represents a pixel value of the

kth element (pixel) of the rough SSP estimate ̂bMSF formed
applying the matched spatial filtering technique (conven-

tional matched beamformer with F(1) = S+), and ̂b
(p)
k

represents a value of the kth pixel of the SSP reconstructed
from the matched ̂bMSF applying one of the particular
developed DEDR-related SOs. In the simulation studies, four
different DEDR-related estimators were tested, renumbered
here as p = 2, 3, 4, and 5. The F(2) corresponds to the
nonconstrained FRSF, that is, to the RSF method adjusted
incorrectly to the scenario assuming no uncertainties in the
data (β = 0). The F(3) corresponds to the constrained
FRSF with the SFO uncertainty factor kΔ = β/N0 correctly

adjusted to two different uncertain scenarios (as specified in
Tables 1 and 2). The F(4) corresponds to the nonconstrained
RASF, that is, the RASF method adjusted incorrectly to the
scenario with no uncertainties in the data (β = 0). Last,
the F(5) corresponds to the constrained FRASF with the SFO
uncertainty factor kΔ = β/N0 correctly adjusted to two
different uncertain scenarios (as specified in Tables 1 and 2),
that is, the WCSP-optimized DEDR estimator. According to
the quality metric (32), the higher the IOSNR, the better the
improvement in the SSP estimate is, that is, the closer the
estimate is to the original SSP.

In this section, we report the qualitative simulation
results and the relevant quantitative performances evaluated
via the IOSNRs (32) (in the dB scale) gained with these four
robust DEDR-related estimators, in particular: IOSNR(2)

gained using the nonconstrained RSF in the uncertain sce-
nario; IOSNR(3) gained applying the constrained RSF in
the same uncertain scenario; IOSNR(4) gained using the
nonconstrained RASF; and IOSNR(5) gained applying the
constrained RASF (WCSP-optimized estimator) in the same
uncertain scenario. The simulation experiments were run for
two typical SAR systems that operate under different SNRs
levels μ = b0/N0, different fractionally synthesized apertures
(characterized by the width of the azimuth AFs ΔΨa(x1)),
and different uncertainty factors kΔ = β/N0 (as specified in
Tables 1 and 2) that bound via (11), (19) the impact of the
uncertainty SFO term. In particular, the simulated scenarios
are specified as follows.

(i) First uncertain operational scenario (simulation ex-
periment specifications):

(a) fractional azimuth AF width, ΔΨ(1)
a (x1) = 10

pixels of the 512 × 512 scene pixel format (at
the 0.5 from the peak value of the “sinc-type”

AF, Ψ(1)
a (x1) = |sinc(x1/a)| );

(b) range AF width, ΔΨr(x2) = 3 pixels (at the 0.5
from the peak value of the triangular Ψr(x2));

(c) SNRs range, μ = b0/N0 = 5 dB, . . . , 30 dB;

(d) SFO uncertainty factor, kΔ = β/N0 = 0.1.

(ii) Second uncertain operational scenario (simulation
experiment specifications):

(a) fractional azimuth AF width, ΔΨ(2)
a (x1) = 14

pixels (at the 0.5 from the peak value of the
“bell-type” AF, Ψ(2)

a (x1) = exp (−(x1)2/a2) );

(b) range AF width, ΔΨr(x2) = 6 pixels (at the 0.5
from the peak value of the triangular Ψr(x2));

(c) SNRs range, μ = b0/N0 = 5 dB, . . . , 30 dB;

(d) SFO uncertainty factor, kΔ = β/N0 = 0.05.

These specifications correspond to two typical uncertain
scenarios with airborne SAR sensor trajectory deviations
modelled in [17].

Figures 1(a) and 2(a) show the same artificially synthe-
sized test scene. Figures 3(a) and 4(a) show the second tested
original scene (borrowed from the real world high-resolution
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(a) (b)

(c) (d)

(e) (f)

Figure 3: First operational scenario, second scene (μ = 20 dB): (a) original scene; (b) degraded uncertain scene image formed applying
the MSF method; (c) image reconstructed applying the nonconstrained RSF algorithm; (d) image reconstructed with the constrained RSF
algorithm; (e) image reconstructed applying the nonconstrained RASF algorithm; and (f) image reconstructed applying the constrained
RASF (WCSP-optimized) algorithm.

SAR imagery [20]). The remaining images of Figure 1
through Figure 4 present the results of image formation
applying different DEDR-related SSP estimators as specified
in the figure captions. Figures 1(b) through 4(b) demonstrate
the images formed applying the conventional MSF for the
uncertain fractionally synthesized SAR scenarios. According
to the EO (6), the overall uncertain data degradations
ñ = Δe + n were composed of a mixture of conventional
white additive observation noise n and correlated (scene-
dependent) multiplicative noise Δe. Following the DEDR
methodology (detailed in Section 3), the SFO uncertainty

cannot be factorized into separate terms caused by the
environmental perturbations, SAR trajectory deviations,
or antenna vibrations. Thus, the composed multiplicative
degradation effect was modeled via simulating the MSF scene
image corrupted by the speckle noise via incorporating into
(9) with the SO (25), the uncertain operational scenario
factors, in particular, the uncertain data model correlation
matrix Y that corresponds to the degraded EO (6) with
the diagonal loaded noise augmented correlation matrix
(19). Figures 1(c) through 4(c) show the enhanced images
formed applying the unconstrained RSF, that is, the RSF
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(a) (b)

(c) (d)

(e) (f)

Figure 4: Second operational scenario, second scene (μ = 20 dB): (a) original scene; (b) degraded uncertain scene image formed applying
the MSF method; (c) image reconstructed applying the nonconstrained RSF algorithm; (d) image reconstructed with the constrained RSF
algorithm; (e) image reconstructed applying the nonconstrained RASF algorithm; and (f) image reconstructed applying the constrained
RASF (WCSP-optimized) algorithm.

incorrectly adjusted to the uncertain scenario via ignoring
the uncertainty factor (β = 0). Figures 1(d) through 4(d)
present the enhanced images formed using the constrained
RSF properly adjusted to the particular uncertain scenario
(kΔ = β/N0 = 0.1 for the first scenario, and kΔ = β/N0

= 0.05 for the second scenario, respectively). The images
enhanced with the unconstrained RASF (β = 0) are shown
in Figures 1(e)–4(e), and the corresponding images recon-
structed with the constrained RASF (WCSP-optimized
method) are presented in Figures 1(f)–4(f), respectively.

From the presented simulation results, the advantage
of the well-designed imaging experiments (constrained
RSF and WCSP-optimized RASF) over the case of badly
designed experiment (nonrobust MSF and unconstrained
RSF) is evident. Due to the performed regularized inversions,
the resolution was substantially improved in all simulated
scenarios (as reported in Tables 1 and 2). The higher values of
IOSNR(3) > IOSNR(2) as well as IOSNR(5) > IOSNR(4) were
obtained with the constrained DEDR-related estimators, that
is, with the DEDR techniques adopted to the uncertain



Yuriy Shkvarko et al. 11

scenarios. Note that IOSNR (32) is basically a square-type
error metric. Thus, it does not qualify quantitatively the
“delicate” visual features in the reconstructed images; hence,
small differences in the corresponding IOSNRs reported in
Tables 1 and 2. In addition, both enhanced robust estimators
manifest the higher IOSNRs in the case of more smooth
azimuth AFs (larger ΔΨa(x1)) and higher SNRs μ. For the
DEDR-optimized RASF method, in addition, the ringing
(image speckle) effect was substantially reduced, while the
nonadaptive constrained RSF estimator requires consid-
erably less computational load. These results qualitatively
demonstrate that with proper adjustment of the degrees
of freedom in the developed DEDR estimators (24), (27),
one could approach the quality of the DEDR-optimal image
formation method (22) avoiding the cumbersome adaptive
computations required to implement the DEDR-optimal
algorithm [10, 15].

6. CONCLUSION

New descriptive experiment design regularization (DEDR)
approach for estimation of the spatial spectrum pattern
(SSP) of the wavefield power distribution in the uncertain
remotely sensed environment has been proposed as required
for the conventional array imaging radar, side-looking
airborne radar, and SAR. Unifying the DEDR and the worst-
case statistical performance (WCSP) optimization into the
aggregated WCSP-constrained minimum risk technique, the
inverse problem ill-posedness has been alleviated in a statis-
tically grounded fashion. The derived general-form DEDR
estimator does not involve the inversion of the estimated data
correlation matrix. This principal algorithmic-level result of
the undertaken study constitutes the crucial advantage of
the developed family of the DEDR-related estimators that
makes them applicable to the uncertain operational scenarios
with ill-conditioned (e.g., low-rank) estimates of the array
data correlation matrices, in particular, to the SAR imaging
scenarios where only one realization of the trajectory data
signal degraded due to the uncontrolled random carrier
trajectory deviation and antenna vibration is available for
further processing. Being nonlinear and solution-dependent,
the DEDR-optimal robust adaptive spatial filtering (RASF)
estimator requires rather complex signal processing. The
computational complexity arises due to the necessity to
perform simultaneously the solution-dependent operator
inversion operations and adaptive adjustments of the degrees
of freedom of the overall RASF technique. To reduce the
computational load, the simplified constrained robust spatial
filtering (RSF) algorithm was proposed and employed, which
manifests almost the same reconstruction performances as
the RASF in typical uncertain operational scenarios that was
verified in the simulation experiment.
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