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The stability of the atomic clocks on board the satellites of a navigation system should remain constant with time. In reality, there
are numerous physical phenomena that make the behavior of the clocks a function of time, and for this reason we have recently
introduced the dynamic Allan variance (DAVAR), a measure of the time-varying stability of an atomic clock. In this paper, we
discuss the dynamic Allan variance for phase and frequency jumps, two common nonstationarities of atomic clocks. The analysis
of both numerical simulations and experimental data proves that the dynamic Allan variance is an effective way of characterizing
nonstationary behaviors of atomic clocks.
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1. INTRODUCTION

Navigation iscertainly one of the most effective applications
of atomic clocks. The exceptional stability of an atomic clock
allows to reduce the localization error below one meter, as
required, for example, by the Galileo system specifications.
To guarantee and maintain in time a very high stability of
the atomic clocks is therefore a fundamental requirement of
a navigation system. Unfortunately, the stability of an atomic
clock changes with time as a consequence of several differ-
ent phenomena: sudden and cyclic variations of temperature,
aging of physical devices, sudden breakdowns are among the
main causes of nonstationarities.

It is hence necessary to introduce a tool that allows to rep-
resent the stability of an atomic clock as a function of time.
We have recently proposed the dynamic Allan variance, or
DAVAR, a quantity that measures the time-varying stability
of a clock by sliding the classical Allan variance on the data
[1–4]. By using the dynamic Allan variance we are classifying
the typical nonstationarities of atomic clocks that operate on
board a satellite. The final goal is to identify the clock anoma-
lies directly from the DAVAR, which can reveal variations in
the stability that cannot be tracked with other methods [5].
In this way, proper warnings can be generated so that the in-
tegrity of the clock and of the satellite signal can be moni-
tored continuously in time.

In this paper, we consider two typical nonstationarities
of atomic clocks and we discuss the corresponding dynamic
Allan variance. We also analyze experimental data that show
the anomalies described.

2. THE DYNAMIC ALLAN VARIANCE

Time series from atomic clocks are typically represented by
the phase deviation (we use bold symbols for stochastic
quantities) x(t), or by the normalized frequency deviation
y(t) [6]:

y(t) = dx(t)
dt

. (1)

The stability of a clock is standardly defined through the Al-
lan variance [7–10]

σ2
y (τ) = 1

2

〈(
yt+τ − yt

)2
〉

, (2)

where τ is the observation interval, the operator 〈·〉 stands
for time averaging, and yt is defined as

yt(t) =
1
τ

∫ t
t−τ

y(t)dt = x(t)− x(t − τ)
τ

. (3)
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In discrete-time we evaluate the Allan variance with the fol-
lowing estimator:

σ̂
2
y[k] = 1

2k2τ2
0

1
N − 2k

N−2k−1∑

n=0

(x[n + 2k]−2x[n + k]+x[n])2,

(4)

whereN is the total number of samples, k = τ/τ0 is an integer
number representing the discrete-time observation interval,
and τ0 is the minimum observation interval. To control the
variance of the estimate that increases with k, one typically
takes k = 1, 2, . . . , kmax, where kmax = �N/3�, with N being
the total number of samples (the symbol �·� stands for the
integer part of the number).

The dynamic Allan variance is defined as

σ2
y [n, k] = 1

2k2τ2
0

1
N − 2k

×
n+Nw/2−k−1∑

m=n−Nw/2+k

E
[
(x[m + k]− 2x[m] + x[m− k])2],

(5)

where n = t/τ0 is the discrete time andNw is the length of the
analysis window. In the definition we have used the expecta-
tion value E[·] because we wanted σ2

y [n, k] to be a determin-
istic quantity. In this way, we can study the properties of the
DAVAR without taking into account the random fluctuations
that are present every time that we consider one realization
only of x[n].

The DAVAR is in practice obtained by sliding the estima-
tor σ̂

2
y[k] of the Allan variance on the data. The DAVAR at

time n is made by the Allan variance of the Nw samples cen-
tered about n. When analyzingexperimental data, we apply
the estimator

σ̂
2
y[n, k] = 1

2k2τ2
0

1
N − 2k

×
n+Nw/2−k−1∑

m=n−Nw/2+k

(x[m + k]− 2x[m] + x[m− k])2,

(6)

which is identical to (5) except for the expectation value.
We again take k = 1, 2, . . . , kmax, with kmax = �N/3� (other
choices are possible). We also define the dynamic Allan devi-
ation σy[n, k], or DADEV, as the square root of the DAVAR
(the DADEV estimator σ̂y[n, k] is defined in an identical
way).

There is a typical tradeoff in the computation of the dy-
namic Allan variance. If the window is long, the variance of
the estimate is small, but the localization of events in time is
poor. Conversely, a short window guarantees an excellent lo-
calization of events, but has a poor variance reduction. It is
better to choose the window on a case-by-case basis, depend-
ing on the type of data considered.

3. ANALYSIS OF NONSTATIONARY CLOCK NOISES

We now consider two typical nonstationary behaviors of
atomic clocks, namely, a phase and a frequency jump. Both
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Figure 1: White frquency noise plus a delta function (7).

cases are studied using numerical simulations. The dynamic
Allan variance is then applied to a set of experimental data
that show the same types of nonstationarity.

3.1. Case 1: phase jump

It is very common for clocks on board satellites to experi-
ence jumps in the phase signal, which become spikes in the
frequency deviation, since frequency is defined as the deriva-
tive of phase (see (1)). These frequency values are considered
outliers, since they are numerically distant from the rest of
the data. Outliers should be removed in the preprocessing
of data, but since some of them could go unaltered through
the removal algorithm, it is of practical importance to un-
derstand what they look like in the dynamic Allan variance
domain.

Therefore, we consider a white frequency noise to which
we add a delta function, and we numerically study the corre-
sponding DAVAR. The signal model is

y[n] = f[n] + cδ[n− n0], (7)

where f[n] is the usual white Gaussian noise, c is an arbitrary
constant and n0 is the discrete-time at which the delta func-
tion is located. The discrete-time delta function is defined as

δ[n] =
{

1, n = 0,

0, n /= 0.
(8)

In Figure 1, we show the resulting frequency y[n], where
n0 = 2500 and we have taken c to be 30 times the stan-
dard deviation of y[n]. In Figure 2, we show the estimated
Allan deviation σ̂y[k] of y[n], where we see the typical slope
of a white frequency noise, and we do not notice the delta
function. In Figure 3, the estimated dynamic Allan deviation
σ̂y[n, k] is represented. We see that before and after the time
instant n0, the DADEV surface is stationary, beside some ob-
vious fluctuations due to the variance of the estimate. In the
stationary regions, the slope indicates that locally y[n] is a
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Figure 2: Allan deviation of the signal shown in Figure 1.

white frequency noise. Around n = n0 we instead see a de-
crease in the stability (an increase in the dynamic Allan devi-
ation surface), which takes place at all observation intervals.
This change in the stability is due to the delta function in
frequency, and is more intense as c increases. The reason we
see a change in stability for all observation intervals is that at
any k some of the triplets x[m + k], x[m], x[m − k] used in
the DADEV computation include the delta function located
at n = n0. Since the value of the delta function is much big-
ger than the standard deviation of the stationary noise f[n],
the corresponding triplets will be much bigger than those
that are located outside the nonstationary region. This fact
implies that the dynamic Allan deviation computed for the
analysis times whose corresponding window include the time
instant n0 will be bigger than the DADEV that is computed
on the stationary regions alone, which is precisely what we
observe in Figure 3.

3.2. Case 2: frequency jump

Also frequency jumps can be detected in atomic clocks on
board satellites. A simple model for a frequency jump is given
by

y[n] =
⎧⎨
⎩
μ1 + f[n], n ≤ n0,

μ2 + f[n], n > n0,
(9)

where f[n] is a white Gaussian noise with zero mean. The
model of y[n] has been chosen so that the mean value is

μ[n] = E[y[n]] =
⎧⎨
⎩
μ1, n ≤ n0,

μ2, n > n0.
(10)

This means that there is a sudden variation in the mean
of y[n], as shown in Figure 4. The estimated Allan devia-
tion σ̂y[k] is given in Figure 5. We see that the Allan devi-
ation has the typical slopes of a white frequency noise, and
that there is no evident trace of the nonstationarity going
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Figure 3: Dynamic Allan deviation of the signal shown in Figure 1.
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Figure 4: White frequency noise with a frequency jump (9).

on in the clock noise. The reason is that the jump in the
mean value of the signal has been averaged out by the Al-
lan variance. In Figure 6, we instead see the estimate σ̂y[n, k]
of the dynamic Allan deviation, computed with a window of
Nw = 200 samples. We notice that for small values of the dis-
crete observation interval k, the DADEV does not show the
change in mean. The reason is that for small k values the fre-
quency jump is present only in few of the triplets x[m + k],
x[m], x[m − k] used in the DADEV estimation. Most of the
triplets are located in the stationary regions before and after
the discontinuity, and they are not influenced by the change
in the mean. For increasing values of k we see that the sta-
bility steadily decreases. The reason is that for large k most
of the triplets are made by values located before and after the
nonstationarity, that will hence track the discontinuity in the
mean.

3.3. Experimental data

We now analyze a set of experimental data coming from a Ru-
bidium clock undergoing tests for space flight certification.
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Figure 5: Allan deviation of the signal shown in Figure 4.
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Figure 6: Dynamic Allan deviation of the signal shown in Figure 4.

In Figure 7, we show a section of the frequency data y(t). We
notice a frequency jump located approximately at t1= 1.6 104

seconds. After this sudden variation, y(t) gradually recovers
a mean value close to the one that it had before the nonsta-
tionarity. There is also a spike in frequency located roughly at
t2= 3.9 104 seconds, which indicates that a jump in the phase
x(t) has taken place at the same time instant.

In Figure 8, we see the Allan deviation σ̂y[k] of y(t),
which shows the typical slopes of a Rubidium clock and does
not point out the presence of nonstationary behaviors. In
Figure 9, we instead represent the dynamic Allan deviation.
Around t = t1 we notice that the DADEV surface increases
for large τ values, which implies the presence of a step change
in the mean of the frequency y(t), as discussed in Section 3.2.
Also, around t = t2 we spot an increase in the DADEV for
all τ values, which means that there is a spike in frequency
or, equivalently, that there is a jump in the phase data x(t),
as previously discussed in Section 3.1. Outside the regions
around t1 and t2 the dynamic Allan deviation is mostly sta-
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Figure 7: Frequency data of a Rubidium clock.
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Figure 8: Allan deviation of the signal shown in Figure 7.

tionary and it is in accordance with the slope of a Rubidium
clock.

It is therefore possible to characterize the stability of the
Rubidium clock by directly observing the dynamic Allan
variance surface.

4. CONCLUSION

Navigation requires atomic clocks on board the satellites to
have a very high stability, and to maintain it with time.
Since in reality there are several physical phenomena that
produce variations in the clock behavior, it is fundamen-
tal to understand how its stability changes with time. For
this reason we have proposed the dynamic Allan variance,
or DAVAR, a quantity that is able to characterize the non-
stationary behaviors of atomic clocks. In this paper, we
have analyzed two typical nonstationarities that affect atomic
clocks on board a satellite, namely, phase and frequency
jumps. Numerical simulations demonstrate that the DAVAR
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Figure 9: Dynamic Allan deviation of the signal shown in Figure 7.

correctly represents these anomalous behaviors. We have
also validated our method with experimental data, prov-
ing that it is possible to understand the nonstationarities
of a clock by directly inspecting the DAVAR surface. This
means that it is possible to design anomaly detection meth-
ods directly in the dynamic Allan variance domain (a free
Matlab implementation of the DAVAR can be found at
www.ien.it/tf/ts/clock behavior.shtml) [5].
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