
Hindawi Publishing Corporation
Advances in High Energy Physics
Volume 2008, Article ID 521389, 27 pages
doi:10.1155/2008/521389

Research Article
On the Superstrings-Induced Four-Dimensional
Gravity and Its Applications to Cosmology

Masao Iihoshi and Sergei V. Ketov

Department of Physics, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-shi,
Tokyo 192–0397, Japan

Correspondence should be addressed to Sergei V. Ketov, ketov@phys.metro-u.ac.jp

Received 17 June 2008; Revised 19 October 2008; Accepted 21 October 2008

Recommended by Anastasios Petkou

We review the status of the fourth-order (quartic in the spacetime curvature) terms induced by
superstrings/M-theory (compactified on a warped torus) in the leading order with respect to
the Regge slope parameter, and study their (nonperturbative) impact on the evolution of the
Hubble scale in the context of the four-dimensional FRW cosmology. After taking into account the
quantum ambiguities in the definition of the off-shell superstring effective action, we propose the
generalized Friedmann equations, find the existence of their (de Sitter) exact inflationary solutions
without a spacetime singularity, and constrain the ambiguities by demanding stability and the
scale factor duality invariance of our solutions. The most naive (Bel-Robinson tensor squared)
quartic terms are ruled out, thus giving the evidence for the necessity of extra quartic (Ricci tensor-
dependent) terms in the off-shell gravitational effective action for superstrings. Our methods are
generalizable to the higher orders in the spacetime curvature.
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1. Introduction

The homogeneity and isotropy of our Universe, as well as the observed spectrum of density
perturbations, are explained by inflationary cosmology [1, 2]. Inflation is usually realized
by introducing a scalar field (inflaton) and choosing an appropriate scalar potential. When
using Einstein equations, it gives rise to the massive violation of the strong energy condition
and the exotic matter with large negative pressure. Despite the apparent simplicity of such
inflationary scenarios, the origin of their key ingredients, such as the inflaton and its scalar
potential, remains obscure.

Theory of superstrings is the leading candidate for a unified theory of Nature, and it
is also the only known consistent theory of quantum gravity. It is therefore natural to use
superstrings or M-theory for the construction of specific mechanisms of inflation. Recently,
many brane inflation scenarios were proposed (see, e.g., [3] for a review), together with their
embeddings into the (warped) compactified superstring models, in a good package with
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the phenomenological constraints coming from particle physics (see, e.g., [4]). However, it
did not contribute to revealing the origin of the key ingredients of inflation. It also greatly
increased the number of possibilities up to 10500 (known as the string landscape), hampering-
specific theoretical predictions in the search for the signatures of strings and branes in the
Universe.

The inflaton driven by a scalar potential and its engineering by strings and branes
are by no means required. Another possible approach can be based on a modification of
the gravitational part of Einstein equations by terms of the higher order in the spacetime
curvature [5]. It does not require an inflaton or an exotic matter, while the specific higher-
curvature terms are well known to be present in the effective action of superstrings [6, 7].

The perturbative strings are defined on-shell (in the form of quantum amplitudes),
while they give rise to the infinitely many higher-curvature corrections to the Einstein
equations, to all orders in the Regge slope parameter α′ and the string coupling gs. The
finite form of all those corrections is unknown and beyond our control. However, it still
makes sense to consider the leading corrections to the Einstein equations, coming from
strings and branes. Of course, any result to be obtained from the merely leading quantum
corrections cannot be conclusive. Nevertheless, they may offer both qualitative and technical
insights into the early Universe cosmology, within the well-defined and highly restrictive
framework. In this paper, we adopt the approach based on the Einstein equations modified
by the leading superstring-generated gravitational terms which are quartic in the spacetime
curvature. We treat the quartic curvature terms on equal footingwith the Einstein term, that is,
nonperturbatively.

We consider only geometrical (i.e., pure gravity) terms in the low-energy M-
theory effective action in four space-time dimensions. We assume that the quantum gs-
corrections can be suppressed against the leading α′-corrections, whereas all the moduli,
including a dilaton and an axion, are somehow stabilized (e.g., by fluxes, after the warped
compactification to four dimensions and spontaneous supersymmetry breaking).

Our paper is organized as follows. In Section 2, we review our starting point: M-theory
in 11 spacetime dimensions with the leading quantum corrections, and the dimensional
reduction to four spacetime dimensions. In Section 3, we discuss the problem of the off-shell
extension of the gravitational part of the four-dimensional effective action for superstrings.
In Section 4, we review the physical significance of the on-shell quartic curvature terms. In
Section 5, we prove that it is impossible to eliminate the fourth-order time derivatives in
the four-dimensional equations of motion with a generic metric. The structure of equations
of motions for the special (FRW) metrics is revealed in Section 6, which contains our
main new results. The exact (de Sitter) solutions, stability, and duality constraints are also
discussed in Section 6. Our conclusion is Section 7. In Appendix A, we give our notation and
compute some relevant identities. The two-component spinor formalism (for completeness)
is summarized in Appendix B.

2. M-theory and modified Einstein equations

There are five perturbatively consistent superstring models in ten spacetime dimensions (see,
e.g., the book [6, 7]). All those models are related by duality transformations. In this paper,
we are going to consider only the gravitational sector of the heterotic and type-II strings.
In addition, there exists a parent theory behind all those superstring models, it is called M-
theory, and it is eleven-dimensional [6, 7]. Not so much is known about the nonperturbative
M-theory. Nevertheless, there are the well-established facts that (i) the M-theory low-energy
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effective action is given by the 11-dimensional supergravity [8], and (ii) the leading quantum
gravitational corrections to the 11-dimensional supergravity from M-theory in the bosonic
sector are quartic in the curvature [9–12] (see, e.g., [13] for some recent progress). Our
purpose in this section is to emphasize what is not known.

All the bosonic terms of the M-theory corrected 11-dimensional action read as follows
[9–12]:

S11 = − 1
2κ211

∫
d11x

√−g
[
R − 1

2·4!F
2 − 1

6·3!·(4!)2
ε11CFF

]

− T2

(2π)4·32·213
∫
d11x

√−g
(
J − 1

2
E8

)
+ T2

∫
C ∧X8,

(2.1)

where κ11 is the 11-dimensional gravitational constant, T2 is the M2-brane tension given by

T2 =
(
2π2

κ211

)1/3

, (2.2)

whereC is a 3-form gauge field of the 11-dimensional supergravity [8], and F = dC is its four-
form field strength, R is the gravitational scalar curvature, ε11 stands for the 11-dimensional
Levi-Civita symbol in the Chern-Simons-like coupling, while (J, E8, X8) are certain quartic
polynomials in the 11-dimensional curvature. The J is given by

J = 3·28
(
RmijnRpijqRm

rspRq
rsn +

1
2
RmnijRpqijRm

rspRq
rsn

)
+O(Rmn

)
, (2.3)

where the E8 is the 11-dimensional extension of the eight-dimensional Euler density

E8 =
1
3!
εabcm1n1···m4n4εabcm′1n′1···m′4n′4R

m′1n′1
m1n1 · · ·Rm′4n′4

m4n4 , (2.4)

and the X8 is the eight-form

X8 =
1

192·(2π2
)4
[
trR4 − 1

4
(
trR2)2], (2.5)

where the traces are taken with respect to (implicit) Lorentz indices in eleven space-time
dimensions. The (world) vector indices are also suppressed in (2.1).

The J-contribution (2.3) is defined modulo Ricci-dependent terms by its derivation [9–
12]. The basic reason is the on-shell nature of the perturbative superstrings [6, 7], whose
quantum on-shell amplitudes determine the gravitational effective action modulo field
redefinitions. Via the Einstein-Hilbert term, the metric field redefinitions contribute to the
next (quartic) curvature terms with at least one factor of Ricci curvature. Therefore, some
additional physical requirements are needed in order to fix those Ricci-dependent terms in
the off-shell M-theory effective action.



4 Advances in High Energy Physics

To match the constraints imposed by particle physics, M-theory is supposed to be
compactified to one of the superstring models in ten dimensions, and then down to four
spacetime dimensions, for example, on a Calabi-Yau complex three-fold [6, 7]. Alternatively,
M-theory may be directly compactified down to four real dimensions on a 7-dimensional
special (G2) holonomy manifold [14]. The bosonic fields of the action (2.1) are just an
eleven-dimensional metric and a 3-form (there is no dilaton in eleven dimensions). In other
words, the 11-dimensional action (2.1) is the most general starting point to discuss the M-
theory/superstrings compactification.

In the presence of fluxes, we should consider the warped compactification, whose
metric is of the form [15]

ds211 = e
2A(y)ds2FRW + e−2A(y)ds27, (2.6)

where ds2FRW is the FRW metric in (uncompactified) four-dimensional spacetime (see (5.1)
below), ds27 is a metric in compactified seven dimensions with the coordinates ya, a =
4, 5, 6, 7, 8, 9, 10, and A(y) is called a warp factor.

Since we are interested in the gravitational sector of the four-dimensional type-II
superstrings, an explicit form of the 7-metric ds27 is not needed. In the case of heterotic strings,
one has to include the “anomalous” term quadratic in the curvature (see below). We put all
the four-dimensional scalars (like a dilaton, an axion, and moduli) into the matter stress-
energy tensor (in Einstein frame), and assume that they are somehow stabilized to certain
fixed values. In addition, we do not consider any M-theory/superstrings solitons such as M-
or D-branes. After dimensional reduction, the only gravitational terms coming from type-II
superstrings in four dimensions are given by

S4 = − 1
2κ2

∫
d4x
√−g(R + βJR

)
, (2.7)

where we have introduced the Einstein coupling κ in four dimensions, and the four-
dimensional counterpart JR of J in (2.3), i, j = 0, 1, 2, 3,

JR = RmijnRpijqRm
rspRq

rsn +
1
2
RmnijRpqijRm

rspRq
rsn +O

(
Rmn

)
. (2.8)

The relation between the coupling constants κ11 and κ is given by

κ2 = e5AM7
KKκ

2
11, (2.9)

where we have introduced the Kaluza-Klein (KK) compactification scale M−7
KK = Vol7 ≡∫

d7y
√
g7 and the average warp factor A (with an integer weight p)

epA =
1

Vol7

∫
d7y
√
g7 e

pA(y). (2.10)



M. Iihoshi and S. V. Ketov 5

We also find

β =
1
3

(
κ2

223/2π5e14AM7
KK

)2/3

(2.11)

of mass dimension −6. For instance, when substituting the Planck scale κ ≈ 10−33 cm and
M−1

KK ≈ 10−15 cm, and ignoring the warp factor, A = 0, we get the incredibly small (and, in
fact, unacceptable—see Section 6) value

β ≈ 10−118 cm6. (2.12)

As regards the four-dimensional heterotic strings, the action (2.7) is to be supple-
mented by the term [16, 17]

SH = − 1
2κ2

∫
d4x
√−g

(
1
8
JH

)
, (2.13)

where

JH = RijklR
ijkl +O(Rmn

)
(2.14)

again modulo Ricci-dependent terms.
The gravitational action is to be added to a matter action, which lead to the modified

Einstein equations of motion (in the type-II case, for definiteness)

Rij − 1
2
gijR + β

1√−g
δ

δgij
(√−gJR) = κ2Tij , (2.15)

where Tij stands for the energy-momentum tensor of all the matter fields (including dilaton
and axion).

Due to the ambiguities in the definition of the JR-polynomial, it is also possible to
replace it by

JC = CmijnCpijqCm
rspCq

rsn +
1
2
CmnijCpqijCm

rspCq
rsn +O

(
Rmn

)
, (2.16)

where we have introduced the Weyl tensor in four dimensions [18], which is the traceless
part of the curvature tensor—see Appendices A and B.

3. Going off-shell with the curvature terms

There are about 102 Ricci-dependent terms in the most general off-shell gravitational effective
action that is quartic in the curvature. It also means about 100 new coefficients, which makes
the fixing of the off-shell action to be extremely difficult. The quartic curvature terms are thus
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different from the quadratic curvature terms, present in the on-shell heterotic string effective
action (2.13), whose off-shell extension is very simple (see below). It is, therefore, desirable
to formulate some necessary conditions that any off-shell extension has to satisfy.

(i) The first condition is, of course, the vanishing of all extra terms (i.e., beyond those
in (2.8)) in the Ricci-flat case [19, 20]. The perturbative superstring effective action is usually
deducted from the superstring amplitudes, whose on-shell condition is just the Ricci-flatness.
In the alternative method, known as the nonlinear sigma-model beta-function approach,
the Ricci-dependent ambiguities in the effective equations of motion (associated with the
vanishing sigma-model beta-functions) arise via the dependence of the renormalization
group beta-functions of the nonlinear sigma-model upon the renormalization prescription,
starting from two loops (see, e.g., [21] for details).

(ii) Supersymmetry requires all quantum bosonic corrections to be extendable to
locally supersymmetric invariants. It can be made manifest in four spacetime dimensions,
where the off-shell superspace formalism of N = 1 supergravity is available [22]. The Weyl
tensor, Ricci tensor and scalar curvature belong to three different N = 1 superfields called
Wαβγ , Gαα̇ and R, respectively, while the first superfield is chiral. (We use the two-component
spinor notation [22], α, β, . . . = 1, 2—see Appendix B.) In particular, the Weyl tensor Cαβγδ

appears in the first order of theN = 1 superspace chiral anticommuting coordinates θα as

Wαβγ(x, θ) =Wαβγ(x) + θδCαβγδ(x) + · · · (3.1)

so that the JH terms (with all curvatures being replaced by Weyl tensors) are easily
supersymmetrizable in superspace as

∫
d2θE−1W2

αβγ . (3.2)

The JC terms in (2.16) are also extendable to the manifest superinvariant

∫
d4θE−1W2

αβγW
2
α̇β̇γ̇ , (3.3)

where we have introduced the supervielbein densities, E and E, in the chiral and central
superspaces, respectively (see [22] for details).

Those invariants were extensively studied in the past because they naturally appear
as the possible counterterms (with divergent coefficients) in quantum four-dimensional
supergravity (see, e.g., [23, 24]). In superstring theory, one gets the same structures, though
with finite coefficients (see, e.g., [25, 26]). Thus, in four dimensions, the structure of the on-
shell superstrings quartic curvature terms is fixed by localN = 1 supersymmetry alone, up to
normalization.

(iii) The absence of the higher-order time derivatives is usually desirable to prevent
possible unphysical solutions to the equations of motion, as well as to preserve the
perturbative unitarity, but it is by no means necessary. As is well known, the standard
Friedmann equation of general relativity is an evolution equation, that is, it contains only the
first-order time derivatives of the scale factor [1, 2, 27]. It happens due to the cancellation of
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terms with the second-order time derivatives in the mixed 00-component of Einstein tensor—
see, for example, the appendix of [28] for details. It can also be seen as the consequence
of the fact that the second-order dynamical (Raychaudhuri) equation for the scale factor in
general relativity can be integrated once, by the use of the continuity equation (3.5), thus
leading to the evolution (Friedmann) equation [1, 2]. As regards the quadratic curvature
terms present in the heterotic case, their unique off-shell extension is given by the Gauss-
Bonnet-type combination [29, 30]

JH −→ G = RijklR
ijkl − 4RijR

ij + R2. (3.4)

In the expansion around Minkowski space, gij(x) = ηij + hij(x), the fourth-order derivatives
(at the leading order in O(h2)) coming from the first term in (3.4) cancel against those in the
second and third terms [31]. As a result, the off-shell extension (3.4) appears to be ghost-free
in all dimensions. As regards four space-time dimensions, the terms (3.4) can be rewritten
as the four-dimensional Euler density (A.7). Therefore, being a total derivative, (3.4) does
not contribute to the four-dimensional effective action. (Of course, adding Euler densities
to the Einstein-Hilbert term matters in higher (than four) dimensions [32, 33], or with the
dynamical dilaton and axion fields [34–36].) The higher-time derivatives are apparent in
the gravitational equations of motion with the quartic curvature terms (see also [37]). It is
natural to exploit the freedom of the metric field redefinitions in order to get rid of those
terms. However, in Section 5 we prove that it is impossible to eliminate the fourth-order
time derivatives in the quartic curvature terms via a metric field redefinition. It may still be
possible for some special (like FRW) metrics, after imposing the string duality requirement
(Section 6).

(iv) The matter equations of motion in general relativity imply the covariant
conservation law of the matter energy-momentum tensor

(
Tij
)
;j = 0. (3.5)

By the well-known identity (Rij − (1/2)gijR);j = 0, (2.15) and (3.5) imply

[
1√−g

δ

δgij
(√−gJ)

]
;j

= 0. (3.6)

For instance, when J = G as in (3.4), (3.6) reads

− 1
2
(
RijklR

ijkl − 4RijR
ij + R2)

;m + 2
(
RmjklR

njkl)
;n − 4

(
RminjR

ij);n−4(RmiR
in)

;n + 2
(
RRmn

);n= 0.

(3.7)

By the use of Bianchi identities for the curvature tensor, we find by an explicit calculation
that the left-hand side of (3.7) identically vanishes. We believe that (3.6) should be identically
satisfied by any off-shell gravitational correction J because, otherwise, the consistency of the
gravitational equations of motion may be violated.
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Given the quartic curvature terms (2.8), the modified Einstein equations of motion
(2.15) are

κ2Tij = Rij − 1
2
gijR + β

[
− 1
2
gijJR − Rmhk(iRj)rt

m(RkqsrRt
qs
h + RksqtRhr

qs

)

− Rkqs(iRj)rmt
(
RhsqtRkrm

k − RthsqRh
rmk) + (RitrjR

ksqtRh
sq
r)

(;k;h)

+
(
RisqtR

rktmRj
sq
k

)
(;r;m) −

(
Rhrs

(iRj)mnrRh
mnk + Rsht

(iRj)mnlR
kmn

h

)
(;k;s)

]
.

(3.8)

(v) We may also add the causality constraint as our next condition: the group velocity
of ultraviolet perturbations on a gravitational background with the higher-curvature terms
included must not exceed the speed of light. As was demonstrated in [38, 39], the causality
condition merely affects the sign factors of the full curvature terms in the action, namely, the
signs in front of (RmnpqR

mnpq)2 and (R∗mnpqR
mnpq)2 should be positive. It must be automatically

satisfied by the perturbative superstring quartic corrections (2.8) due to the known unitarity
of superstring theory, and it is the case indeed—see the identity (A.20)—just because β > 0.

Of course, our list is not complete, and it could be easily extended by more conditions,
for example, by requiring the consistency with black hole physics, gravitational waves,
nucleosynthesis, and so forth. For example, in Section 6, we impose the scale factor duality as
yet another constraint.

4. On-shell structure and physical meaning of the quartic curvature terms

The detailed structure and physical meaning of the quartic curvature terms in (2.8) and (2.16)
are easily revealed via their connection to the four-dimensional Bel-Robinson (BR) tensor [40–
43]. The latter is well known in general relativity [44–47]. We review here the main properties
of the BR tensor, and calculate the coefficients in the important identities—see (4.4) and (4.5)
in the section below. (Those coefficients were left undetermined in [45–47]).

The BR tensor is defined by

TiklmR = RipqlRk
pq
m + ∗Ripql∗Rk

pq
m, (4.1)

whose structure is quite similar to that of the Maxwell stress-energy tensor

TMaxwell
ij = FikFjk + ∗Fik∗Fjk, Fij = ∂iAj − ∂jAi (4.2)

(see also Appendix A for more details).
The Weyl cousin TijlmC of the BR tensor is obtained by replacing all curvatures by Weyl

tensors in (4.1)—see (A.10). The Weyl BR tensor can be factorized in the two-component
formalism (see Appendix B)

(
TC
)
αβγδα̇β̇γ̇ δ̇ = CαβγδCα̇β̇γ̇ δ̇ . (4.3)
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In this section, we consider all the quartic terms on-shell, that is, modulo Ricci tensor-
dependent terms. Therefore, we are not going to distinguish between TR and TC here. The
Ricci tensor-dependent additions will be discussed in Sections 5 and 6.

The significance of the BR tensor to the quartic curvature terms is already obvious
from superspace (see Section 3), where the locally N = 1 supersymmetric extension of the
quartic Weyl terms (2.16) is given by (3.3) whose bosonic part is the BR tensor squared due
to (4.3). As regards a straightforward proof, see Appendix A and our derivation of (A.20)
there, which imply

T2
ijkl = 8JR =

1
4
(
RijklR

ijkl)2 + 1
4
(∗
RijklR

ijkl)2. (4.4)

In addition, when using another identity (A.17), (4.4) yields

T2
ijkl = 8JR = −1

4
(∗
R2
ijkl

)2
+
1
4
(∗
RijklR

ijkl)2

=
1
4
(
P 2
4 − E2

4

)
=

1
4
(
P4 + E4

)(
P4 − E4

)
,

(4.5)

where we have introduced the Euler and Pontryagin topological densities in four
dimensions—see (A.7) and (A.8), respectively.

In addition [40–43, 45–47], the on-shell BR tensor is fully symmetric with respect to its
vector indices, it is traceless,

Tijkl = T(ijkl), T iikl = 0. (4.6)

(ii) It is covariantly conserved (though the BR tensor is not a physical current),

∇iTijkl = 0, (4.7)

and it has positive “energy” density

T0000 > 0. (4.8)

Equation (4.6) is most easily seen in the two-component formalism (see Appendix B), (4.7)
is the consequence of Bianchi identities [48], whereas (4.8) just follows from the definition
(4.1).

The BR tensor is related to the gravitational energy-momentum pseudo tensors [45–
47]. It can be most clearly seen in Riemann normal coordinates (RNCs) at any given point in
spacetime. The RNCs are defined by the relations

gij = ηij , gij,k = 0, gij,mn = −1
3
(
Rimjn + Rinjm

)
, (4.9)



10 Advances in High Energy Physics

so that the derivatives of Christoffel symbols read as follows:

Γijk,l = −
1
3
(
Ri

jkl + Ri
kjl

)
. (4.10)

Raising and lowering of vector indices in RNCs are performed with Minkowski metric ηij
and its inverse ηij , whereas all traces in the last two equations (4.9) and (4.10) vanish

ηijgij,mn = ηijΓkij,l = Γiij,k = Γijk,i = 0. (4.11)

Moreover, there exists the remarkable noncovariant relation (valid only in RNC) [45–
47]

Tijkl = ∂k∂l
(
tLLij +

1
2
tEij

)
, (4.12)

where the symmetric Landau-Lifshitz (LL) gravitational pseudotensor [27]

(
tLL
)ij = −ηipηjqΓkpmΓmqk + ΓimnΓ

j
pqη

mpηnq − (ΓmnpΓjmqηinηpq + ΓmnpΓ
i
mqη

jnηpq
)
+ hijΓmnpΓ

n
mqη

pq,

(4.13)

and the nonsymmetric Einstein (E) gravitational pseudotensor [49, 50]

(
tE
)i
j =
( − 2ΓimpΓmjq + δijΓnpmΓmqn)ηpq (4.14)

have been introduced in RNC, in terms of Christoffel symbols.

5. Off-shell quartic curvatures in cosmology

The main cosmological principle of a spatially homogeneous and isotropic (1+3)-dimensional
universe (at large scales) gives rise to the standard Friedman-Robertson-Walker (FRW) metrics
of the form [49, 50]

ds2FRW = dt2 − a2(t)
[

dr2

1 − kr2 + r2dΩ2
]
, (5.1)

where the function a(t) is known as the scale factor in “cosmic” coordinates (t, r, θ, φ); we
use c = 1 and dΩ2 = dθ2 + sin2θdφ2, while k is the FRW topology index taking values
(−1, 0,+1). Accordingly, the FRWmetric (5.1) admits a 6-dimensional isometry groupG that is
either SO(1, 3), E(3), or SO(4), acting on the orbits G/SO(3), with the spatial 3-dimensional
sections H3, E3, or S3, respectively. By the coordinate change, dt = a(t)dη, the FRW metric
(5.1) can be rewritten to the form

ds2 = a2(η)
[
dη2 − dr2

1 − kr2 − r
2dΩ2

]
, (5.2)
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which is manifestly (4-dimensional) conformally flat in the case of k = 0. Therefore, the 4-
dimensional Weyl tensor of the FRW metric obviously vanishes in the “flat” case of k = 0. It
is well known that the FRW Weyl tensor vanishes in the other two cases, k = −1 and k = +1,
too [28, 51]. Thus we have

CFRW
ijkl = 0. (5.3)

Inflation in an early universe is defined as the epoch during which the scale factor is
accelerating [1, 2]

ä(t) > 0, or equivalently
d

dt

(
H−1

a

)
< 0, (5.4)

where the dots denote time derivatives, and H = ȧ/a is Hubble “constant.” The amount of
inflation is given by a number of e-foldings [1, 2]:

N = ln
a
(
tend
)

a
(
tstart
) =
∫ tend
tstart

Hdt, (5.5)

which should be around 70 [1, 2].
Though the leading purely geometrical (perturbative) correction in the heterotic string

case is given by the Gauss-Bonnet combination (3.4), and thus it does not contribute to the
equations of motion in four space-time dimensions, the situation changes when the dynamical
moduli (axion and dilaton) are included. The effective string theory couplings are moduli
dependent, which gives rise to a nontrivial coupling with the moduli in front of the Gauss-
Bonnet term, so that the latter is not a total derivative any more. At the level of the one-loop
corrected heterotic superstring effective action in four dimensions, the cosmological solutions
were studied in [34–36]. As regards the realization of inflation in M-theory, see, for example,
[52].

In the case of type-II superstrings (after stabilizing the moduli) we are left with the
quartic curvature terms in the four-dimensional effective action (Section 2). Let us address the
issue of the higher-time derivatives in the general setting. It is quite natural to use the freedom
of the metric field redefinitions in string theory in order to try to get rid of the higher-time
derivatives in the effective action. The successful example is provided by the Gauss-Bonnet
gravity (Section 3) that we are now going to follow. Let us consider a weak gravitational field

gij(x) = ηij + hij(x) (5.6)

in the harmonic gauge

(
hij
),j = 1

2
∂ih, h = ηijhij . (5.7)
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The linearized curvatures are given by

Rijkl =
1
2
[
hil,jk − hjl,ik − hik,jl + hjk,il

]
, (5.8)

whereas the Ricci tensor and the scalar curvature in the gauge (5.7) read

Rij = −12�hij , R = −1
2
�h, � ≡ ∂i∂i. (5.9)

(We assign the lower case latin letters to spacetime indices, i, j, k, . . . = 0, 1, 2, 3, and the
lower case middle greek letters to spatial indices, μ, ν, . . . = 1, 2, 3.)

As is clear from the structure of those equations, it is possible to form the Ricci terms
after integration by parts in the quadratic curvature action. As a result, there is a cancellation
of all terms with the fourth-order time derivatives in the leading order O(h2) of the Gauss-
Bonnet action (3.4) in all spacetime dimensions, as was first observed in [31].

Unfortunately, we find that it does not work for the quartic curvature terms, even in
four spacetime dimensions, as we now going to argue.

When using the linearized curvature (5.8), the quartic terms (2.8) in four spacetime
dimensions have the structure

25JR = AikjlAiljk + 2AikjlBiljk + BikjlBiljk

+Aikjl{Cilkj + Clijk

}
+ Bikjl

{
Cilkj + Clijk

}

+ 2Cikjl{Cilkj + Clijk + Ckjil + Cjkli

}

− Cikjl{Ciljk + Clikj + Cjkil + Ckjli

}
,

(5.10)

where we have introduced the notation ∂2ij = ∂i∂j and

Aikjl = ∂2mnh
ik(∂2mnhjl + ∂2jlhmn − ∂2jmhln − ∂2lnhjm),

Bikjl = ∂2ikhmn
(
∂2mnhjl + ∂2jlhmn − ∂2jmhln − ∂2lnhjm),

Cikjl = ∂2imh
k
n

(
∂2mnhjl + ∂2jlhmn − ∂2jmhln − ∂2lnhjm),

(5.11)

while all the index contractions above are performed with Minkowski metric.
Equation (5.10) is not very illuminating, but it is enough to observe that the dangerous

terms (∂200hμν)
4 and (∂0∂λhμν)(∂200hμν)

3 do contribute, and thus lead to the terms with
the fourth- and third-order time derivatives in the equations of motion, when all hμν are
supposed to be independent. The last possibility is to convert those terms into some Ricci
tensor-dependent contributions. However, in the harmonic gauge (5.7), getting the Ricci
tensor requires the two spacetime derivatives to be contracted into the wave operator, as
in (5.9), in each dangerous term, which is impossible for the quartic curvature terms, unlike
their quadratic counterpart because any integration by parts in the quartic terms does not end
up with a wave operator in each term. The equations of motion in the case of (BR)2-gravity
with the FRW metric are explicitly computed in Section 6, as an example.
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Having failed to remove the higher-time derivatives for a generic metric, one can try
to get rid of them for a special class of metrics, namely, the FRW metrics of our interest. The
simplest example arises when all the Riemann curvatures in the quartic curvature terms are
replaced by the Weyl tensors, as in (2.16). It also amounts to adding certain quartic curvature
terms with at least one Ricci factor to the effective action (2.7). This proposal is based on the
reasonable assumption [53] coming from the AdS/CFT correspondence that the AdS7 × S4

and AdS4 × S7 spaces seem to be the exact solutions to the (eleven-dimensional) M-theory
equations of motion. Of course, such assumption is just the sufficient condition, not the
necessary one, because there may be many more solutions. The substitution Rijkl → Cijkl

leads to the contributions with three Weyl tensors (from the quartic terms) in the equations
of motion, which implies no perturbative superstring corrections to the FRW metrics at all
because of (5.3).

In Section 6, we find that the scale factor duality requirements allow a family of the
generalized Friedmann equations coming from the most general quartic curvature terms,
with just a few real parameters.

6. Exact solutions, stability, and duality

Our motivation in this paper is based on the observation that the standard model (SM) of
elementary particles does not have an inflaton. (The proposal [54] to identify the inflaton
with the SM Higgs boson requires its nonminimal coupling to gravity, which does not fit to
string theory.) In addition, M-theory/superstrings have plenty of inflaton candidates but any
inflationary mechanism based on a scalar field is highly model dependent. When one wants
the universal geometrical mechanism of inflation based on gravity only, it should occur due
to some Planck scale physics to be described by the higher-curvature terms (cf. [5]).

On the experimental side, it is known that the vacuum energy density ρinf during
inflation is bounded from above by a (non)observation of tensor fluctuations of the cosmic
microwave background (CMB) radiation [55]:

ρinf ≤
(
10−3MPl

)4
. (6.1)

It severely constrains but does not exclude the possibility of the geometrical inflation
originating from the purely gravitational sector of string theory because the factor of 10−3

above may be just due to some numerical coefficients (cf. Section 2).
In this section, we consider the structure of our generalized Friedmann equation with

generic quartic curvature terms.We get the conditions of stability of our inflationary solutions,
and solve the duality invariance constraints coming from string theory [56, 57].

Due to a single-arbitrary function a(t) in the FRW Ansatz (5.1), it is enough to take
only one gravitational equation of motion in (2.15) without matter, namely, its mixed 00-
component. As is well known [1, 2], the spatial (3-dimensional) curvature can be ignored in
a very early universe, so we choose the manifestly conformally-flat FRW metric (5.1) with
k = 0 in our Ansatz. It leads to a purely gravitational equation of motion having the form

3H2 ≡ 3
(
ȧ

a

)2

= βP8
(
ȧ

a
,
ä

a
,

...
a

a
,

....
a

a

)
, (6.2)
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where P8 is a polynomial with respect to its arguments:

P8 =
∑

n1+2n2+3n3+4n4=8,
n1,n2,n3,n4≥0

cn1n2n3n4

(
ȧ

a

)n1( ä
a

)n2( ...
a

a

)n3( ....
a

a

)n4
. (6.3)

Here, the sum goes over the integer partitions (n1, 2n2, 3n3, 4n4) of 8, the dots stand for
the derivatives with respect to time t, and cn1n2n3n4 are some real coefficients. The highest
derivative enters linearly at most, n4 = 0, 1.

The FRW Ansatz with k = 0 gives the following nonvanishing curvatures:

R0
μ0ν = δμνäa, Rμ

νλρ =
(
δ
μ

λδνρ − δ
μ
ρδνλ

)(
ȧ
)2
, R

μ
ν = −δμν

[
ä

a
+ 2
(
ȧ

a

)2]
, (6.4)

where μ, ν, λ, ρ = 1, 2, 3. For example, in the case of the (BR)2 gravity (3.8), after a
straightforward (though quite tedious) calculation of the mixed 00-equation without matter
and with the curvatures (6.4), we find

3H2 + β
[
9
(
ä

a

)4

− 36H2
(
ä

a

)3

+ 84H4
(
ä

a

)2

− 36H
(
ä

a

)2( ...
a

a

)

+ 63H8 − 72H3
(
ä

a

)( ...
a

a

)
+ 48H6

(
ä

a

)
− 24H5

( ...
a

a

)]
= 0.

(6.5)

It is remarkable that the fourth-order time derivatives (present in various terms of (3.8))
cancel, whereas the square of the third-order time derivative of the scale factor,

...
a2, does not

appear at all in this equation. (Taking Weyl tensors instead of Riemann curvatures leads to
the vanishing coefficients.)

Our generalized Friedmann equation (6.2) applies to any combination of the quartic
curvature terms in the action, including the Ricci-dependent terms. The coefficients cn1n2n3n4
in (6.3) can be thought of as linear combinations of the coefficients in the most general
quartic curvature action. The polynomial (6.3) merely has 12 undetermined coefficients, that
is considerably less than a 100 of the coefficients in the most general quartic curvature action.

The structure of (6.2) and (6.3) admits the existence of rather generic exact inflationary
solutions without a spacetime singularity. Indeed, when using the most naive (de Sitter)
Ansatz for the scale factor,

a(t) = a0eBt (6.6)

with some real positive constants a0 and B, and substituting (6.6) into (6.2), we get 3B2 =
(#)βB8, whose coefficient (#) is just a sum of all c-coefficients in (6.3). Assuming the (#) to be
positive, we find an exact solution:

B =
(

3
#β

)1/6

. (6.7)
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This solution in nonperturbative in β, that is, it is impossible to get it when considering the
quartic curvature terms as a perturbation. Of course, the assumption that we are dealing
with the leading correction implies Bt� 1. Because of (2.11) and (6.7), it leads to the natural
hierarchy

κMKK � 1 or lPl � lKK, (6.8)

where we have introduced the four-dimensional Planck scale lPl = κ and the compactification
scale lKK =M−1

KK.
The effective Hubble scale B of (6.7) should be lower than the effective (with warping)

KK scaleMeff.
KK = eAMKK in order to validate our four-dimensional description of gravity, that

is, the ignorance of all KK modes:

B < Meff.
KK. (6.9)

It rules out the naive KK reduction (with A = 0) but still allows the warped compactification
(2.6), when the average warp factor is tuned

eA <

(
κMKK

)2/5
(9/#)3/10223/10π

∼O(10−3), (6.10)

where we have used (2.11) and have estimated (#) by order 10.
The exact solution (6.6) is nonsingular, while it describes an inflationary isotropic and

homogeneous early universe. (The exact de Sitter solutions in the special case (2.8) were
also found in [58–61].) Given the expanding universe, the curvatures decrease, so that the
higher-curvature terms cease to be the dominant contributions against the matter terms we
ignored in the equations of motion. The matter terms may provide a mechanism for ending
the geometrical inflation and reheating (i.e., a graceful exit to the standard cosmology).

To be truly inflationary solutions, (6.6) and (6.7) should correspond to the stable fixed
points (or attractors) [1, 2]. The stability conditions are easily derived along the standard
lines (see, e.g., [62, 63]). When using the parameterization

a(t) = eλ(t), (6.11)

we easily find

ȧ

a
= λ̇,

ä

a
= λ̈ +

(
λ̇
)2
,

...
a

a
=
...
λ + 3λ̈λ̇ +

(
λ̇
)3
,

....
a

a
=
....
λ + 4

...
λλ̇ + 6λ̈

(
λ̇
)2 + 3

(
λ̈
)2 + (λ̇)4.

(6.12)
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Equation (6.3) now takes the form

P8 =
∑

n1+2n2+3n3+4n4=8,
n1,n2,n3,n4≥0

dn1n2n3n4
(
λ̇
)n1(λ̈)n2(...λ)n3(....λ )n4 , (6.13)

where the d-coefficients are linear combinations of the c-coefficients (easy to find). Equations
(6.6) and (6.7) are also simplified

λ(t) = Bt + λ0, where a0 = eλ0 , d8000 = #. (6.14)

The solution (6.14) can be considered as the fixed point of the equations of motion (6.2) in a
generic case

3y2
1 = βP8

(
y1, y2, y3, ẏ3

) ≡ βP8,0(y1, y2, y3) + βP4(y1, y2, y3)ẏ3, (6.15)

where we have introduced the notation

y1 = λ̇, y2 = λ̈, y3 =
...
λ. (6.16)

Equation (6.15) can be brought into an autonomous form

ẏ1 = y2,

ẏ2 = y3,

ẏ3 =
3y2

1 − βP8,0
(
y1, y2, y3

)
βP4
(
y1, y2, y3

) ≡ f(y1, y2, y3),
(6.17)

that is quite suitable for the stability analysis against small perturbations about the fixed
points, ya = yfixed

a + δya, where a = 1, 2, 3. We find

δẏ1 = δy2,

δẏ2 = δy3,

δẏ3 =
∂f

∂y1

∣∣∣∣δy1 + ∂f

∂y2

∣∣∣∣δy2 + ∂f

∂y3

∣∣∣∣δy3,
(6.18)

where all the partial derivatives are taken at the fixed point (denoted by |). The fixed points
are stable when all the eigenvalues of the matrix

M̂ =

⎛
⎜⎜⎝

0 1 0
0 0 1
∂f

∂y1

∣∣∣∣ ∂f

∂y2

∣∣∣∣ ∂f

∂y3

∣∣∣∣

⎞
⎟⎟⎠ (6.19)
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in (6.18) are negative or have negative real parts [62, 63]. Then the fixed point is a stable
attractor.

To the end of this section, we would like to investigate how the symmetries of string
theory are going to affect the coefficients of our generalized Friedmann equation. Here, we
apply the scale factor duality [56, 57] by requiring our equation (6.2) to be invariant under
the duality transformation

a(t)←→ 1
a(t)

≡ b(t). (6.20)

This duality is a cosmological version of the genuine stringy T-duality (which is the symmetry
of the nonperturbative string spectrum), in the case of time-dependent backgrounds. The
scale factor duality is merely the symmetry of the (perturbative) equations of motion of the
background fields. It is used, for example, in the so-called prebig bang scenario [64] in order
to avoid the cosmological singularity.

In the λ-parameterization (6.11), the duality transformation (6.20) takes the very
simple form

λ(t)←→ −λ(t). (6.21)

The equations of motion in the form (6.15) are manifestly invariant under λ(t) → λ(t) + λ0,
where λ0 is an arbitrary constant.

It is straightforward to calculate how the right-hand side of (6.2) transforms under the
duality (6.20) by differentiating (6.20). We find

ȧ

a
= − ḃ

b
,

ä

a
= − b̈

b
+ 2
(
ḃ

b

)2

,

...
a

a
= −

...
b
b
+ 6
(
ḃ

b

)(
b̈

b

)
− 6
(
ḃ

b

)3

,

....
a

a
= −

....
b
b

+ 6
(
b̈

b

)2

+ 8
(
ḃ

b

)( ...
b
b

)
− 36

(
ḃ

b

)2(
b̈

b

)
+ 24

(
ḃ

b

)4

.

(6.22)

To see how the duality affects the polynomial P8, we consider the case with the third-
order time derivatives, motivated by (6.5). We introduce the notation

ȧ

a
= x,

ä

a
= y,

...
a

a
= z, (6.23)

so that the duality invariance condition reads

P8
( − x, 2x2 − y, 6xy − 6x3 − z) = P8(x, y, z). (6.24)
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The structure of the polynomial P8 in (6.3), as the sum over partitions of 8, restricts a solution
to (6.24) to be most quadratic in z:

P8(x, y, z) = a2(x, y)z2 + b5(x, y)z + c8(x, y), (6.25)

whose coefficients are polynomials in (x, y), of the order being given by their subscripts, that
is,

a2(x, y) = a0x2 + a1y,

b5(x, y) = b0x5 + b1x3y + b2xy2,

c8(x, y) = c4y4 + c3y3x2 + c2y2x4 + c1yx6 + c0x8.

(6.26)

After a substitution of (6.25) and (6.14) into (6.24), we get an over determined system of linear
equations on the coefficients. Nevertheless, we find that there is a consistent general solution

P8(x, y, z) = a0x2z2 +
(
b0x

5 − 3a0xy2)z
+ c4y4 +

(
9a0 − 4c4

)
y3x2 + c2y23x4

+
(
8c4 − 18a0 − 3b0 − 2c2

)
yx6 + c0x8

(6.27)

parameterized by merely five real coefficients (a0, b0, c4, c2, c0). Requiring the existence of the
exact solution (6.6), that is, the positivity of (#) in (6.7) yields

5c4 + c0 > 11a0 + 2b0 + c2. (6.28)

As regards the (BR)2 gravity representing the “minimal” candidate for the off-shell
superstring effective action, we checked that neither the duality invariant structure (6.15) nor
the inequality (6.28) are satisfied by the coefficients present in (6.5). We interpret it as the clear
indications that some additional Ricci-dependent terms have to be added to the (BR)2 terms or,
equivalently, the (BR)2 gravity is ruled out as the off-shell effective action for superstrings.

Finally, we would like to mention about some possible simplifications and generaliza-
tions.

The last equation (6.4) apparently implies that the Ricci-dependent terms in P8 should
have the factor of (y+2x2). Hence it may be possible to completely eliminate both the fourth-
and third-order time derivatives in our generalized Friedmann equations, though we are not
sure that this choice is fully consistent. However, if so, instead of (6.24), we would get another
duality condition

P8
( − x, 2x2 − y) = P8(x, y), (6.29)

whose most general solution is simpler:

P8(x, y) = c0x8 + c5y
(
y − 2x2)[y(y − 2x2) − 4x6] + c6x4y

(
y − 2x2) (6.30)

with merely three, yet to be determined coefficients (c0, c5, c6).
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We would like to emphasize that our results above can be generalized to any finite
order with respect to the spacetime curvatures in the off-shell superstring effective action
because it amounts to increasing the order of the polynomial P . The list (6.10) can be
continued to any higher order in the derivatives. We can now speculate about the form of
the generalized Friedmann equation to all orders in the curvature. It depends upon whether
(i) there will be some finite maximal order of the time derivatives there, or (ii) the time
derivatives of arbitrarily high order appear (we do not know about it). Given the case (i),
we just drop the requirement that the right-hand side of our cosmological equation (6.2) is a
polynomial, and take a duality-invariant function P instead. In the case (ii), we should replace
the function by a functional, thus getting a nonlocal equation having the form

H2 =
ȧ2

a2
= βP

[
a(t)
]
, (6.31)

whose functional P is subject to the nontrivial duality constraint

P
[
a(t)
]
= P
[

1
a(t)

]
. (6.32)

Imposing simultaneously both conditions of stability and duality invariance leads
to severe constraints on the c-coefficients. Hence it also severely restricts the quantum
ambiguities in the superstring-generated quartic curvature gravity. Finding their solutions
seems to be a nontrivial mathematical problem, we would like to investigate it elsewhere
[65].

7. Conclusion

The higher-curvature terms in the gravitational action defy the famous Hawking-Penrose
theorem [66–68] about the existence of a spacetime singularity in any exact solution to the
Einstein equations. As we demonstrated in this paper, the initial cosmological singularity can
be easily avoided by considering the superstring-motivated higher-curvature terms on equal
footing (i.e., nonperturbatively) with the Einstein-Hilbert term.

Our results predict the possible existence of the very short de Sitter phase driven by
the quartic curvature terms, in the early inflationary epoch.

Though we showed the natural existence of inflationary (de Sitter) exact solutions
without a spacetime singularity under rather generic conditions on the coefficients in the
higher-derivative terms, it is not enough for robust physical applications. As a matter of
fact, we assumed the dominance of the higher-curvature gravitational terms over all matter
contributions in the very early Universe at the Planck scale. However, given the expansion
of the Universe under the geometrical inflation, the spacetime curvatures should decrease,
so that the matter terms can no longer be ignored. The latter may effectively replace the
geometrical inflation by another matter-dominated mechanism, thus allowing the inflation
to continue substantially below the Planck scale.

In addition, the number of e-foldings (5.5) is just about one in our scenario based
on the quartic curvature terms, which makes it difficult to compete with the conventional
inflationmechanisms [1, 2]. An investigation of the possible “graceful exit” strategies, toward
a matter-driven inflation is, however, beyond the scope of the given paper.
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The quartic curvature terms are also relevant to the Brandenberger-Vafa cosmological
scenario of string gas cosmology [69]—see, for example, [63] for a recent investigation of
the higher-curvature corrections there. (The higher-curvature terms were considered only
perturbatively in [63].)

The higher-time derivatives in the equations of motion may be unavoidable when
using the higher-curvature terms, but we do not see that they constitute a trouble.

Gravity with the quartic curvature terms is a good playground for going beyond
the Einstein equations. Our analysis may be part of a more general approach based on
superstrings, including dynamical moduli and extra dimensions.

Appendices

A. Our notation and identities

We use the basic notation of [27] with the signature (+,−,−,−). The (Riemann-Christoffel)
curvature tensor is given by

Ri
klm =

∂Γikm
∂xl

− ∂Γ
i
kl

∂xm
+ ΓinlΓ

n
km − ΓinmΓnkl (A.1)

in terms of the Christoffel symbols

Γikl =
1
2
gim
(
∂gmk

∂xl
+
∂gml

∂xk
− ∂gkl
∂xm

)
. (A.2)

It follows

Riklm =
1
2

(
∂2gim

∂xk∂xl
+

∂2gkl

∂xi∂xm
− ∂2gil

∂xk∂xm
− ∂2gkm

∂xi∂xl

)
+ gnp

(
ΓnklΓ

p

im − ΓnkmΓ
p

il

)
. (A.3)

The traceless part of the curvature tensor is given by a Weyl tensor:

Cijkl = Rijkl − 1
2
(
gikRjl − gjkRil − gilRjk + gjlRik

)
+
1
6
(
gikgjl − gjkgil

)
R, (A.4)

where we have introduced the Ricci tensor and the scalar curvature

Rik = glmRlimk, R = gikRik. (A.5)

The dual curvature is defined by

∗Riklm =
1
2
EikpqR

pq
lm, (A.6)

where Eiklm =
√−gεiklm is Levi-Civita tensor.
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The Euler (E) and Pontryagin (P) topological densities in four dimensions are

E4 =
1
4
εijklε

mnpqRij
mnR

kl
pq = ∗Rijkl

∗Rijkl, (A.7)

P4 = ∗RijklR
ijkl, (A.8)

respectively.
The Bel-Robinson (BR) tensor is defined by [40–43]

TiklmR = RipqlRk
pq
m + ∗Ripql∗Rk

pq
m

= RipqlRk
pq
m + RipqmRk

pq
l − 1

2
gikRpqrlRpqr

m.
(A.9)

Its Weyl cousin is given by

TiklmC = CipqlCk
pq
m + CipqmCk

pq
l − 1

2
gikCpqrlCpqr

m. (A.10)

The Riemann-Christoffel curvature (modulo Ricci-dependent terms) is most easily
described in the Petrov formalism [70] by imposing the Ricci-flatness condition Rik = 0.
A metric gmn at a given point in spacetime can always be brought into Minkowski form
η = diag (+,−,−,−), whereas the curvature tensor components can be represented by

Aαβ, = R0α0β,, Cαβ, =
1
4
εαγδ,εβ,λμRγδ,λμ, Bαβ, =

1
2
εαγδ,R0β,γδ, (A.11)

where the 3d tensors A and C are symmetric by definition, α, β, . . . = 1, 2, 3, and εαβ,γ is 3d
Levi-Civita symbol normalized by ε123 = 1.

The Ricci-flatness condition implies that A is traceless, B is symmetric, and C = −A. It
is now natural to introduce a symmetric (traceless) complex 3d tensor

Dαβ, = Aαβ, + iBαβ, (A.12)

and bring it into one of its canonical (Petrov) forms, called I, II, or III, depending upon a
number (3, 2, or 1, resp.) of eigenvectors of D. For our purposes, it is most convenient to use
the form I with three independent (complex) eigenvectors, so that the real matrices A and B
can be simultaneously diagonalized as

Aαβ, = diag(α′, β,′,−α′ − β,′),
Bαβ, = diag(α′′, β,′′,−α′′ − β,′′),

(A.13)

in terms of their real eigenvalues.
(We use the lowercase greek letters to represent vector indices in three (flat) spatial

dimensions.)
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It is straightforward to write down any Riemann-Christoffel curvature invariants as
the polynomials of their eigenvalues (A.13) in the Petrov I form. It is especially useful for
establishing various identities modulo Ricci-dependent terms. We find

RmnpqR
mnpq = 16(α′2 + β,′2 + α′β,′ − α′′2 − β,′′2 − α′′β,′′),

∗RmnpqR
mnpq = 16

( − 2α′α′′ − 2β,′β,′′ − α′′β,′ − α′β,′′), (A.14)

so that

(
RmnpqR

mnpq)2 + (∗RmnpqR
mnpq)2 = 28

(
α′4 + β,′4 + α′′4 + β,′′4 + 2α′2α′′2 + 2β,′2β,′′2

+ 2α′3β,′ + 2α′β,′3 + 2α′′3β,′′ + 2α′′β,′′3

+ 2α′2α′′β,′′ + 2α′′β,′2β,′′ + 2α′α′′2β,′ + 2α′β,′β,′′2

+ 3α′2β,′2 + 3α′′2β,′′2 − α′2β,′′2 − α′′2β,′2 + 8α′α′′β,′β,′′
)
.

(A.15)

Similarly, one finds

∗Rmnpq
∗Rmnpq = −16(α′2 + β,′2 + α′β,′ − α′′2 − β,′′2 − α′′β,′′). (A.16)

For example, when being compared to (A.14), it yields the identity

∗Rmnpq
∗Rmnpq = −RmnpqR

mnpq +O(Rmn

)
. (A.17)

As regards the superstring correction (2.8) in four dimensions, we find

JR = 8
(
α′4 + β,′4 + α′′4 + β,′′4 + 2α′2α′′2 + 2β,′2β,′′2

+ 2α′3β,′ + 2α′β,′3 + 2α′′3β,′′ + 2α′′β,′′3

+ 2α′2α′′β,′′ + 2α′′β,′2β,′′ + 2α′α′′2β,′ + 2α′β,′β,′′2

+ 3α′2β,′2 + 3α′′2β,′′2 − α′2β,′′2 − α′′2β,′2 + 8α′α′′β,′β,′′
)
.

(A.18)

The BR tensor (A.9) squared in the Petrov I form reads

TmnpqT
mnpq= 26

(
α′4 + β,′4 + α′′4 + β,′′4 + 2α′2α′′2 + 2β,′2β,′′2

+ 2α′3β,′ + 2α′β,′3 + 2α′′3β,′′ + 2α′′β,′′3

+ 2α′2α′′β,′′ + 2α′′β,′2β,′′ + 2α′α′′2β,′ + 2α′β,′β,′′2

+ 3α′2β,′2 + 3α′′2β,′′2 − α′2β,′′2 − α′′2β,′2 + 8α′α′′β,′β,′′
)
.

(A.19)



M. Iihoshi and S. V. Ketov 23

As a result, we find the identities

TmnpqT
mnpq = 8JR =

1
4
[(
RmnpqR

mnpq)2 + (R∗mnpqRmnpq)2], (A.20)

which are valid on-shell, that is, modulo Ricci tensor-dependent terms.

B. Two-component formalism

To complete our notation, we summarize basic definitions and main features of the two-
component spinor formalism in gravitation (cf. [18, 22]). The main point is the use of an
sl(2;C) algebra isomorphic to the Lorentz algebra so(1, 3;R).

We use lowercase (middle) latin indices for the curved spacetime vector indices,
capital (early) latin letters for the tangent (flat spacetime) vector indices, and lowercase
(early) greek letters for the (tangent spacetime) spinor indices, i, j, k, . . . = 0, 1, 2, 3 and
A,B,C, . . . = 0, 1, 2, 3, whereas α, β, . . . = 1, 2 and α̇, β̇, . . . = 1̇, 2̇.

A four-component Dirac spinor Ψ can be decomposed into its chiral and antichiral
parts, ψα and ψβ̇, by using the chiral projectors Γ± = (1/2)(1 ± γ5), where γ25 = 1. The
simplest form of chiral decomposition is obtained in the basis for Dirac gammamatrices with
a diagonal γ5 = iγ0γ1γ2γ3 matrix

γA =

(
0 σA

αβ̇

σ̃Aβ̇α 0

)
, σA =

(
1, i�σ

)
, σ̃A =

(
1,−i�σ). (B.1)

Here, 1 is a unit 2 × 2 matrix, and �σ are three Pauli matrices.
Given a vector field Vi(x) in a curved spacetime, it can always be represented by a

bispinor field Vαβ̇(x)

Vαβ̇ = Vie
i
Aσ

A
αβ̇
, Vi = eBi

1
2
Vαβ̇σ̃

β̇α

B , (B.2)

where we have introduced the vierbein eiA(x), together with its inverse eAi (x), obeying the
relations

gije
i
Ae

j

B = ηAB, ηABe
A
i e

B
j = gij . (B.3)

For instance, one easily finds that the metric in the two-component formalism can be
represented by a product of two Levei-Civita symbols:

gαβα̇β̇ = εαβεα̇β̇. (B.4)
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As regards the curvature tensor, it can be naturally decomposed in the two-component
formalism as follows:

Rαβγδα̇β̇γ̇ δ̇ = Cαβγδεα̇β̇εγ̇ δ̇ + Cα̇β̇γ̇ δ̇εαβεγδ

+Dα̇β̇γδεαβεγ̇δ̇ +Dαβγ̇δ̇εα̇β̇εγδ

+ E
(
εαγεβδ + εαδεβγ

)
εα̇β̇εγ̇ δ̇ + E

(
εα̇γ̇ εβ̇δ̇ + εα̇δ̇εβ̇γ̇

)
εαβεγδ.

(B.5)

The four-spinor C (or C) is totally symmetric with respect to its chiral (or antichiral) spinor
indices, while is is also traceless, thus representing the self-dual (or antiself-dual) part of the
Weyl tensor (A.4)

Cαβγδα̇β̇γ̇ δ̇ = Cαβγδεα̇β̇εγ̇ δ̇ + Cα̇β̇γ̇ δ̇εαβεγδ. (B.6)

The four-spinorDȧβ̇γδ is symmetric with respect to its first two indices, as well as with respect
to the last two indices, while it is also traceless, thus representing the traceless part of the Ricci
tensor:

Rαγα̇γ̇ = εδβεδ̇β̇Rαβγδα̇β̇γ̇ δ̇ . (B.7)

The scalar E = E represents the scalar curvature R. One easily finds

Rαβα̇β̇ = −2Dα̇β̇αβ + 6Eεα̇β̇εαβ, R = 24E. (B.8)

The Bianchi II identities∇[mRij]kl = 0 in the two-component formalism read as follows:

∇αβ̇Cαβγδ = ∇(β
α̇Dγδ)α̇β̇, ∇γα̇Dγδα̇β̇ + 3∇δβ̇E = 0. (B.9)
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