Hindawi Publishing Corporation
Research Letters in Communications
Volume 2007, Article ID 16438, 5 pages
d0i:10.1155/2007/16438

Research Letter

Precoded DOSTBC over Rayleigh Channels

Manav R. Bhatnagar, Are Hjgrungnes, and Lingyang Song

University Graduate Center, University of Oslo, Instituttveien 25, P.O. Box 70, 2027 Kjeller, Norway

Correspondence should be addressed to Manav R. Bhatnagar, b_manav@yahoo.com

Received 17 August 2007; Accepted 9 October 2007

Recommended by Theodoros A. Tsiftsis

Differential orthogonal space-time block codes (DOSTBC) sent over correlated Rayleigh fading channels are considered in this
paper. Approximate expressions for the symbol error rate (SER) are derived for DOSTBC with M-PSK, M-PAM, and M-QAM
constellations assuming arbitrary correlation between the transmit and receive antennas. A full memoryless precoder is designed to
improve the performance of the DOSTBC over correlated Rayleigh MIMO channels. The proposed precoder design differs from the
previous work: (1) our precoder design considers arbitrary correlation in the channels, whereas the previously proposed precoder
design considers only transmit correlations in the Kronecker correlation model; (2) the proposed precoder is based on minimizing
proposed SER, whereas the previously proposed precoder is based on minimizing the Chernoff bound of approximate SER; (3)
we propose precoder design for DOSTBC with M-PSK, M-PAM, and M-QAM constellations, whereas the previously proposed
precoder works for DOSTBC with M-PSK only. Additionally, the proposed precoded DOSTBC outperforms the conventional
eigenbeamforming-based precoded DOSTBC for the Kronecker model with only transmit correlation.

Copyright © 2007 Manav R. Bhatnagar et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly

cited.

1. INTRODUCTION

Differential modulation of orthogonal space-time block
codes (OSTBC) is a promising technique in the terms of
data rate and performance gain for the channels, which re-
mains constant for small number of symbol durations [1-
3]. DOSTBC can be decoded without any channel informa-
tion at the receiver. The performance of DOSTBC suffers due
to the channel correlations. In [4], an eigen-beamforming
precoder for DOSTBC with M-PSK constellations is pro-
posed. This precoder is based on Chernoff bound of ap-
proximate SER formulation derived in [4] assuming trans-
mit correlations only in the Kronecker model [5]. However,
this model does not always render the multipath structure
correctly [6], but it might introduce artificial paths that are
not present in the underlying measurement data. Moreover,
the Kronecker model underestimates the mutual informa-
tion of the MIMO channel systematically [6]. In this paper,
our main contributions are as follows: (1) we derive approx-
imate SER for DOSTBC for M-PSK, M-QAM, and M-PAM
constellations in arbitrarily correlated Rayleigh channels; (2)
we also propose a precoder design to improve the ruggedness
of DOSTBC against the arbitrary correlations in Rayleigh
MIMO channel.

2. DIFFERENTIAL CODING OF OSTBC WITH M-PSK
OVER CORRELATED RAYLEIGH CHANNELS

2.1. Differential encoding for OSTBC

Let S be an n X n OSTBC data matrix obtained at time k
from s = [sk,l,sk,z,...,sk,ns]’ , Skt € M-PSK constellation
and n; < n. A differentially encoded data matrix Dy € Ct*”
can be obtained from Sy as

Dy = Dy Sk. (1)

It is well known that channel correlation degrades the per-
formance of a wireless MIMO system [5, 7]. For improv-
ing the performance of the DOSTBC system, let us multi-
ply DOSTBC Dy with a full memoryless precoder matrix
F € C"* before it is transmitted at time k. Hence, we fi-
nally transmit the precoded DOSTBC matrix Gx = FDy at
any time k.

2.2. Model of correlated channels

We assume flat block-fading correlated MIMO Rayleigh
fading channel model [5]. Let the channel H e "™
has zero mean, complex Gaussian circularly distribution
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with positive semidefinite autocorrelation given by R =
E[vec(H)vec’ (H)] of size mn, X mn,. A channel realiza-
tion of the correlated channels can be found by vec(H) =
R"?vec(H,,), where R"? is the unique semipositive definite
matrix square root [8] of R and H,, has size n, X n; and con-
sists of complex circular Gaussian distributed elements with
zero mean and y? variance.

2.3. Decoding of precoded differential OSTBC

The n, X n received data matrix at time k is
Yi = HFD; + Qx = HG, + Qy, (2)

where Qg is an n, X n matrix, containing additive white
complex-valued Gaussian noise (AWGN), whose elements
are ii.d. Gaussian random variables with zero mean and
variance o%. H is assumed stationary over the transmis-
sion period of at least two consecutive transmitted matrices
(Gk-1 and G). A differential decoder for precoded DOSTBC
with M-PSK constellation can be obtained as follows [9]:

S = argmin||Yx — Yz 1S/, (3)
SkeE

where E is the set of all OSTBC matrices, consisting of sym-
bols belonging to the M-PSK constellation.

3. SERPERFORMANCE ANALYSIS OF PRECODED
DOSTBC WITH UNITARY CONSTELLATIONS

As Sy is OSTBC, therefore, SkS,‘Z{ =
expressed in the terms of si as [10]

sk /1, and it can be

Sk = [(I)k,lsk + ®k,ls;f, v Op Sk + ®kyn8;€k], (4)
where @y, and @k, are n X ng matrices with real or com-
plex elements, which depend on the OSTBC. If @, =
[¢k,m,1’¢k,m,2""’¢k,m,n5]’ where (/)k)m’l is n X 1 vector and
Otm = [Okm1>Okmas-- > Okmpn, ], where gy is n X 1 vec-
tor, the received data matrix and AWGN noise matrix in
(2) can be written as Y = [Yk1,Vk2>--->Ykn) and Qx =
[Qk,1>Qk,25 - - - > Q> TESpectively, where vy, and qg, ., are n, X
1 vectors. Let Sk be the transmitted data vector encoded into
Sk and its estimated value is given by sx. From (2) and (4) the
received data vector corresponding to Si can be given as

Yiem = HEDj_ 1 (@ Sk + Ok Sy ) + Qi (5)

We may rewrite the decision metric (3) with the help of (5)
as follows:

Sk = arg min Z HHFDk 1(<I)km[sk — sk ]

seext (6)

2

+ O[Sk — Sk]*) +ekm|| >
where y is M-PSK constellation and ey, = Qi m—Qi—1 (P, mSk
+ Ok,ms; ). After several manipulations and neglecting two
noise terms which have a diminishing effect at high SNR, a

simplified and approximate decision variable corresponding
to (6) can be obtained as [7, 11, 12]

D(se) = |Skr — Sk + 9] . (7)

t=1

As sk, € M-PSK constellation, ||sg 1> = nw, where the Vari—
ance of each symbol s, is w. If w = 1/n;, |HFDj— s

IHF||?> and it can be shown that s ~CN (0, 202/|/HF|? )
[12], where o2 is the AWGN noise power. Let ¥ =2
R2[(F*F") ® I, ]RY? be a positive semidefinite matrix
of size mn, X mn, with the eigen-decomposition ¥ =
VQV#. Define the nonnegative scalar 2 |HF|? =
vec” (H,,)¥ vec(H,,). It can be seen from (7) that the MIMO
system is collapsed into n; single-input single-output (SISO)
systems having the following output-input relationship:

Vit = \/Bsk,t'f_vk,t) Vte {1)2:---1715}) (8)

where vy, = 19;(,t||HFH2 is distributed as CN (0, 202). For the
SISO system of (8) the probability of error given |HF||* can
be written as [13, equation (8.23)]

1 [ M=Dn/M w sin® (/M)
gl =] e - SR play. )

202sin’y

Next, the SER can be obtained by averaging (9) over the
channel as follows:

En[P.{B}] = lj " MNCM;;( psk )dl//, (10)

sin“y

where apsk = wsin?(n/M)/20? and Mpg(+) is moment gen-
erating function (MGF) of . From the definition of j3, it
is seen that B = vec* (H|,)Qvec(H,,) [8], where vec(H,,)
is distributed as CN (0,,n,%1, Ly, ). It is clear from the lat-
est expression of f3 that it can be expressed as a weighted
sum of squares of the absolute value of independent com-
plex Gaussian variables. Hence, the MGF of 5 can be written
as [13] Mp(s) = V116 (1
ative eigenvalues of ¥ and s = ocPSK/sinzyf. From (10) and
using the property of eigen-decomposition [8] we can write
the approximate SER of DOSTBC with M-PSK constellation
as

— w;s), where w; are nonneg-

(M-1)n/M
SER = - | L
TJo det( neny T + (apsk/sin 1//)‘1’)

4. PRECODED DOSTBC FOR M-PAM AND M-QAM

Let sy € M-QAM or M-PAM constellation, then we modify
the differential encoding of (1) to avoid the power fluctua-
tion from one DOSTBC block to other as follows:

Dy = Dy, = Dj_1Sk. (12)

Sk
IIs—1l



Manav R. Bhatnagar et al.

For the simplicity of analysis we use the following differen-
tial decoder for our analysis and simulation of DOSTBC with
nonunitary (M-PAM and M-QAM) constellations:

~ . ~ 2
Sk = arggnér_1||Yk — Y 1Skl » (13)
EE

where E is the set of all OSTBC matrices, consisting of sym-
bols belonging to the finite M-QAM or M-PAM constella-
tion. It is shown in [3, Section 5] that for DOSTBC with
nonunitary constellations, (13) can be used as the subopti-
mal decoder, which performs almost as same as the maxi-
mum likelihood (ML) optimal decoder. Following the same
procedure as in Section 3, we can obtain a simplified and ap-
proximate decision variable for the case of DOSTBC with
nonunitary constellations also as [7, 11, 12]

s

Dy(st) = D [8kr — sk + % |2, (14)

t=1

where 9 ,~CN (0,0%[1+ fI/IHF|*) with f = E{llscll*/
llsk—1 11>}, where Eg{-} is the expectation over the original
information symbols. f depends on the type and size of
nonunitary signal constellation, and can be calculated nu-
merically. For 16-QAM its value is approximately 1.308.
Following the same procedure as in Section 3 and using
[13, equations (8.5) and (8.12)], the SER of the precoded
DOSTBC with nonunitary constellations can be written as

_ /2
ser= 2M -1 dy ,
T M Jo det(IW,r + (ocpAM/sin21p)‘I’)
4/M -1 dy

SER =

4 LJM
n VM [\/M 0 det(lnmy"r((XQAM/SinzI//)‘P)

/2 dl//
" ]
/4 det(L,,, + (a0qQam/sin q/)‘l’)]
(15)

where apav = 3w/o?(M? — 1)[1 + f] and agam = 3w/
202 (M~ D)[1 + f].

5. PRECODER DESIGN FOR DOSTBC

Let us assume that the receiver can estimate the channel cor-
relation matrix R and noise variance o2, and feed these back
to the transmitter. Based on these assumptions, a precoder
can be designed for the DOSTBC based on the SER formula-
tions of (11) and (15).

5.1. Problem formulation

By using the properties of orthogonal STBC, it can be shown
from (1) and (12) that the average power of the kth DOSTBC
block for M-PSK, M-PAM, and M-QAM constellation is
[E{DkD;ff} = nywl,. If we set w = 1/n,, the average power
constraint on the transmitted block Gy = FDj can be ex-
pressed as Tr{FF*} = P, where P is the average power used
by the transmitted block Gi. The goal is to design a precoder

F such that the approximate SER is minimized subject to the
average transmitted power constraint:

min SER, subjecttoTr{FF*} =P,
pin, ubj {FF7} (16)

5.2. Precoderdesign

The constrained maximization problem (16) can be con-
verted into an unconstrained optimization problem by in-
troducing a positive Lagrange multiplier y [14],

£ (F,F*) = SER + yTr{FF¥*}. (17)

To find an optimal solution of F, we need to find the ma-
trix derivation of the objective funcion in (17) with respect
to F*, that is, D+ L(F,F*) [15] and equate the result to
zero. It can be shown with the help of [15, Table V] that
Dyp+ L(F, F*)= 015y, is equivalent to

VGC(F) = @F*SER(F,F*), (18)

where SER(F, F*) is the SER as a function of F and F*. Define
the n; xnin? matrixas X = (L2 ®vec” (I, )][1,, @Ky, , @1, ]
and an intermediate vector variable g(F, v, o, A) of size bn; x 1
as

g(Fy,a,1) = A[F" ® Int]JC[RI/Z ® (RI/Z)*]

Vec:([lmnr + (oc/sinz(l//))‘l’*]_l) (19)
X = 2 . 2 >
sin“(y)det(Ly,n, + (a/sin”(y))¥)

where K, ; is a commutation matrix [16] of size pg X pq and
A is a scalar which is chosen to satisfy the power constraint.
After many manipulations and using the results given in
[15, 17], we can write the first-order derivative for DOSTBC
using PSK, PAM, or QAM constellation as

J)F* SER(F7 F*) = g(F) v]) aPSK)/\)dWy

J (M-1)n/M
/2

o{DF* SER(F, F*) = J g(F: v, “PAM)A)dV/>
’ (20)

1 /4
Dy SER(F, F*) = ﬁjo g(F, v, aqam, A)dy

/2

+ /4g(Fa ¥, aqam, A) dy.

We can use a fixed-point iteration method to find the pre-
coder matrix from (18), (19), and (20). An iterative method
for fast convergence is explained in a pseudocode provided
in Algorithm 1. The initial value for the precoder matrix
should be chosen appropriately. The trivial precoder matrix
F = \/F[ImaX{”z,b}]n[xb can be used as the initialization ma-
trix. Here, [Imaxn,b}],,xp 15 @ matrix of the size n; X b taken
from an identity matrix Imax(n, b}, Where max{n;, b} returns
the maximum value of #n; and b. When the precoder matrix
has been found for a certain channel conditions, it can be
used as the initial precoder matrix for other channel condi-
tions that are close to the one already optimized. The param-
eter ¢ decides the termination of the iterative algorithm.
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Initialization
Choose OSTBC, P, w, n, n,, €, and signal
constellation
Estimate R and ¢?
Initialize F to an already optimized precoder
or to Fy = \/F[Imax{m,b} ]nt><b
Precoder Optimization
i:=0
repeat
ir=i+1
Calculate the right-hand side of (20).
Normalize precoder matrix F; such that:
IFll = VP,
until ||F, - F,‘_l H <€
The optimized precoder is given by F = F;

Step 1:

Step 2:

ArcoriTHM 1: Pseudocode of the numerical precoder optimization
algorithm.

In the numerical experiments, we observed that the pro-
posed fixed-point algorithm always converged. However, the
optimized F is not unique. We have experimented with many
different initialization matrices and never experienced any
divergence of the proposed fixed-point algorithm. Let F; and
F, be two precoder matrix solutions obtained after apply-
ing the fixed-point algorithm with two different initializa-
tion matrices. It can be seen from [17, Lemma I] that F;V;
and F,V; are also the optimal precoder. Let F; = UlAlVf(
and F, = U,A, V¥ be the singular value decompositions of
F, and F,, respectively. Then we have observed from the nu-
merical experiments that U; = U, and A; = A, subject to
the reordering of the eigenvalues, multiplication of a point
on the unit circle, and normalization.

6. PERFORMANCE RESULTS AND COMPARISONS

In all the simulations we assumed that the channel is con-
stant over the transmission periods of two DOSTBC blocks.
Figure 1 shows the comparison of analytical SER (11) and
(15), and simulated SER of differential orthogonal STBC
with 4,16-PSK, 4-PAM, and 16-QAM constellations for
Alamouti code, n; = 2,1, = ,R =1, , F = +/PI,,,. It can be
seen from Figure 1 that the experimental results closely fol-
low our analytical formulation of SER from moderate to high
SNR values. Figure 2 shows comparisons of the proposed
precoded DOSTBC and eigen-beamforming precoder-based
DOSTBC of [4] for Alamouti code with n; = 2 and n, = 1,
QPSK constellation, [R;]; ;= 0.7)77, 1 < {i,j} < ny, and
R, = I,,. Apparently, the proposed precoded DOSTBC out-
performs the existing precoded DOSTBC. In Figure 3, we
have shown the performance of differential system based on
Alamouti code with n;, = 2 and n, = 2, and 16-QAM con-
stellation. In this case, the channel is assumed to be corre-
lated with [R];; = )7, 1 < {i,j} < mn,, with p €
{0.9,0.99,0.99999} . It can be seen from Figure 3 that the pro-

100 - T H T BN o . T
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0 5 10 15 20 25 30
SNR (dB)

FIGURE 1: Analytical o and simulated — SER of DOSTBC in uncor-
related channels.
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- -~ Unprecoded DOSTBC
—6— DOSTBC with eigenbeamforming precoder [4]
—&— Proposed precoded DOSTBC

FiGURE 2: Comparison of the proposed precoded DOSTBC with the
eigenbeamforming-based precoded differential system of [4] over
channels with only transmit correlation.

posed precoded DOSTBC exhibits performance gain as com-
pared to the unprecoded DOSTBC in correlated channels.

7. CONCLUSIONS

We have derived approximate SER expressions for the pre-
coded DOSTBC with unitary and nonunitary constellations
for arbitrary joint correlations in the transmitter and the
receiver. We have also proposed a precoder design for the
DOSTBC to improve the performance over arbitrarily cor-
related Rayleigh fading MIMO channels. The proposed pre-
coded differential system not only works well in arbitrarily
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FiGure 3: Analytical performance of the proposed precoded
DOSTBC with 16-QAM in generally correlated channels; — o — un-
precoded differential system and —A— precoded differential system.

correlated channels but it also performs better than the pre-
viously proposed eigenbeamforming-based precoded differ-
ential codes with the Kronecker correlation channel model
with only transmit correlation.
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