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1. Introduction

The optimal symbol decision rule in an energy detection
system with pulse amplitude modulated (PAM) symbols
reduces to the problem of finding proper decision threshold
values [1, 2]. There are two kinds of sources for a thresh-
old mismatch. Firstly, a purely random type of threshold
mismatch is caused by a possible estimation error of the
signal and noise energies required for the threshold selection.
Secondly, a more predictable systematic threshold mismatch
with respect to the received signal-to-noise ratio (SNR)
results from the inability to define the optimal thresholds in
a closed form even if the SNR is perfectly known. The former
mismatch can be removed with a proper averaging whereas
the latter mismatch can be more difficult to compensate.

The effect of a systematic threshold mismatch on the
error probability of an energy detected on-off keying (OOK)
system has been studied, for example, in [3]. Gaussian
approximations for the distribution of an energy detected
decision variable with different assumptions of the expected
mean and variance are frequently used to reduce the
complexity related to the exact error analysis and threshold
selection [4, 5]. These approximations are based on specific
assumptions on the value of degrees of freedom (DOFs)
reducing their accuracy and robustness, for example, in
adaptive multiband systems [6] in which the DOFs can
change adaptively or be relatively low. Another approxi-
mation for a binary OOK using a numerical approach is

suggested in [6]. However, to the best of our knowledge, none
of the papers address the effect of the threshold mismatch or
accurate threshold selection for a spectrally efficient energy
detected PAM (ED-PAM) system to allow arbitrary selection
of the number of modulation levels and DOFs.

The novelty of our contribution is two fold. Firstly, after
describing our system in Section 2, we analytically quantify
the required increase of the SNR per bit to tolerate a hypoth-
esized threshold mismatch for a given error probability in
Section 3. Secondly, in Section 4 we propose a new multilevel
threshold selection scheme for an ED-PAM system. Since the
symbol decision problem of an energy detector in a slowly
fading channel without interference reduces instantaneously
to that of an additive white Gaussian noise (AWGN) channel
[7], for brevity we restrict our channel to be an AWGN
channel. We focus on the systematic threshold mismatch of
an ED-PAM system and assume perfect estimates for the
signal and noise energies.

2. System Modeling

The decision variable of a multilevel M-ary ED-PAM system
can be expressed as

y
(
t0
) =

∫ t0+Ti

t0

[∫ +∞

−∞
r(t − τ)g(τ)dτ

]2

dt, (1)
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where r(t) = s(t) + n(t) is the received signal, s(t) =∑
kaku(t − kTr) is the transmitted signal, u(t) is the pulse

waveform, ak ∈ {0,
√
E1, 2

√
E1, ...,(M − 1)

√
E1} is the kth data

symbol from the nonnegative and real PAM constellation
set, E1 = Eb/cb is the received energy corresponding to the
minimum nonzero amplitude, Eb is the average energy per
bit, cb = (2M2 − 3M + 1)/(6 log2M), M = 2b is the number
of modulation levels, b is the number of bits per symbol, Tr is
the symbol period, n(t) is the zero mean AWGN component
with noise power spectral density N0, t0 is the known start
time of the symbol of interest, Ti is the integration time,
and g(t) is the impulse response of the receiver filter with
bandwidth B . The product of the integration time and
bandwidth is denoted by D = BTi, and 2D is the DOFs. It
is assumed that B and Ti are selected so that D is an integer.
The OOK system is a special case of the nonnegative PAM
system with M = 2. The received energy of the mth symbol
is Em = m2E1 (m = 0, 1, 2, . . . ,M − 1). We assume that
all symbols are equally probable and that the noise samples
affecting the decision variable are uncorrelated. The average
SNR per bit is defined as γ = Eb/N0. We use the maximum
likelihood decision criterion and multiple hypothesis testing
approach [8, page 82]. We make a hypothesis Hm(m =
0, 1, 2, . . . ,M − 1) that the symbol am was transmitted if

p
(
y | Hm

)
> p

(
y | Hk

) ∀ k /=m, (2)

where in our case p
(
y | Hm

)
is the conditional central

(m = 0) or noncentral (m > 0) chi-squared probability
density function (pdf) given in [2]. According to the max-
imum likelihood criterion (2), the optimal symbol decision
threshold values ρm,opt < ρm+1,opt (m = 0, 1, 2, . . . ,M − 2)
can be found from p(y | Hm) = p(y | Hm+1) |y=ρm,opt

, which
is not possible to solve in a closed form.

3. Performance with Systematic
Threshold Mismatch

The symbol error rate (SER) of the target system can be
expressed as [2]

PM
(
D, γ, ρ′0, ρ′1, . . . , ρ′M−2

)

= 1
M

[

M − 1 +QD
(
0,
√

2ρ′0
)

−QD
(√

2(M − 1)2c−1
b γ,

√
2ρ′M−2

)

−
M−2∑

m=1

QD
(√

2m2c−1
b γ,

√
2ρ′m−1

)

+
M−2∑

m=1

QD
(√

2m2c−1
b γ,

√
2ρ′m

)
]

,

(3)

where ρ′m is the selected mth threshold (m = 0, 1, 2, . . . ,M −
2) normalized by N0 and Qv(·, ·) is the generalized vth
order Marcum Q-function defined in [9]. To theoretically
evaluate the relation between a threshold mismatch and

101

100

10−1

10−2

Δ
γ

(d
B

)

−40 −30 −20 −10 0 10 20 30 40

Δρ (%)

D = 1, γopt = 5 dB
D = 1, γopt = 15 dB
D = 20, γopt = 5 dB

D = 20, γopt = 15 dB
f = 0.9 · 10−2 · Δρ2

f = 1.2 · 10−3 · Δρ2

Figure 1: Required SNR margin versus threshold mismatch (M =
4).

the corresponding margin in the required SNR per bit to
preserve a desired SER, we set

PM
(
D, γopt, ρ′0,opt, ρ

′
1,opt, . . . , ρ

′
M−2,opt

)

= PM
(
D, γmis, ρ′0,mis, ρ

′
1,mis, . . . , ρ

′
M−2,mis

)
,

(4)

where now γopt is the SNR per bit to achieve the desired PM
with the normalized optimal thresholds ρ′m,opt and γmis =
γoptΔγ is the required SNR per bit to achieve the desired PM
with the mismatched thresholds ρ′m,mis = ρ′m,opt, (1 + Δρm).
In other words, Δγ denotes the required SNR margin per
bit resulted from the hypothesized relative threshold offset
Δρm compared to the corresponding optimal thresholds. We
define the above relationship formally as

Δγ = f
(
Δρm

)
, Δγ ≥ 1,

∣
∣Δρm

∣
∣ < 1, m = 0, 1, 2, . . . ,M − 2,

(5)

where f (·) denotes a functional relation between Δγ and
Δρm and it depends on selected values of M, D, and
γopt. It is convenient to express Δγ in decibels by Δγ =
10 log10(γmis/γopt) dB and Δρm in percentages by Δρm =
100·(ρ′m,mis/ρ

′
m,opt − 1)%. There is no closed form solution

for (5) from (4). We use the numerical bisection method
described in [10, page 261] to find the relationship and some
examples are given in Figure 1. Assuming the offset Δρ =
Δρm in percentage is the same for all m, we suggest that a
simple quadratic function with a single parameter can be
used to approximate (5) with a good accuracy for relatively
low values of Δρ and Δγ . The parameter of the quadratic
function depends on the selected values of M, D, and γopt

and it can be found numerically.
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4. Proposed Near-Optimal Threshold
Selection Scheme

To solve the decision threshold selection problem we propose
to find an error function between the optimal and asymptot-
ically approximated threshold values, that is, when the SNR
approaches infinity. A similar approach was first proposed
in [6] without detailed evaluation for an energy detection
system with binary OOK. However, the problem of finding
an error function for a multilevel ED-PAM system is evi-
dently more complicated. First, the asymptotically optimal
values ρm,asy should be found and they are derived differently
for the threshold values ρ0,asy and ρm,asy with m > 0. It is
shown in [6] that ρ0,asy = E1/4 when the SNR approaches
infinity. However, we observed that the corresponding result
for ρm,asy with m > 0 is much more complicated (the result
is not shown here due to space limitations). We alternatively
assume that for a high SNR, the mean value of the decision
variable is unaffected by the noise and the decision variable
follows a symmetrical distribution, which directly results in
a simple approximation ρm,sym = (Em + Em+1)/2, m > 0.
The overall scheme is referred to as a semiasymptotically
optimal scheme since only ρ0,asy is asymptotically unbiased
whereas there will be some bias in ρm,sym with m >
0 even if the SNR approaches infinity. The second step
is introduced to find an error function em between the
optimal and semiasymptotically optimal threshold value set
mentioned above. After some manipulations we propose
to minimize

em =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min

{
1
ND

ND−1∑

i=0

ρ0,optα− E1/4− d2,0(i)

d1,0(i)

}

, m = 0,

min

{
1
ND

×
ND−1∑

i=0

ρm,optβ −
(
Em + Em+1

)
/2− d2,m(i)

d1,m(i)

}

,

m > 0,
(6)

where α denotes [0,E1/N0,RD(i)] and β denotes [Em/N0,
Em+1/N0,RD(i)] and RD(i) = i+ 1 (i = 0, 1, . . . ,ND−1) is the
ND-element value set to be supported for the parameter D,
d1,m, and d2,m are the first-order coefficients, and ρm,opt(·, ·, ·)
are the optimal thresholds depending on the particular value
of D and the SNRs of the symbols. An analytical closed form
solution to the above problem cannot be found. In order to
make the error function parameterized by D, its relation to
the error function is found experimentally with the help of
the first-order coefficients d1,0(i) = N0

√
RD(i)− 1 if m =

0, d1,m(i) = N0 if m > 0, and d2,m(i) = RD(i)N0 for m ≥ 0.
The remaining error is averaged over the selected range of
the expected values of D. We select a polynomial-based error
function with the aim to maintain low complexity. Starting
from (6), we obtain, after some manipulations, a novel data-
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Figure 2: SER comparison of different threshold selection schemes
(M = 4).

fitting threshold selection scheme for an M-ary ED-PAM
system as

ρm,dat =
⎧
⎨

⎩

E1/4 +N0
(√
D − 1K0 +D

)
, m = 0,

(
Em + Em+1

)
/2 +N0

(
Km +D

)
, m > 0,

(7)

where Km = km,Vmx
Vm
m + km,Vm−1x

Vm−1
m + · · · + km,2x2

m +
km,1xm + km,0 is the polynomial with order Vm for the mth
threshold, xm = Em+1/N0 is the received SNR of the (m+ 1)th
symbol, and km,v are the coefficients of the polynomial. The
coefficients, which minimize (6), are generated by applying
the well-known least squares curve-fitting method [10, page
528] for the target SNR range. In Figure 2, we plot the SER
as a function of the SNR per bit for the quaternary ED-
PAM system using (3) now with the actual threshold values
determined by four different threshold selection schemes. In
this example,V0 = 2, V1 = 1, V2 = 1 are adopted in (7). For
a comparison we apply the Gaussian approximation scheme
presented in [4] to determine each mth threshold (m =
0, 1, 2) separately. We found that the polynomial order has
the highest effect on the first threshold and that the selection
of D has a significant impact on the relative performance of
the schemes. However, the data-fitting scheme performs well
for a wide value range of D. More detailed reasoning is given
in [2].

5. Conclusion

We have presented some useful guidelines between a sys-
tematic threshold mismatch and the corresponding margin
in the average SNR per bit to preserve a desired error
probability in a multilevel ED-PAM system. In the case
where the increase of the error probability or average SNR
is not tolerable, we have proposed a novel near-optimal
multilevel threshold selection scheme based on a closed
form polynomial data-fitting approach. We have shown that
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the proposed scheme is robust for a wide range of system
parameters whereas other suboptimal schemes assume a
more restricted value range for the DOFs to work properly.
The results can be extended to slowly fading channels and
they can be applied, for example, for a high-speed impulse
radio.
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