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We propose a method called PacketTwins for estimating the capacity of heavy-loaded paths. Unlike popular packet pair methods,
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different in size. By sending twin probe packets alternately, we can obtain new information about selecting valid samples for
capacity estimation when a network path is heavy loaded.
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1. Introduction

Several packet pair methods have been proposed for esti-
mating the bottleneck capacity of an end-to-end path with
help of the dispersion of probe packet pair. Moveover,
to deal with disruptions caused by cross traffic, various
filter algorithms designed to find uncontaminated probe
samples have been proposed. For example, in [1], CapProbe
was proposed to find valid probe samples with the help
of end-to-end delay information. While CapProbe is very
accurate and converges quickly when the path is light-
loaded, its performance degrades when the path is heavy
loaded.

In this letter, we propose a method called PacketTwins
for estimating the capacity of heavy loaded paths. Instead
of using packet pairs, PacketTwins uses twin packets whose
sizes are slightly different to probe a path’s capacity. Existing
approaches, such as [2–4], use different sized packets to
measure the capacity of each intermediate link and other
metrics along the path. In contrast, PacketTwins focuses
on the estimation of the path capacity (i.e., the bottleneck
link capacity) by exploiting the different sizes of the twin
probe packets, in addition to the traditional parameters like
dispersion and delay. Moreover, PacketTwins preserves the
simplicity of CapProbe, and it is less intrusive than packet
train-based tools (e.g., Pathrate [5]).

2. PacketTwins

2.1. Feasibility. Consider the scenario where two packets sent
back-to-back cross a path with capacities (C1,C2, . . . ,Cn).
The path consists of n links, and the bottleneck link falls
on the kth link. Mathematically, the path capacity C =
Ck = min{C1,C2, . . . ,Cn}. Suppose that the two packets
leave the ith link at t1i and t2i , respectively. Packet dispersion
is defined as the time interval between the departure times
of the two packets. While crossing the bottleneck link, the
two probe packets still remain back-to-back; however, the
dispersion of the packets changes at the bottleneck link. The
new dispersion can be expressed as

Δk = L2

Ck
, (1)

where L2 is the size of the second probe packet.
Specifically, the time that each packet leaves the ith link

can be expressed as follows:

t
j
i = t

j
i−1 +

Lj
Ci

, j = 1, 2. (2)

Therefore, the dispersion after the ith link can be calcu-
lated by

Δi = t2i − t1i = Δi−1 + (L2 − L1)
1
Ci
. (3)
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Recursively, the dispersion measured at the end of the path
can be expressed as

Δ = Δk + (L2 − L1)
n∑

i=k+1

1
Ci
= L2

Ck
+ (L2 − L1)

n∑

i=k+1

1
Ci
. (4)

Equation (4) shows that if the two probe packets are
of equal size (L1 = L2), the packet dispersion after the
bottleneck link remains the same as L2/Ck until the end of
the path. However, if the two packets are different in size,
the dispersion will be disrupted by links after the bottleneck
link. This may be the reason that most packet pair methods
use two equal-sized packets.

In this work, we find that when we transmit two different
sized probe packets alternately, the disturbance in the second
part of (4) can be eliminated. Specifically, when the sending
order of the two packets is changed (i.e., the packet of size L2

is sent first), the dispersion can be expressed as follows:

Δ′ = Δ′k + (L1 − L2)
n∑

i=k+1

1
Ci
= L1

Ck
+ (L1 − L2)

n∑

i=k+1

1
Ci
.

(5)

Combining (4) and (5), the path capacity can be
calculated by

C = Ck = L1 + L2

Δ + Δ′ . (6)

2.2. Size Difference of Twin Packets. The assumption made in
the above deduction is that the packet dispersion calculated
in (3) is always larger than the transmission time of the
second probe packet. Therefore, to use (3), the following
constraint must be satisfied:

Δi−1 + (L2 − L1)
1
Ci
≥ L2

Ci
=⇒ Δi−1 ≥ L1

Ci
. (7)

Similarly, when the sending order of the twin packets is
changed, the following constraint must be met:

Δ′i−1 + (L1 − L2)
1
Ci
≥ L1

Ci
=⇒ Δ′i−1 ≥

L2

Ci
. (8)

Specifically, for i = k + 1, the inequalities become

L2

L1
≥ Ck
Ck+1

,
L1

L2
≥ Ck
Ck+1

. (9)

Without loss of generality, we assume that L2 is larger
than L1. Since Ck < Ck+1 and their differences are normally in
the scale of Mbs, the above inequalities can be easily resolved
by setting L1 and L2 very close to each other. Recursively,
there will always be a Δk term in the dispersion; therefore,
for the subsequent downstream links, when the sizes of
twin packets are slightly different (e.g., by two bits), the
constraints in (7) and (8) will always be satisfied. In addition,
bottleneck link capacity estimation based on (6) will yield
valid results.

2.3. Dispersion Variance of Twin Local Modes. When a path is
heavy loaded, probe packets may experience queueing delays
after the bottleneck link. Suppose that the delay experienced
by two probe packets at the ith link is d1

i and d2
i , respectively.

When the sending order is changed, the queueing delay of the

twin packets becomes d1
i

′
and d2

i

′
. Thus, the departure time

of probe packets from the ith link in (2) should be modified
as follows:

t
j
i = t

j
i−1 +

Lj
Ci

+ d
j
i , j = 1, 2. (10)

Consequently, the dispersion in (3) should be revised as

Δi = Δi−1 + (L2 − L1)
1
Ci

+
(
d2
i − d1

i

)
. (11)

Similarly, when the sending order of twin packets is
changed, the dispersion becomes

Δ
′
i = Δ

′
i−1 + (L1 − L2)

1
Ci

+
(
d2
i

′ − d1
i

′)
. (12)

If a number of sample packets experience the same delay
after the bottleneck link, they form a local mode [5] in the
dispersion distribution. However, as the sending order of
twin probes alternates, there are actually two similar local
modes even though the samples experience the same delay
as shown in (11) and (12). In other words, the different sizes
of twin packets and the alternating sending order split each
local mode into two similar local modes, which we call twin
local modes.

We observe that the variance of twin local modes actually
provides an additional clue for filtering valid probe samples.
Specifically, the dispersion variance of twin local modes after
the ith link is

ΔΔi = Δi − Δ′i

= ΔΔi−1 +
2(L2 − L1)

Ci
−
(
d1
i − d1

i
′)−

(
d2
i
′ − d2

i

)
.

(13)

Consider the sample probes of twin local modes crossing
the ith link. For ease of analysis, we assume that all the
samples of the same local mode experience exactly the
same processing delays after the bottleneck link. The delays

experienced by the first probe packets are all the same (d1
i

′ =
d1
i ), since neither the probe size nor the sending order has any

influence. However, the queueing delays of the second probe
packets fall into two categories depending on whether they
are influenced by the first packets or not.

First, if the dispersion of twin packets is “saturated” by
cross traffic, the delay of the second probe packet will be
influenced by the cross packets that saturate the dispersion as
well as by the first probe packet. In this situation, the variance
of packet dispersion of the twin local modes after the ith link
can be easily calculated by

ΔΔi =
y + L2

Ci
− y + L1

Ci
= L2 − L1

Ci
, (14)

where y denotes to the size of packets that saturate the
dispersion.
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Figure 1: Dispersion distributions of CapProbe and PacketTwins. CapProbe uses 200-byte probes, and PacketTwins uses 199- and 201-byte
twin probes. All the links on the path are 80% utilized.
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Figure 2: Estimation results with PacketTwins and CapProbe.

Second, if the dispersion is not “saturated”, the queueing

delay should be same for all the second probe packets (d2
i

′ =
d2
i ) if they belong to twin local modes. According to (13), the

dispersion variance after the ith link can be expressed as

ΔΔi = ΔΔi−1 +
2(L2 − L1)

Ci
. (15)

In summary, the dispersion variance after the ith link
can be classified into two categories. Clearly, the dispersion
variance in the nonsaturated category is much larger than
that in the saturated case. Therefore, the maximal dispersion
variance occurs when the dispersion of twin packets is never
saturated after the bottleneck link. Specifically, the maximal
dispersion variance at the end of the path can be expressed as
follows:

maxΔΔ = (L2 − L1)

⎛
⎝ 1
Ck

+ 2
n∑

i=k+1

1
Ci

⎞
⎠. (16)

We observe that nonsaturated cases hardly ever occur
when d1

i > d2
i . This is because the dispersion is rather

tightly compressed, and so it can be easily saturated by heavy
cross traffic. In other words, the maximal dispersion variance
only occurs for d1

i ≤ d2
i . When d1

i = d2
i , the dispersion

variance reaches the maximum with the smallest dispersion.
Consequently, we can conclude that twin local modes that
achieve the maximal dispersion variance with the smallest
dispersion correspond to valid samples when the path is
heavy loaded.

2.4. Algorithm Description. Based on above analysis, we
outline the steps of the PacketTwins algorithm. First we send
out twin probe packets alternately. To minimize the impact
of variations in cross traffic, we alternate the sending order
of the twin packets sample by sample so that twin local modes
will have similar strength. The second step finds the twin local
modes. Since the twin local modes are very close to each other
and have similar occurrence patterns, they can be found
easily. If it is difficult to distinguish twin local modes, one can
send some packet pair probes of size (L1 + L2)/2 and use the
corresponding local modes for reference. In the third step,
valid samples are discovered with help of information about
the variance of twin local modes. The path’s capacity can be
calculated by (6).

3. Simulation Results and Analysis

We simulate PacketTwins in NS-2 [6] on a 6-link path with
capacities of {8, 3, 2, 4, 5, 6}Mbps. The nonpersistent cross
traffic on each link consists of three Pareto-distributed traffic
with the same shape parameter α = 1.9, different packet
sizes (40, 550, 1500 bytes), and corresponding packet weights
(0.5, 0.25, 0.25). In each measurement, both CapProbe and
PacketTwins send 2000 probe samples. We use a large
number of probes because valid samples are rather rare
when a path is heavy loaded. For CapProbe, we use 200-byte
probes, and for PacketTwins, we use 199- and 201-byte twin
probes.



4 Research Letters in Communications

Figure 1 shows the dispersion distributions when all
links on the path are 80% utilized. We observe that the
dispersion distributions are very complicated, as discussed
in [5], but existing packet pair methods do not provide a
simple indicator to find the right capacity mode (CM) [5]
with packet pair methods.

However, PacketTwins enables us to obtain more infor-
mation. First, the twin local modes under PacketTwins corre-
spond to the local modes under CapProbe. Moreover, the twin
local modes sit on the two sides of the corresponding local
mode of the packet pair and are equidistant to it. Therefore, if
twin local modes are hard to distinguish with PacketTwins, we
can seek extra information from the dispersion distribution
of packet pairs. Second, the dispersion variance of twin
local modes achieves the maximum value with valid samples.
Specifically, the dispersion variance of twin capacity local
modes around CM (0.8 millisecond) is 0.02773 millisecond
which complies with our calculations by (16). The dispersion
variances of other twin local modes also comply with our
analysis; however, they never achieve the maximal value in
this scenario.

Figure 2 shows the estimation results derived by Packet-
Twins and CapProbe under different traffic loads. In each
case, 30 independent simulations are performed, and the
estimation results have a 95% confidence interval. Clearly,
PacketTwins performs much better than CapProbe when
the path is heavy loaded. In fact, as long as there are
samples for the twin capacity local modes, accurate estima-
tion can be achieved by PacketTwins. However, CapProbe
may not yield accurate estimations, as valid samples may
experience prolonged delays before crossing the bottleneck
link.

We also simulate PacketTwins with different probe sizes.
Since the path is already heavy loaded, it is observed that large
probes perform badly because no valid samples are available
in the dispersion distribution. However, when we probe the
path with small twin packets, even if the capacity mode is
very weak, we can still find corresponding valid samples and
estimate the capacity accurately.

4. Conclusion

In this letter, we present a novel path capacity estimation
approach called PacketTwins. By splitting each local mode
under packet pair methods into twin local modes under packet
twins, PacketTwins obtains new filter information about
the dispersion variance of twin local modes. The results of
simulations show that PathTwins is superior to CapProbe
because it can achieve more accurate capacity estimation,
even when a network is heavy loaded.
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