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The spin interaction energy of different Mn2+ ions with and without an itinerant electron is evaluated for different dot radii.
Magnetization is calculated for various concentrations of Mn2+ ions with different dot sizes. Spin polaronic shifts are estimated
using a mean field theory. The lowest binding energies of electrons in a Cd1−xMnxTe quantum dot are also calculated. Results
are obtained for Cd1−xin Mnxin Te/Cd1−xout Mnxout Te structures as a function of the dot radius variationally. It is found that (i) more
number of Mn2+ spins enhance the spin polaronic effect and it varies linearly with the concentration, (ii) spin polarization of Mn2+

ions increases with the concentration for any dot radii, (iii) the magnetization of Mn subsystem increases with the concentration
of Mn2+ ions and this feature is predominant for smaller dots, and (iv) variation of increase in ionization energy is sharper for
smaller dots with increase in concentration. These results are discussed with the available data in literature.
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1. Introduction

Recent advances in nanofabrication technology have allowed
the construction of structures with lower dimensions. The
most recent achievement is the fabrication of zero-dimension
quantum structures, usually called quantum dots. Due to
their small size these structures exhibit physical properties
that are quite different from those of the bulk semiconductor
constituents. It is expected that these properties will show
more pronounced differences as the confinement is increased
with the lowering of the dimensionality. More specifically,
the shape and the size of the nanostructure have a strong
influence on the optical properties [1].

Diluted magnetic semiconductors (DMSs) are expected
to play an important role in interdisciplinary materials sci-
ence and future electronics because charge and spin degrees
of freedom accommodated into a single material exhibit
interesting magnetic, magneto-optical, magnetoelectronic,
and other properties [2]. Controlling the spin state of
electrons provides an important versatility for future nano-
electronics [3]. Most of the envisioned spintronic devices
are based on spin transfer mechanisms on the nanoscale.

For this purpose, new materials have been synthesized
with highly spin polarized bands, and novel experimental
techniques are being applied to characterize the spin state of
the charge carriers [4–6]. The range, strength, and sign of
exchange interactions between magnetic impurities in DMSs
depend on the density and nature of the states at the Fermi
level. Mn-doped semiconductors of the families (II,Mn)–VI
and (III,Mn)–V order ferromagnetically in the presence of
carriers that mediate indirect exchange interactions between
Mn. (III,Mn)V DMSs are promising spintronic materials
with high spin polarization of bound magnetic polarons
[7–9] and with a wide variety of spin-dependent transport
properties [10]. While considerable effort is concentrated to
enhance the ferromagnetic transition temperature [11, 12].
Smith et al., [13] showed the evidence of exciton magnetic
polarons in CdMnTe QDs form through the spontaneous
ferromagnetic alignment of the Mn.

Study of DMSs and their heterostructures have centered
mostly on II–VI semiconductors, such as CdTe and ZnSe, in
which the valence of the cations matches that of the common
magnetic ions such as Mn. Although this phenomenon
makes these DMSs relatively easy to prepare in bulk form
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as well as in thin epitaxial layers, II–VI-based DMSs have
been difficult to dope to create p and n-type, which made
the material less attractive for applications. Moreover, the
magnetic interaction in II–VI DMSs is dominated by the
antiferromagnetic exchange among the Mn spins, which
results in the paramagnetic, antiferromagnetic, or spin
glass behavior of the material. It was not possible until
very recently to make a II–VI DMS ferromagnetic at low
temperature in modulation-doped QW structures exploiting
RKKY mechanism [14].

Diluted magnetic semiconductors (DMSs) are com-
pound of alloy semiconductors containing a large fraction
of magnetic ions (Mn+2, Cr+2, Fe+2, Co+2) and are studied
mainly on II–VI-based materials such as CdTe and ZnSe.
This is because such +2 magnetic ions are easily incorporated
into the host II–VI crystals by replacing group II cations.
In such II–VI-based DMSs such as (CdMn)Te, (CdMn)Se,
magneto-optic properties were extensively studied, and
optical isolators were recently fabricated using their large
Faraday effect [15]. Also, recently, a controllable fabrication
of dots with only a single Mn ion and the photoluminescence
studies distinguishing various positions of such Mn ion or
anisotropy in the quantum confinement and the temperature
of the onset of magnetization in DMS QDs higher than in the
bulk DMSs have been studied [16, 17]. Moreover, the carrier-
mediated ferromagnetism bulk DMS such as light- and
bias-controlled ferromagnetism have also been studied. The
interaction among these spins leads to ferromagnetic order at
low temperatures, which is not only to create spin-polarized
carriers but also optical or electrical injection can create
highly spin-polarized carrier density even in nonmagnetic
semiconductors [18]. Petukhov et al. [19], have proposed
a model of carrier-mediated ferromagnetism in semicon-
ductors accounting for the temperature dependence of the
carriers. Their model permits analysis of the thermodynamic
stability of competing magnetic states, opening the door to
the construction of magnetic phase diagrams. The complete
details of properties of DMS material have been reviewed
by Furdyna [20]. Optically detected cyclotron resonance of
two-dimensional electrons has been studied in nominally
undoped CdTe/(Cd,Mn)Te quantum wells [21] where they
studied an increase of the electron cyclotron mass from
0.099 m0 to 0.112 m0 with well width decreasing from 30
down to 3.6 nm. Diluted magnetic oxide semiconductors
are considered to be one of the strong candidates to
realize room temperature ferromagnetism. Among them,
Mn-doped ZnO can be regarded as a class of Mn-doped
II–VI semiconductors, and the properties are similar to the
typical II–VI magnetic semiconductors [22, 23].

In this work, the lowest binding energy of the donor elec-
tron in a diluted magnetic semiconductor of a Cd1−xMnxTe
quantum dot is calculated. We investigate theoretically the
donor bound spin polaronic effect in a quantum dot.
The mean field theory with modified Brillouin function
that is already used for bulk and quantum well cases has
been extended to the case of a QD, and we estimate the
spin polaronic shifts to the impurity ionization energies.
Moreover, the introduction of magnetic ions such as Mn into
these compounds leads to the formation of diluted magnetic

semiconductors, in which the exchange interaction between
the magnetic ions and electronic states opens perspectives
for interesting new phenomena. One such possibility is
observing a situation in which the exchange-interaction-
enhanced spin splitting of a Landau level coinciding with the
energy separation between adjacent Landau levels (cyclotron
energy), where interaction of the two resonances might be
expected. Donor ionization energy and the spin interaction
energy are calculated with different concentrations of Mn2+

ions for different dot radii. The spin interaction energy
of among Mn2+ ions is evaluated for different dot radii.
Magnetization is calculated for various concentrations with
the dot sizes.

We would like to point out that the lowest binding energy
and the impurity binding are calculated for a Cd1−xMnxTe,
within the single band approximation, varying the varia-
tional parameter. The magnetization is computed using the
variational parameter with the impurity concentration. The
donor electron in a doped semimagnetic semiconductor has
a huge orbit (∼50 Å) in which there occur several manganese
ions which are polarized due to the spin of the carrier
which is an exchange mechanism resulting the concept of
Bound Magnetic Polaron (BMP). The spin polaronic effect
is also computed with the same variational parameter and
the wave function, and it is estimated with the mean field
approximation using modified Brillouin function.

2. Model and Calculations

2.1. Ionization Energy. Our system consists of a spherical dot
(depth V, and radius R) containing a donor impurity inside
the QD of the magnetically nonuniform “spin-doping”
superlattice system such as Cd1−xin Mnxin Te/Cd1−xout Mnxout Te
with different concentrations of xin and xout of Mn ions
in- and outside the QD. Such a QD may be fabricated by
the method of evolution of self-assembled quantum dots
(QDs) in the Stransky-Krastanow mode as in the case of
Cd1−xin MnxinSeQDs or by electron beam lithography and wet
chemical etching which is used to fabricate quantum wires
[24].

The system is described by the following Hamiltonian:

H = He + gμBszB − Js−d

∑

I

SI•sδ
(
r − RI

)
. (1)

Let us analyze the three terms contributing toH . He is the
part of Hamiltonian which describes the itinerant electron.
The second term is the Zeeman coupling between localized
spins and an external magnetic field B where μB is the Bohr
magneton. And the third term is the magnetic Hamiltonian
for one itinerant electron with spin s located at r and one
Mn ion with S located at R. In the presence of hydrogenic
impurity, the Hamiltonian is the sum of kinetic energy and
potential energy, given by

He = − �2

2m∗∇2 − e2

ε0r
+V(r), (2)

where m∗ is the effective mass, and ε0 is the static dielectric
constant of CdTe. By introducing the effective Rydberg R∗y ,
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as the unit of energy and the effective Bohr radius (60 ´̊A) as
the length unit, the Hamiltonian given in (2) becomes

He = −∇2 − 2
r

+
V(r)
R∗y

. (3)

The lowest state energies are obtained using the wave
function

ψ =
⎧
⎪⎨
⎪⎩
N2

sin k1r

r
, r ≤ R,

N3 exp(−k2r), r > R,
(4)

where N2,N3 are normalization constants, k1 =
(2m∗E/�2)1/2, and k2 = (2m∗(E −V)/�2)1/2. For a
finite barrier case we choose x = 0.02; hence V = 29.92R∗y .

With the inclusion of the impurity potential in the
Hamiltonian forces to use of the variational approach. Then
the trial wave function for the ground state with the impurity
present is taken as

ψ =
⎧
⎪⎨
⎪⎩
N4

sin k1r

r
exp (−α1r), r ≤ R,

N5 exp(−k2r) exp (−α1r), r > R,
(5)

where α1 is the variational parameter, and N4,N5 are
normalization constants.

The ionization energy is given by

Eion = Esub − 〈H〉min, (6)

where Esub is the lowest subband energy obtained with the
impurity. Thus the ionization energy is obtained, varying α1

for different dot sizes with different concentrations of Mn
ions.

The Hzee term is given by

Hzee = gμBszB = xJs−dsz〈Sz〉, (7)

which is the Zeeman coupling between localized spins and
an external magnetic field B. Direct interactions between
the magnetic moments of Mn ions are much smaller than
the interaction with the carrier spins [25], and also for an
electron spin, the separation between the Zeeman levels is
given by �ω = �γB0 where γ is the gyromagnetic ratio.
For B 0 ∼ 40 Tesla, we obtain a value of ∼5 meV for the
separation. As this is small when compared to the exchange
energy, we drop the Zeeman Effect. Equation (7) is the
antiferromagnetic exchange interaction arising between the
spin of a conduction electron and the Mn2+ spins. Here SI is
the spin of the Mn2+ ion at position RI , and s is the spin of the
conduction electron centered at r. The exchange interaction
J(r,RI) is dependent on the overlap between the orbital of
the conduction electron and of the 3d electrons.

2.2. Spin Polaronic Effect. Kasuya and Yanase [26], who
explained the transport properties of magnetic semicon-
ductors, originally developed the theory of spin polaron
(SP). This mean field theory, which invokes the exchange
interaction between the carrier and magnetic impurity in

the presence of an external magnetic field B, yields the spin
polaronic shift, Esp, with the modified Brillouin function
[27]:

Esp = 1
2
αN0

∫
xS0(x)

∣∣ψ
∣∣2
Bs

[
Sα
∣∣ψ
∣∣2

2kB[T + T0(x)]

]
dτ, (8)

where α is the exchange coupling parameter, S is the
Mn2+ spin, and xNo is the Mn ion concentration. The
integration is on spatial coordinates. Also g ≈ 2, S0(x),
the effective spin, and T0(x), the effective temperature,
are the semi-phenomenological parameters, which describe
the paramagnetic response of the Mn2+ ions in the bulk
Cd1−xMnxTe [28], kB is the Boltzmann constant, and Bs(η)
is the modified Brillouin function. In (8), ψ is the envelope
function given by (5).

The parameters used in our calculations are N0 =
2.94 × 1022 cm−3, αN0 ≈ 220 mev, and the semi-
phenomenological parameters So(Xin = 0.02) = 1.97,
To (Xin = 0.02) = 0.94, [29]. The lattice constant is
around 6.48 Å. We estimate N0, the atomic concentration
of Cd, to be 2.940 × 1022 cm−3. For x = 0.01 in
Cd1−xout Mnxout Te barrier, there are about 134 Mn2+ ions in
a volume 4πa∗3/3.

Using the envelop function given in (4) with the appro-
priate variational parameters, we obtain

Esp = 1
2
αN0[XinS0(Xin)I1 + XoutS0(Xout)I2], (9)

where

I1 =
∫ ∣∣ψin

∣∣
2

Bs
(
η1
)
dτ, I2 =

∫ ∣∣ψiout
∣∣

2

Bs
(
η2
)
dτ,

Bs

(
ηj
)
= 2S + 1

2S
coth

(
2S + 1

2S
ηj

)
− 1

2S
coth

(
ηj
2S

)
,

(10)

with η1 = Sα|ψin|2/2kB[T + T0(xin)] and η2 = Sα|ψout|2/
2kB[T + T0(xout)].

The factor Bs(ηj) represents the spin polarization of the
Mn+2 cations. The spin of the Mn+2cation is S = 5/2.
Bs(ηj) is the standard Brillouin function. Such a simplified
Brillouin-function approach is quite common when dealing
with quasi-low dimensional systems.

2.3. Spin Exchange-Interaction Energy. The magnetization of
the magnetic ions competes with spin-orbit coupling [30,
31]:

ξ =
gMnμBSB − Js−dS

(
ndown − nup

)
/2

kBT
, (11)

where μB is the Bohr magneton, gMn is the g factor of Mn
ions, and ndown and nup are the spin-down and spin-up
concentrations measured for a particular dot radius. The first
term in the numerator of (11) represents the contribution
of the Zeeman coupling between the localized spin and
the magnetic field. The second term in the numerator of
(11) (sometimes called “feedback mechanism”) represents
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Figure 1: Variation of ionization energy with dot size for different
concentrations of Mn ions in a Cd1−xMnxTe QD.

the kinetic exchange contribution which, in principle, can
induce spontaneous spin-polarization, that is, in the absence
of an external magnetic field. Choosing the cell dimension

in CdTe to be 6.48 ´̊A, taking 8 atoms per unit cell we have
calculated the total number of ions present in a spherical
quantum dot for different concentrations. Thus the spin
exchange interaction energy among Mn ions is obtained for
two different dot radii as shown in Figure 4.

2.4. Magnetization Energy. Following formalism describes
the magnetization energy in the CdMnTe dot. Intending
to consider semimagnetic semiconductors Cd1−xin Mnxin Te
we will incorporate into the Hamiltonian the exchange
Heisenberg interaction of the conduction band electrons
with Mn ions. We consider the magnetic Hamiltonian for
one itinerant electron with spin s located at r and one Mn
ions with SMn

n located at Rn as

Hm = −
∑

n

Jsd(r − Rn)SMn
n s, (12)

where Js−d is the coupling strength due to the spin-spin
exchange interaction between the d electrons of the Mn+2

cations and the s- or p-band electrons; it is negative for
conduction band electrons and the sum runs over all the Mn
ions. The value of Jsd is taken as 12 × 10−3 eVnm3. We will
use the mean-field approximation inserting the mean value
of Mn spin in z direction. In the mean field approximation,

He → He
Mn ≡ geμBs · he and HMn → HMn

MF ≡ gMnμBs · hMn
,

where gMn = 2, μB is the Bohr magneton, S = 5/2
is the spin of a manganese atom, and he and hMn are the
effective magnetic fields acting upon electrons and magnetic
impurities, respectively, and can be given as

he = 1
geμB

JsdNMn〈Sz〉,

hMn = 1
geμB

JsdM
e.

(13)

Here, NMn = 4x/a3
o is the density of Mn ions with a3

o

being the unit cell volume. Me = ∑
nJsd〈s〉δ(r − Rn) is
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Figure 2: Variation of ionization energy with concentration of Mn
ions for different sizes of dot of Cd1−xMnxTe.

the magnetization density of the electron subsystem which
is assumed to be uniform within the length scale of the
magnetic interactions; so the magnetic response of the Fermi
sea electrons to the field he is given by

Me = geμBs
2De(EF)he, (14)

where the density of states of electron gas with the effective
mass and the electron concentration n is

De(EF) = (3π2)−2/3(
3m∗/�2)n1/3. (15)

On the other hand, the magnetic response of the impurity
spin to the effective field hMn is given by

MMn = gMnμBNMn〈Sz〉 = gMnμBNMnSBs

(
gMnμBNMnSh

Mn

kBT

)
,

(16)

where Bs(x) is given as (10). So within the spirit of a mean
field framework the magnetization of Mn subsystem is the
given by

MMn = gMnμBNMnSBs

(
JsdS

2kBT
Me
)

, (17)

which should be determined self consistently with the
electron magnetization:

Me = JsdDe(EF)
gMnμB

MMn. (18)

3. Results and Discussion

The donor binding energy as a function of dot radius
different concentrations of Mn ions is given in Figure 1.
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60.08 ´̊A. The spin interaction energy has been calculated using (11)
for different concentrations.

As expected, the binding energy decreases with an increase
of dot radius, reaching the bulk value for larger dot
radii. As the dot radius approaches zero, the confinement
becomes negligibly small, and in the finite barrier problem
the tunneling becomes huge. The binding energy again
approaches the bulk value of the barrier. In all the cases,
the ionization energy approaches the bulk value in both
the limits of L → 0 and L → ∞ corresponding to
one effective Bohr radius of CdTe, 11.38 meV, which is the
ionization energy of the donor for the bulk. Hence the
variation of ionization energy with dot radius shows a peak
around 1.5R∗ for all the concentrations. This is a well-known
result in all quantum well structures [32]. Donor ionization
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Figure 5: Variation of magnetization with different concentrations
of Mn ions in a Cd1−xMnxTe QD with a finite barrier height.
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energy becomes higher with the concentration for any dot
radii.

Figure 2 represents the variation of ionization energies
of a donor impurity with concentration of Mn ions for
three different dot radii. It is clear that donor ionization
energy increases with the concentration. For larger dot radii,
the ionization energy increases slowly with the increase of
concentration whereas the variation of increase in ionization
energy is sharper for smaller dots due to the confinement.
These results are very good agreement with the other
investigators qualitatively [33, 34]. The slope measures with

the values of 133 meV/Å
3

for = 100 Å, 125 meV/Å
3

for 90 Å
and 111 meV/Å

3
for 80 Å.
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In Figure 3, we have plotted the variation of spin
polaronic energy with concentration of Mn ions for the dot

size of 100 ´̊A. The spin polarization energy increases with
the concentration of Mn ions. This variation is found to be
linearly varying. Our results are closely in agreement with the
results of Kai Chang et al. [30], who have found the energy
dispersion of an electron in a double quantum wire with a
diluted magnetic semiconductor barrier recently.

Figure 4 shows the variation of spin interaction energy
among Mn ions with for two different dot sizes of
Cd1−xMnxTe QD. In both cases the spin exchange interaction
energy of confined electrons increases with the concentra-
tions linearly. The variation of spin correlation energy is
sharper when the radius of the dot is higher whereas there
occurs a slow variation for smaller dot radii.

In Figure 5, we have plotted for the variation of mag-
netization with different concentrations of Mn ions in a
Cd1−xin Mnxin Te/Cd1−xout Mnxout Te QD. As the concentration
of Mn ions increases, the magnetization of Mn subsystem
also increases. This mechanism has clearly brought out in
Figure 6 which has been plotted for variation of magneti-
zation with dot radius for different concentrations of Mn
ions in a Cd1−xin Mnxin Te/Cd1−xout Mnxout Te in a finite barrier
model. Magnetization decreases when dot radius increases
for all the concentrations of Mn ions. As concentration
increases, the magnetization also increases for all the dot
radii whereas these changes occur appreciably for smaller
dots. Magnetization is stronger for smaller dots with high
concentration as expected. Magnetization is almost constant
for larger dot radii for any concentration of Mn ions [35].
Magnetization of the magnetic ions competes with spin-orbit
coupling, and the effects of the spin-subband populations
and the spin-polarization as functions of the temperature, T ,
and the in-plane magnetic field, B, for narrow to wide dilute-
magnetic-semiconductor quantum wells have been studied
recently [35].

In conclusion, the spin polarization energy of a confined
donor electron has been studied for different concentrations
of Mn ions for the finite dot of Cd1−xMnxTe. The magneti-
zation of Mn subsystems and the strength of spin exchange
energy of confined electrons have been discussed. The main
results are the spin polaronic effect raises the binding energy,
but this feature predominantly occurs only for smaller dots,
the variation of increase in ionization energy is sharper for
smaller dots due to the confinement, and the spin interaction
energy increases with the concentration of Mn ions having
a sharp variation for larger dots. However, this problem
may be improved in the line of thought of considering
spin polarization energy self consistently which requires
a lot of computation techniques. Experimental efforts are
encouraged to lend support to our calculations.
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