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1. Introduction

Study of the resonant reflection and absorption of light by
low-dimensional semiconductor objects is a simple and reli-
able way of the determination of exciton parameters [1–5].
When the size-quantized semiconductor objects (quantum
wells (QW), quantum wires, and quantum dots (QD)) are
irradiated by light, elastic light scattering and absorption
intensify resonantly if the light frequency ωl equals to the
exciton frequency ω̃0. The resonant peak width is determined
by the exciton damping Γ = γr + γ, which consists of
nonradiative γ and radiative γr damping. An important role
of the radiative damping γr was proved for the first time
in [6–8]. Light reflection by some structures, consisting of
quantum wells, wires, and dots was considered in [9].

The light elastic scattering on a QD of arbitrary form
and sizes in a resonance with excitons is investigated in [10],
where the quantum perturbation theory is used. However,
the quantum method does not allow to get out of the lowest
order on the light-electron interaction and to calculate cor-
rections to the exciton energy due to that interaction. Such
approximation is acceptable only under condition γr � γ.

In the present work, a semiclassical method [9, 11–14]
is applied for calculation of electric and magnetic fields,
while a description of electrons remains quantum one. The
semiclassical method allows to calculate precisely electric and
magnetic fields on large distances from a QD, that is, to take
into account all the orders on the light-electron interaction.
It allows to introduce into the theory the nonradiative
damping γ, to calculate the light absorption and the exciton

energy corrections due to the long-range exchange electron-
hole interaction. At last, the method admits consideration of
the monochromatic and pulse irradiation (see, e.g., [15]).

There are two variants of the semiclassical method. The
first of them assumes using of boundary conditions for
electric and magnetic fields on the semiconductor object
boundaries (see, e.g., [11, 16]). However, using of boundary
conditions in the case of spherical QDs, for instance, realizes
into cumbersome calculations [11], and calculations become
much more complicate for other forms. Therefore, we use
here the second variant of the semiclassical method—the
method of retarded potentials—allowing to avoid using of
boundary conditions at all.

2. The Method of Retarded Potentials

First of all, we calculate the current j(r, t) and charge ρ(r, t)
densities induced by the electric field inside of the object
[12, 17, 18] and averaged on the ground state of the crystal.
Using of stimulating electric field E0(r, t) in these expressions
leads again to the limitation by the lowest order on the light-
electron interaction. But substitution of the genuine fields
E(r, t) inside of the object leads to the precise results.

The induced electric and magnetic fields are represented
with the help of the vector A(r, t) and scalar ϕ(r, t) potentials

ΔE(r, t) = −1
c

∂A(r, t)
∂t

− ∂ϕ(r, t)
∂r

,

ΔH(r, t) = rot A(r, t).

(1)
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The retarded potentials are [19, page 447]

A(r, t) = 1
c

∫

d3r′
j(r′, t − ν|r− r′|/c)

|r− r′| ,

ϕ(r, t) = 1
ν2

∫

d3r′
ρ(r′, t − ν|r− r′|/c)

|r− r′| ,

(2)

where ν is the light refraction coefficient (we assume it
is identical inside and outside of a QD). Having used the
current and charge densities with the precise field E(r, t) =
E0(r, t) + ΔE(r, t) and substituting (2) into (1), we obtain an
integral equation for the induced field ΔE(r, t) inside of the
object. In some cases this equation may be solved. Having
calculated the precise field inside of the object, we obtain the
fields outside with the help of (2) and (1).

3. The Induced Current Density

The quantum theory of conductivity of low-dimensional
objects is elaborated in [17, 18, 20]. The average current
and charge densities induced by a weak spatially inhomo-
geneous electromagnetic field are calculated for the spatially
inhomogeneous systems. It was shown that the averaged
current and charge densities contain two contributions, first
of which is expressed through the electric field, and the
second is expressed through the first spatial derivatives of the
electric field. Situations when the second contribution may
be neglected are discussed in [20]. The main contribution
into the average current density at temperature T = 0 is as
follows:

jα(r, t) = i

�

∫

d3r′
∫ t

−∞
dt′

×
〈

0
∣

∣

∣

[

̂jα(r, t),dβ(r′, t′)
]∣

∣

∣0
〉

Eβ(r′, t′) + c.c.,

(3)

where determinations of [11] are used: 〈0| · · · |0〉 is the
average value on the ground state, [â, ̂b] is the commutator

of operators â and ̂b, ̂j(r, t) is the operator of current density
in the interaction representation, d(r) = ∑

i riρi(r), ri =
ri − 〈0|ri|0〉, ρi(r) = eδ(r − ri), E(r, t) is the classic electric
field.

We assumeT = 0. It was assumed also in (3) that currents
and charges are absent at infinite distances, and that the
electromagnetic field equals 0 at t → −∞, what corresponds
to adiabatic switching on of fields. We suppose an interaction
between charged particles, a possible presence of an external
potential and quantizing magnetic field.

We apply (3) to consideration of low-dimensional size-
quantized semiconductor objects [7] and suppose that the
stimulating light frequency or carrying frequency of a pulse
irradiation are close to the semiconductor energy gap �ωg .
Sizes R of a semiconductor object are much more than
a lattice constant R � a. The distances, on which the
smooth multiplier from the wave function varies, are much
greater a and comparable to the sizes of the object. Then
the effective mass approximation is applicable and the size-
quantization condition is satisfied. The last statement means
that the exciton energy spectrum is discrete one. Then [7, 8],

the average density of induced current in QWs, QDs, and
quantum wires is determined by the expression

j(r, t) = ie2

2π�ωgm
2
0

∑

η

×
{

p∗cvηFη(r)
∫ +∞

−∞
dω

e−iωt

ω − ωη + iγη/2

×
∫

dr′F∗η (r′)
(

pcvηE(r′,ω)
)

+ pcvηF∗η (r)
∫ +∞

−∞
dω

e−iωt

ω + ωη + iγη/2

×
∫

dr′Fη(r′)
(

p∗cvηE(r′,ω)
)

}

+ c.c.,

(4)

where the determinations are used: e = −|e|, m0 are the
electron charge and mass, respectively, pcvη is the interband
matrix element of quasimomentum operator, corresponding
to the exciton with indexes η, Fη(r) is the envelope exciton
wave function at re = rh = r, where re(rh) is the electron
(hole) radius-vector, �ωη is the η exciton energy counted
from the ground state energy, γη is the nonradiative exciton
damping. The set η includes indexes of semiconductor
valence and conduction bands, and 6 indexes, characterizing
an exciton in the effective mass approximation (these 6
indexes describe the function Fη(r)). Finally, E(r,ω)) is the
Fourier transform of the electric field

E(r, t) = 1
2π

∫∞

−∞
dωe−iωtE(r,ω) + c.c. (5)

The main and conjugated contributions in (5) are chosen so
that

E0(r,ω) = 2πE0eleikrD0(ω), (6)

where k is the wave vector of stimulating light, the function
D0(ω) describes the form of a stimulating pulse [12]. The
average density of charge induced inside of a semiconductor
object may be determined with the help of (4) and continuity
equation

div j(r, t) +
∂ρ(r, t)
∂t

= 0. (7)

4. The Case of the Exciton Γ6 × Γ7 in a QD

Let us consider an exciton consisting of an electron from
twofold degenerated conductive band Γ6 and a hole from
twofold degenerated valence band Γ7 chipped of by the spin-
orbital interaction in Td class crystals. The exciton Γ6 ×
Γ7 (see [10, 11]) is the most simple object in contrast to
excitons containing light and heavy holes. All the measurable
values do not depend on the direction of vectors relatively
of crystallographic axes, that is, a crystal plays a role of an
isotropic medium.

According to determinations of [21, page 73], the
electron wave functions have the structure

Ψc1 = iS ↑, Ψc2 = iS ↓, (8)
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and the hole wave functions are

Ψh1 = 1√
3

(X − iY) ↑ − 1√
3
Z ↓,

Ψh2 = 1√
3

(X + iY) ↓ +
1√
3
Z ↑ .

(9)

Having combined (8) and (9) in pairs, we obtain fourfould
degenerated excitonic state for which the interband matrix
elements of momentum operator result in

pcv1 = pcv√
3

(

ex − iey
)

, pcv2 = pcv√
3

(

ex + iey
)

,

pcv3 = pcv√
3

ez, pcv4 = − pcv√3
ez,

(10)

where the scalar

pcv = i
〈

S
∣

∣ p̂x
∣

∣X
〉

(11)

is introduced; ex, ey , ez are the unite vectors along the
crystallographic axes.

We assume that the QD radius R is much less than
the bulk exciton Bohr radius (strong-confinement regime).
Under these conditions the binding energy of the exciton,
determined by the Coulomb interaction, may be neglected.
From the four exciton states, to which the interband matrix
elements (10) of the quasimomentum correspond, it is easy
(by drawing up the linear combinations) to obtain three
bright and one dark excitonic states, about which the speech
goes, for example, in [11, 22, 23]. Below we show that the
corrections to the bright exciton energy, caused by long-
range exchange interaction of electrons and holes, occur in
our theory automatically and coincide with the results of
[11, 22, 23].

5. Electric and Magnetic Fields on Large
Distances from a QD

Let us consider light scattering by a QD near the resonance
with some energy level of Γ6×Γ7 exciton, when other excitons
and excitonic energy levels may be neglected. Our energy
level is nondegenerated, then the index η takes on four values
from 1 to 4, and only the values pcvη, according to (10),
depend on η. Without light-electron interaction we have

ωη = ω0,

γη = γ, Fη(r) = F(r),
(12)

though the function F(r) may be chosen as a real one. After
summation on η in (4) with using (10), we obtain

j(r, t) = ie2p2
cv

3π�ωgm
2
0
F(r)

∫∞

−∞
dωe−iωtT(ω)L(ω) + c.c., (13)

where

T(ω) =
∫

d3rE(r,ω)F(r),

L(ω) = 1
ω− ω0 + iγ/2

+
1

ω + ω0 + iγ/2
.

(14)

With the help of (7) we obtain the induced charge density

ρ(r, t) = e2p2
cv

3π�ωgm
2
0

∫∞

−∞
dω

ω
e−iωt

(

dF(r)
dr

)

T(ω)L(ω) + c.c.

(15)

The nonresonant term from (14) is neglected below.
Using (2), we obtain electric and magnetic fields on large

distances from a QD

ΔEc(r, t)|r→∞ = E+(r, t)e+
s + E−(r, t)e−s + c.c.,

ΔHc(r, t)|r→∞ = H+(r, t)e+
s +H−(r, t)e−s + c.c.,

(16)

where

E±(r, t) = − e2

2π�ωgm
2
0c2r

∫∞

−∞
dωωei(kr−ωt)Q

(

ks,ω, e±s
)

,

H±(r, t) = ∓iνE±(r, t),

Q
(

ks,ω, e±s
) = 2

3
p2
cvP(ks)

(

T(ω)e∓s
)

L(ω),

P(k) =
∫

d3re−ikrF(r),

(17)

ks = (ων/c)(r/r) is the wave vector of scattered light.
To obtain precise induced electric and magnetic fields on

large distances from a QD, we have to calculate the vector
T(ω), determined by the genuine electric field inside of the
QD and consisting of stimulating and induced fields

E(r, t) = E0el

∫∞

−∞
dω ei(kr−ωt)D0(ω) + ΔE(r, t), (18)

where k = ων/c, el is the circular polarization vector. In the
case of a monochromatic irradiation

D0(ω) = δ(ω − ωl), (19)

but at a pulse irradiation the frequency ω is widespread in
the interval Δω near ωl, and Δω is vice inverse to the pulse
duration Δt.

Using the formulas for retarded potentials, we obtain the
induced field

E(r,ω) = 2πelE0e
ikrD0(ω)− 2e2

3�c

p2
cvω

ωgm
2
0c

× L(ω)
[

T(ω) +
1
k2

(

T(ω)
d

dr

)

d

dr

]

Φ(r),

(20)

where

Φ(r) =
∫

d3r′Fη(r′)
eik|r−r′|

|r− r′| . (21)

Equation (20) is an integral equation for E(r,ω). Then

Φ(r) = 1

(2π)3

∫

d3qeiqrP
(

q
)

{

4πP
q2 − k2

+
2iπ2

k
δ
(

q − k)
}

,

P

a− b =
1
2

(

1
a− b + iδ

+
1

a− b − iδ
)

, δ −→ +0.

(22)
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Let us substitute (22) in (20), multiply both sides on F(r),
and integrate on r. We obtain the equation for the vector
T(ω):

T(ω)
(

1 + C(ω)
∫

d3qJ
(

q
)

)

= 2πE0elD0(ω)P∗(k)

+
C(ω)
k2

∫

d3qq
(

qT(ω)
)

J
(

q
)

,

(23)

where determinations

C(ω) = 2
3

(

e2

�c

)

p2
cvω

ωgm
2
0c
L(ω),

J
(

q
) = ∣∣P(q

)∣

∣
2

[

1
2π2

P

q2 − k2
+

i

4πk
δ
(

q − k)
]

,

(24)

are introduced.
Equation (23) may be considered as a system of three

equations for the components Tx(ω), Ty(ω), Tz(ω). Having
solved this system, we can substitute the results into expres-
sions for induced fields on large distances from the QD.
Thus, the problem of light scattering in the resonance with an
exciton Γ6× Γ7 in a QD of arbitrary form is solved in principal
at any relation of the light wave length and QD’s sizes.

6. The Special Case of a Spherical Symmetrical
Envelope Wave Function

Let us consider a special case when the system of three
equations is reduced to one equation. It happens if the
function P(k) depends only on the module k, that is,

P(k) = P(k). (25)

The condition (25) is fulfilled, if the function F(r) is
spherically symmetrical or the QD sizes are much less than
the wave length of the stimulating light when P(k) = P(0).
For instance, (25) is satisfied in the case of a spherical QD
limited by the infinitely high rectangular potential barrier.
Then the envelope wave function

F(r) = 1
2πR

sin2(πr/R)
r2

θ(R− r) (26)

corresponds to the lowest excitonic energy level ω0, and

P(k) = 2
kR

∫ π

0
dx sin

kRx

π

sin2x

x
, P(0) = 1. (27)

Then

T(ω) = 2πE0elD0(ω)P∗(k)
(

ω− ω0 + iγ/2
)

ω − ω̃0 + i
(

γ + γr
)

/2
, (28)

where

γr = 8ν

9
e2

c�

p2
cvω

2

ωgm
2
0c2
|P(k)|2,

ω̃0 = ω0 + Δω,

(29)

Δω = − 4e2

9π�

p2
cv

ωgωm
2
0ν2

∫∞

0
dq q2(P

(

q
))2

× (q2 − 3k2) P

q2 − k2
.

(30)

The value (30) of an exciton energy correction coincides
completely with the results of [6] and preceding results of
[16–18], where it was considered as the result of the long-
range exchange electron-hole interaction (see [8]). Having
substituted (28) in (16) and (17), we obtain electric and
magnetic fields on the large distances from the QD applicable
in the cases of the monochromatic or pulse irradiation.

The precise results for the fields distinguish from the
results of the lowest approximation on the light-electron
interaction only by the substitution ω0 by ω̃0 and γ by Γ =
γ + γr .

For the case (19) of the monochromatic irradiation we
obtain

ΔE((r), t)|r→∞ = −3
4
E0

γr
klr

[(

ele+
s

)

e+
s +

(

ele+
s

)

e−s
]

× ei(klr−ωlt)

ωl − ω̃0 + iΓ/2
+ c.c.,

ΔH((r), t)|r→∞ = 3iν
4
E0

γr
klr

[(

ele−s
)

e+
s −

(

ele+
s

)

e−s
]

× ei(klr−ωlt)

ωl − ω̃0 + iΓ/2
+ c.c.,

(31)

where kl = ωlν/c.

7. The Pointing Vector on Large Distances from
the QD and the Total Cross-Section of Light
Scattering at the Monochromatic Irradiation

The Pointing vector on large distances from the QD equals

S|r→∞ = S0 + Sinter f + Sscat, (32)

where

S0 = c

4π
E0 ×H0 = cν

2π
E2

0ez,

Sinter f = c

4π
[E0 × ΔH + ΔE×H0],

Sscat = c

4π
ΔE× ΔH.

(33)

With the help of (31) we obtain

Sscat = 9π
4
S0

γ2
r

(klr)
2

r
r

∣

∣ele−s
∣

∣
2 +
∣

∣ele+
s

∣

∣
2

(ωl − ω̃0)2 + Γ2/4
. (34)
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The module of the total flux of scattered light per time unite
is

Πscat = 3π
2
S0

γ2
r

(kl)
2

1

(ωl − ω̃0)2 + Γ2/4
. (35)

Obtaining (35) from (34) we have used the relations

∣

∣

∣e+
l e−s

∣

∣

∣

2 =
∣

∣

∣e−l e+
s

∣

∣

∣

2 = 1
4

(1 + cos θ)2,

∣

∣

∣e+
l e+

s

∣

∣

∣

2 =
∣

∣

∣e−l e−s
∣

∣

∣

2 = 1
4

(1− cos θ)2,

(36)

where θ is the scattering angle. An integration θ is performed.
Having dividedΠscat on the density S0 of the stimulating light
flux and using kl = 2π/λl, we obtain the total cross-section
of light scattering

σscat = 3
2π

λ2
l

γ2
r /4

(ωl − ω̃0)2 + Γ2/4
. (37)

The differential cross-sections have been determined in [8].

8. The Light Absorption: The Role of
the Nonradiative Damping

The results for the cross-sections of light scattering on
QD, obtained with the help of the quasiclassic method,
coincide with the lowest approximation on the light-electron
interaction with the results of the quantum perturbation
theory [10]. However, the quasiclassic method allows to
obtain also the cross-section of light absorption by a QD.
In the case of a monochromatic irradiation the absorption
is stipulated by the nonradiative damping γ of excitons, and
it equals 0 at γ = 0. The same result was obtained at a
monochromatic irradiation of a QW [7, 24]. The cause is
that at γ = 0 a dissipation of energy, spent on an exciton
creation, is absent. And this energy returns at an exciton
annihilation. In the case of a pulse irradiation the integral
absorption equals 0 at γ = 0 [15, 25–27].

It was shown at calculations of light absorption by
a QW that the interference of stimulating and induced
electromagnetic fields must be taken into account (see, e.g.,
[25]). The same is true for the case of QDs.

9. The Interference Contribution into
Energy Fluxes

Let us calculate an interference contribution into the Point-
ing vector at r → ∞ in the case of a monochromatic
irradiation. Using (31) and

E±0 (r, t) = E0e±l e
i(klr−ωlt) + c.c.,

H±
0 (r, t) = E0ν

[

ez × e±l
]

ei(klr−ωlt) + c.c.,
(38)

we obtain

Sinter f = Sz + S⊥, (39)

Sz = −3
4
γr
klr

S0ez
∣

∣

∣e+
l e−s

∣

∣

∣

2
(

ei(klr−klr)

ωl − ω̃0 − iΓ/2 + c.c.

)

, (40)

S⊥ = 3
4
γr
klr

S0

(

e±l
(

e∓l e±s
)

(

e∓s ez
) ei(klr−klr)

ωl − ω̃0 − iΓ/2 + c.c.

)

,

(41)

where +(−) correspond to the right (left) circular polariza-
tion of the stimulating light.

Since (40) and (41) are applicable at r → ∞, it is
obviously that due to the factor ei(klr−klr) only angles θ → 0
can contribute into the constant energy flux. However, there
is the factor (e∓l ez) in the RHS of (41), which equals 0 at
θ = 0. Therefore, the constant energy flux on the large
distances from a QD corresponds only to the vector Sz.

Let us calculate the energy flux

Πz =
∫

ds Sz, (42)

going through a plane perpendicular to the stimulating light
direction z in a time unite on large distances behind of a QD.
A surface element equals ds = ρd ρd ϕ, and ρ = z tan θ,
r = z/ cos θ, where θ is the angle between kl and r. Having
integrated on the angle θ which gives 2π, using (36) and
going from the variable ρ to the variable θ, we obtain

Πz = −3π
8
γrz

kl
ez

S0

ωl − ω̃0 − iΓ/2
∫ π/2

0
dθ sin θ

×
(

1 + cos θ
cos θ

)2

eiklz(1−1/ cos θ) + c.c.

(43)

Further we substitute variable θ by the variable t =
(cos θ)−1 − 1 and obtain

Πz = −3π
8
γrz

kl
ez

S0

ωl − ω̃0 − iΓ/2

×
∫∞

0
dt
(

2 + t

1 + t

)2

e−iklzt + c.c.

(44)

At z → ∞

z
∫∞

0
dt
(

2 + t

1 + t

)2

e−iklzt

−→ 4z
∫∞

0
dte−iklzt = −4i

kl

(

1− e−iklz
)

,

(45)

and we obtain

Πz = 3π
2
γr
k2
l

ezS0

(

i

ωl − ω̃0 − iΓ/2 + c.c.
)

= −3π
2

ez
k2
l

S0
γrΓ

(ωl − ω̃0)2 + Γ2/4
.

(46)

In (46), the terms going to 0 at z → ∞, and rapidly
oscillating with z are neglected. Analogically we calculate the
contribution Π⊥ =

∫

ds S±⊥ into the energy flux and find that
at z → ∞ the value Π⊥ → 0.
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Figure 1: σ res
scat and σ res

abs as functions of γr/γ in the resonance ω̃0 = ωl.
σ0 = (3/2π)λ2

l .

10. The Cross-Section of Light Absorption

Since Γ = γ + γr , the flux Πz may be represented as two parts

Πz = −ezΠscat − ezΠabs, (47)

where Πscat is determined by (35),

Πabs = 3π
2
S0

γrγ/k
2
l

(ωl − ω̃0)2 + Γ2/4
. (48)

Obviously that the energy flux −ezΠscat compensates the
total flux of the scattered energy, and Πabs corresponds
to the energy, absorbed by the QD per time unite at the
monochromatic irradiation. Having divided Πabs on the
density S0 of the stimulating energy flux, we obtain the total
cross-section of light absorption

σabs = 3
2π

λ2
l

γrγ/4

(ωl − ω̃0)2 + Γ2/4
(49)

and reduces to 0 at γ = 0, as it was supposed in advance.
Comparing (49) and (37) we find that in the lowest

approximation on the light-electron interaction the absorp-
tion cross-section is of the first order on that interaction (it
contains the factor e2/c�), and the scattering cross-section
is of the second order on that interaction (it contains the
factor (e2/c�)2). The ratio of the scattering and absorption
cross-sections equals γr/γ. The absorption cross-section has
the maximum value at comparable values γr and γ. At γr = γ
in the resonance ωl = ω̃0

σ res
scat = σ res

abs =
3

8π
λ2
l . (50)

σ res
scat and σ res

abs as functions of γr/γ are represented in Figure 1.

11. Conclusion

Thus, the electric and magnetic fields induced at the light
irradiation of QDs are calculated in the resonance of
the stimulating light and excitons with the help of the
semiclassical method of the retarded potentials. The fields on
the large distances are calculated exactly.

The concrete calculations are performed for the excitons
Γ6 × Γ7 in cubic crystals of Td class. It is shown that in the
case of small or spherically symmetric QDs the light-electron
interaction realizes into the substitution of the nonradiative
excitonic damping γ by the damping Γ = γ + γr and the
exciton energy ω0 by the energy ω̃0 = ω0 +Δω, where γr is the
radiative damping, Δω is the correction to the exciton energy
due to the long-range exchange interaction of electrons and
holes.

The light scattering and absorption cross-sections by
QDs are obtained for arbitrary QDs under condition R� λl
and excitonic spherical envelope wave functions.
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