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Multipinhole SPECT system design is largely a trial-and-error process. General principles can give system designers a general idea
of how a system with certain characteristics will perform. However, the specific performance of any particular system is unknown
before the system is tested. The development of an objective evaluation method that is not based on experimentation would
facilitate the optimization of multipinhole systems. We derive a figure of merit for prediction of SPECT system performance based
on the entire singular value spectrum of the system. This figure of merit contains significantly more information than the condition
number of the system, and is therefore more revealing of system performance. This figure is then compared with simulated results
of several SPECT systems and is shown to correlate well to the results of the simulations. The proposed figure of merit is useful
for predicting system performance, but additional steps could be taken to improve its accuracy and applicability. The limits of the
proposed method are discussed, and possible improvements to it are proposed.
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1. INTRODUCTION

Small-animal SPECT imaging provides the opportunity for
advanced monitoring and analysis of cancer drug tests in
laboratory animals. In order to be effective, a small-animal
SPECT system must have high spatial resolution and high
sensitivity. The design of multipinhole systems involves many
subtle factors which affect both resolution and sensitivity
in ways that are difficult to model. Currently, systems are
designed based only on general principles; optimization is
not a part of the design procedure. Once an aperture is
designed, it is tested and analyzed. A method whereby system
performance could be predicted, and therefore optimized, in
the design phase would allow system designers to experiment
with a wider range of design possibilities and to achieve
better design results overall.

The main problem in deriving a system performance
predictor is the definition of system performance. An opti-
mal system obtains a balance between high spatial resolution
and low system noise. Therefore, an objective error predictor
must favor both system characteristics equally; an optimal
system, as defined by the error predictor, must give low

noise and allow for detection of small lesions. We present
an error predictor which is shown to account for both
spatial resolution and noise, and therefore correlates to image
quality in terms of usefulness to the clinician.

In addition, the error predictor provides an objective
measure of system performance. Current evaluations of
SPECT systems include simulation and actual physical
imaging. Of those performing physical experiments, some
use laboratory animals [1, 2], some use phantoms [3–5], and
some use both [6, 7]. Some of those using simulation to
evaluate their systems image a single point or a homogeneous
sphere, instead of the type of complex system that would be
encountered in clinical use. In addition, current evaluation
methods are not completely thorough or standardized,
either. Systems can be evaluated in terms of signal-to-noise
ratio (SNR) [1], contrast-to-noise ratio, mean square error
(MSE) [4, 5], or other performance indicators [3, 8]. Others
give no quantitative results and rely on visual comparison of
results [2, 7, 9].

In order to obtain this error prediction, the singular
value spectrum must be calculated. The matrix-based rep-
resentation of clinical systems is far too large to store the
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entire system matrix in the computer memory. We show
that the application of the power method to the analysis of
SPECT imaging systems is valuable because of the ability
to use simulation to find the singular value spectrum of a
system. This allows for a frequency-based analysis of systems
involving attenuation, photon scattering, and other complex
and random phenomena, for which the creation of a system
matrix would be complicated.

The theoretical background of the proposed error esti-
mate is presented in Section 2. The generalized SPECT
system is presented as a matrix algebra problem. The singular
value decomposition is used to analyze the system in terms
of frequency content. The relationship between iteration of
the minimal-residual (MR) algorithm and frequency content
of the reconstructed image is discussed briefly. The singular-
value-based analysis is used to create an estimate of the
error inherent in the imaging system. The power method
is explained and used to determine singular values of the
system.

In Section 3, experimentation is presented to ver-
ify the error estimate derived in Section 2. Methodol-
ogy is presented for a two-dimensional and a three-
dimensional SPECT simulation. A two-dimensional and a
three-dimensional phantom are imaged to a noisy detector
and the projections are reconstructed. The results of these
simulations are analyzed in terms of error, and these error
measurements are compared to the error estimates. The
results are discussed, and the efficacy of the error estimate
is examined.

Section 4 presents a summary of the work and the
conclusions drawn from the results. Possibilities for future
work are discussed, including areas into which research must
be extended to qualify the proposed error estimate for use in
design of clinical systems.

2. THEORY

2.1. Matrix representation of
projection-backprojection

For any given system, a matrix B can be defined, which
defines the translation of the object x (arranged as a column
vector of length m) to a set of projections p:

Bx = p. (1)

Several algorithms exist for solving this type of problems
[10–12]. However, for an ill-posed problem, Bx = p is
usually inconsistent due to noise and a solution does not
exist. To solve this problem, let us define the transposed
matrix BT as the backprojection operation, that is, a map
from the projection set p to the backprojected image vector
BTp. A projection-backprojection matrix can then be defined
as

A = BTB, (2)

and image reconstruction can be performed by solving

Ax = BTp. (3)

In this form, the problem is always consistent, and a
unique, least-squares solution can be found, which is also
the least-squares solution of Bx = p. An evaluation of the
imaging system can be performed by examining pertinent
characteristics of A. Such a figure of merit would provide an
objective means by which multipinhole apertures could be
evaluated and optimized.

2.2. Singular value decomposition of system matrix

The singular value decomposition (SVD) of the projection-
backprojection matrix A can be represented as

A = UΛUT . (4)

Because U is a unitary matrix, UTU = I, or UT = U−1.
Thus, if all singular values are nonzero, we have

A−1 = [UΛUT
]−1 = [UT

]−1
Λ−1U−1 = UΛ−1UT . (5)

This can be used to solve the original problem:

Ax = BTp,

x = A−1BTp = UΛ−1UTBTp.
(6)

From the singular value decomposition, Λ is a diagonal
matrix which contains, in descending order, the singular
values of A, which are all nonnegative:
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(7)

For any imaging system, there is therefore a threshold for
acceptable values of λk. Values of λk below this threshold will
add more noise to the system than image data, and thus all
values of λk below the threshold are truncated, as in (8). The
threshold is defined by the variable n, such that all inverted
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singular values corresponding to k > n are set to zero. We
define
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It follows that for U = [U1, U2, . . . , Um] and Uk =
[u1,k,u2,k, . . . ,um,k]Twe can define a generalized inverse of A
as

A† = UΛ̃UT
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(9)

The regularized solution x′ can thus be written as the
following summation:

x′ =
n∑

k=1

1
λk

UkUT
k BTp. (10)

2.3. Noise analysis

The reconstructed image x′ is expressed as a linear com-
bination of image components UkUT

k BTp, with scaling
factors 1/λk. As in a Fourier transform, each of these image
components contains frequency content of the total image x′,
with frequency increasing with k.

The projection-backprojection and reconstruction pro-
cess can be visualized as in Figure 1. In this conceptual
system, a noise signal ξ is introduced in the projection
operation. The image components are “filtered” in the A
operation by the corresponding scaling factors λk. Each
component must therefore be amplified by a factor of 1/λk
in the inverse operation, A†. The noise in x′ is therefore a
function of the noise ξ and the singular values λk in A†.

In SPECT, the projection data noise is Poisson dis-
tributed, that is, its variance equals its mean. We can assume
that in the backprojected image, the noise ξ is Poisson
distributed. Let N be the total photon count in a projection
data set, then the signal uncertainty, or the square root of the
noise variance divided by the mean, can be approximated as

√
N

N
= 1√

N
. (11)

x x′
B BT

BTp
A†

p

A

ξ (noise)

Figure 1: Block diagram of projection-backprojection operation.
Noise is introduced at the projection operation, B. Image compo-
nents which are “attenuated” in B and BT must be “amplified” in
A†, increasing the noise in x′.

Considering that the noise power of each image component
in (10) is

1
λ2
k

, (12)

if we assume that the noise power is uniformly distributed
over the entire singular-value-decomposition spectrum, then
the susceptibility of the system to noise is the Poisson noise
uncertainty multiplied by the sum of the noise powers

1√
N

√√
√
√

n∑

k=1

1
λ2
k

, (13)

which is hereafter referred to as the “noise amplification
factor.” Because it involves all singular values, this error
estimate describes the general ability of a system to reproduce
image data at all frequencies.

A less accurate but less computationally expensive
estimate of the noise amplification involves the condition
number K(A), the ratio of the largest to the smallest singular
value of A. In this way, the condition number can be
calculated for a real-world system and the uncertainty can
be estimated as

K(A)√
N

. (14)

Although not as precise as the noise amplification factor,
the condition number does relate to how well-posed the
problem Ax = BTp is. However, systems with different
singular value spectra can have identical condition numbers,
even though their performance is not the same. For this
reason, the noise amplification factor is a more revealing
estimate of system performance.

2.4. Power method

For real-world systems, it is not feasible to obtain singular
values from A due to its large size. The power method
is an iterative algorithm which can estimate the dominant
singular value of a system indirectly; only access to the matrix
operation is needed [13]. The method of deflation is used
to find nondominant singular values, that is, the second
singular value of A is equal to the dominant singular value
of

A2 = A− λ1U1UT
1 , (15)
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and so on, so that the kth singular value of A is found by
estimating the dominant singular value of

Ak = Ak−1 − λk−1Uk−1UT
k−1, (16)

Of course, for large systems, access to A is not available,
so an equivalent operation—simulation of the projection
and backprojection operations—is performed on the vectors
employed in the power method algorithm in order to
compute singular values. For an image of size N × N × N ,
the computational complexity of the projection (or back-
projection) is O(N3) per projection, or O(N4) for the entire
image, assuming that the number of projections is O(N).
Therefore, the computational complexity of computing a
condition number (two terms) with the power method is
O(N4), and the complexity of computing the entire noise
amplification factor (N3 terms) with the power method
is O(N7). It is not realistic to compute an entire SVD
spectrum for each system to be analyzed. In practice, only
a small number of singular values are computed, so that
the overall computational complexity remains O(N4). On
our 2 GHz Windows-based computer, a MATLAB-based
projection-backprojection operation requires approximately
two minutes to run. In order to be useful for calculations
of many SVD spectra, the simulation would have to be
optimized, but this was not done for this paper.

3. EXPERIMENTS AND RESULTS

3.1. Setup

Preliminary simulations were run for a two-dimensional
phantom with a one-dimensional detector. The phantom
was a 31 × 31 pixel modified Shepp-Logan phantom. The
phantom was imaged at 120 angles to a 60-pixel detector,
using apertures of 1, 3, 5, 7, 9, 11, 13, and 15 evenly spaced
pinholes. Poisson noise was added to the projections, and the
images were reconstructed using the MR algorithm.

The MR algorithm is used in place of the more popular
ML-EM algorithm because of its natural applicability to
the singular value decomposition. Although the ML-EM
algorithm models Poisson noise properly [14, 15], it cannot
be analyzed with a simple algebraic method, and so is not
suitable for this analysis. Under the assumption that photon
count per detector bin is sufficiently high (greater than 10),
the Poisson noise can be approximated as Gaussian, and so
the MR algorithm can be used.

Because of the relatively small system size, the errors
in these images were compared to two error predictors:
one based on the condition number of the system, and
the other based on the noise amplification factor, which is
based on the entire singular-value spectrum. As discussed
earlier, a function of the condition number K(A) can be
substituted for the noise amplification factor. The square of
the condition number, (K(A))2, seems to be a good estimate
of the noise amplification factor, and so the condition-
number-based error estimate used in these experiments is
(K(A))2/

√
N . This is, of course, an empirical fit and not

based on any rigorous mathematical principle.
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Figure 2: Custom phantom used in simulation.

Final simulations were run for a three-dimensional
phantom with a two-dimensional detector. The phantom
used (Figure 2) is a custom 64×64×64 voxel phantom, which
has been made to resemble the Shepp-Logan phantom.
The Shepp-Logan phantom is used frequently in analysis
of medical imaging systems, and is designed to resemble a
head. The phantom was imaged at 60 angles to a 128-by-
128 pixel detector through apertures with varying numbers
of holes and varying arrangements of holes. The apertures
are illustrated in Figures 3(a)–3(f), and will be referred to as
apertures A through F, respectively. Poisson noise was added
to these projections.

The noisy projections were backprojected to create the
image vector BTp. These results were then reconstructed
using the MR algorithm. The reconstructed images were
compared to the original phantom and the error in each
image was calculated. Because this system is large, calculation
of the entire singular value spectrum is not feasible. The error
was therefore compared only to the condition-number-based
noise prediction.

The acceptance angle of all pinholes in both experiments
is 60◦, meaning that photons may enter a pinhole at an angle
of up to ±30◦ from perpendicular (Figure 4). In both sets
of simulations, the aperture, phantom, and detector were
placed as close together as possible while allowing emitted
photons from all points in the phantom to pass through the
aperture and strike the detector.

3.2. Results

The error plots of the preliminary simulations are shown in
Figure 5. The plots in Figure 5 show the normalized error
predictions based on condition number,

ξK = (K(A))2

√
N

, (17)

error predictions based on the full singular-value spectrum,

ξSVD = 1√
N

√
√
√
√

n∑

k=1

1
λ2
k

, (18)
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(c) (d)

(e) (f)

Figure 3: Apertures used in final simulation.

Aperture

Acceptance
angle

Figure 4: Illustration of acceptance angle.

and true error, defined as the standard deviation of the error
in the image pixels,

ξtrue =

√
√
√√
√
m3
∑

i=1

(
x − A−1BTp

)2
j . (19)

The reconstructed two-dimensional images are shown
after (a) 1, (b) 9, (c) 17, and (d) 25 iterations in Figure 6.
The rows represent results for the apertures with 1, 3, 5, 7, 9,
11, 13, and 15 holes, from the top down. Figure 6(e) shows
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Figure 5: Normalized error predictions and actual error of two-
dimensional systems.

the image reconstructed as A−1BTp. The original phantom
is shown in Figure 6(f) for comparison. Note that each
set of error predictions and of actual errors is normalized;
the error predictors, as currently defined, are useful only
for comparison between systems and do not represent any
absolute real-world value.

The reconstructed images from the final (three-
dimensional) simulations are shown in Figure 7. Figures
7(a)–7(f) show slices from the reconstructed images from
systems A through F, respectively, at the stage in the MR
algorithm at which they are closest to the original phantom
(Figure 7(g)). The number of iterations used for the systems
is 9 (system A); 11 (system B); 11 (system C); 12 (system
D); 20 (system E); 15 (system F). Although most systems
use a fixed number of iterations in MR reconstruction, it
is not unreasonable to use a different number of iterations
for each system. The normalized error predictions for the
three-dimensional simulations and the normalized true
error are shown in Figure 8. The reconstructed images from
the final (three-dimensional) simulations are evaluated
both in terms of noise and in terms of lesion detection (an
indirect measure of spatial resolution). In order to evaluate
the comparative performance of the systems, a composite
error is used. This error composite is defined as the sum of
the mean squared error of the entire image,

ξ1 =
m3
∑

i=1

(
x − A−1BTp

)2
j (20)

and the square root of the noise power along the profile of
the three small lesions in the bottom half of the phantom,

ξ2 =

√
j∑(

x − A−1BTp
)2
j (21)
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(a) (b) (c) (d) (e) (f)

Figure 6: Comparison of reconstructed images in two-dimensional
simulation after (a) 1, (b) 9, (c) 17, and (d) 25 iterations. (e) The
image reconstructed as A−1BTp. (f) The original phantom.
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Figure 7: Comparison of reconstructed images from three-dimen-
sional simulations.

as shown in Figure 9. Sensitivity is measured in the noise
parameter, ξ1, and resolution is measured in the small-
lesion profile, ξ2. Figure 10 compares profiles along the
line shown in Figure 9. Using this error composite, the
reconstructed images can be evaluated in terms of noise and
lesion detection, or sensitivity and resolution.
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Figure 8: Predicted and measured errors for three-dimensional
simulations.

Figure 9: Illustration of line used for profile comparison.

3.3. Analysis

The two-dimensional simulations show the condition num-
ber and singular values to be useful in determining relative
uncertainty in reconstructed images. Both error estimates
((17) and (18)) perform well in estimating error, but the
error estimate which involves the entire singular value
spectrum—the noise amplification factor—more accurately
predicts system performance. However, the characteristics of
any small two-dimensional system are much closer to ideal
than those of a real-world system, and are easier to model.

The composite error for the three-dimensional system,
as previously defined, was created in order to measure
both system sensitivity and spatial resolution. For example,
systems A and B are able to resolve the three lesions in
the bottom half of the phantom, but contain substantial
amounts of noise, as evidenced by the noisy reconstruction
of the large bright circle at the top half of the phantom
(Figures 7(a) and 7(b)). Systems D and E contain relatively
low amounts of noise (Figures 7(d) and 7(e)), but the three
small lesions at the bottom are almost indistinguishable.
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Figure 10: Comparison of system profiles for (a) original phantom,
(b) system A, (c) system C, and (d) system E.

System F (Figure 7(f)) has the worst reconstructed image;
although the background is mostly homogeneous, the bright
spot at the top is not well defined, and there is a large artifact
in the center of the image. This artifact is most likely due
to poor placement of pinholes in the aperture. System C
is a good compromise between the high-noise problems of
the one- and two-pinhole apertures (systems A and B) and
the poor resolution of the nine- and ten-pinhole apertures
(systems E and F). It also has the lowest error prediction.
Note that systems C and D contain the same number of
holes, yet have observably different performance, as reflected
in the error predictions, the actual composite error, and the
reconstructed images.

Note that although the condition-number-based error
predictor described in (14) and the composite error mea-
surement described in (20) and (21) show some correlation
in this simulation, the error predictor cannot predict exact
performance for a particular phantom. The error predictor
is derived from the projection and backprojection equations,
but has no relation to the phantom in question. It can
therefore be used to predict performance generally, but
cannot predict performance exactly for a specific phantom.
On the other hand, the composite error measurement used
above is significant only for this particular phantom, as it

relies partially on a profile whose location was specifically
selected to match the location of the lesions to be detected.
It should be taken as most significant, then, that the systems
which performed well in simulation were generally likely to
also have low error predictions.

4. CONCLUSION

The objective of this research was to create an error estimate
that could predict the relative performance of pinhole-based
SPECT systems with a reasonable degree of accuracy. To
achieve this, the singular value decomposition of the system’s
projection-backprojection matrix was analyzed. The singular
value decomposition allows for a frequency-based analysis,
similar to a Fourier analysis. It was based on a function
termed the noise amplification factor, which is based on the
entire singular value spectrum and the photon count of
the system. Because of the large amount of computation
required to calculate the entire singular value spectrum for
a real-world system, a second error predictor was created,
based on the condition number and the photon count of
the system. However, because the condition number does
not contain information from the entire singular value
spectrum, it cannot account for the more subtle differences
between systems, and is therefore less reliable than the noise
amplification factor.

These error predictors were shown to be useful in
the prediction of system performance. Six systems with
varying numbers and arrangements of pinholes were used
to compare predicted and actual errors. The predictions
were shown to be useful in determining a preferred system
configuration.

The design of a pinhole-based SPECT system is a
problem of system design with many variables. The number
of pinholes, arrangement of pinholes, detector size and dis-
tance from the aperture, acceptance angle, and many other
variables all affects the efficacy of an SPECT system in ways
that are interrelated. Thus, system optimization cannot be
reduced to a combination of single-variable optimizations.
Simulation of each possible system configuration is also
unfeasible, because of the nearly infinite number of config-
urations available, and because results will vary depending
on the phantom used. For this reason, an unbiased error
predictor, based only on the system configuration and not
on any empirical data, will provide great benefits to system
designers.

A drawback of the SVD-based analysis is the case of an
overspecified system. In such a case, the condition number
is infinity because the singular values corresponding to high
frequencies are zero. In this case, the system resolution must
be decreased to a point that all systems under consideration
can be analyzed.

The most obvious use for an unbiased error predictor,
such as the one described in this paper, is in system
optimization. It is therefore the most important of the
extensions of this research. However, in order to move to
the goal of system optimization, research in this preliminary
stage of performance prediction must be expanded.
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In the mathematical derivations presented in this paper,
Poisson noise was added at the detector. In the frequency-
based analysis of the system, this noise was modeled as
having equal power at all frequencies. An analysis of the
Poisson noise in terms of the singular-value-based frequency
spectrum, and incorporation of this knowledge into the
error estimate, would add another degree of accuracy to the
present error predictions.

When using the MR algorithm for image reconstruction,
iteration of the algorithm is terminated after a certain num-
ber of iterations. Because of this, high-frequency information
is attenuated in the reconstructed image. In order to reflect
this in the error predictor, the singular value spectrum must
be truncated, as shown in (10)–(12). To do so accurately
would require a stronger knowledge of the relationship
between the number of iterations performed in the MR
algorithm and its effect on the singular value spectrum. It
is possible that this relationship can be explained as simply
as a high-pass-type transfer function which is applied at
each iteration of the algorithm, but it is most likely that the
relationship is more complex.

Because calculation of the entire set of singular values for
a real-world system is computationally expensive, a function
of the condition number was used in this paper to predict
system performance. However, it is very unlikely that this
is the optimal predictor, even if only using the condition
number of the system. The present system could be vastly
improved and a detailed system analysis could be made much
simpler if a method could be devised to create a rough
estimate of the singular value spectrum, or if a better estimate
of the noise amplification factor could be derived. If not,
a more refined estimation of the noise amplification factor,
based on the condition number, would still improve the error
estimate somewhat.
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Recently, due to their inherent potential to enhance safety
and efficiency measures in transportation networks, vehic-
ular ad hoc networks (VANETs) have gained eye-catching
attention from the wireless community. Traffic congestion
wastes 40% of travel time on average, unnecessarily con-
sumes about 2.3 billion gallons of fuel per year, and adversely
impacts the environment. More importantly, traffic accidents
are held responsible for a good portion of death causes.
Annually more than 40 000 people are killed and much
more injured in highway traffic accidents in the United
States alone. Recently, intelligent transportation systems
(ITS) have been proposed to improve safety and efficiency
in transportation networks. The allocation of 75 MHz in
the 5.9 GHz band for dedicated short-range communications
(DSRC) by the FCC was a move toward this goal, which
was further complemented by the introduction of the
vehicle infrastructure integration (VII) initiative by the US
Department of Transportation. VII proposes to use dedicated
short-range communications (DSRC) to establish vehicle-
to-vehicle and vehicle-roadside communications to deliver
timely information to save lives, reduce congestion, and
improve quality of life.

Despite the much attracted attention, there still remains
much to be done in the realm of vehicular ad hoc networks.
Signal processing plays a major role in vehicular ad hoc net-
works. The aim of this special issue is to present a collection
of high-quality research papers in order to exhibit advances
in theoretical studies, algorithms, and protocol design, as
well as platforms and prototypes which use advanced signal
processing techniques for vehicular ad hoc networks. Topics
of interest include but are not limited to:

• Estimation and detection techniques in VANETs
• Localization techniques in VANETs
• Clock synchronization in VANETs
• Security and privacy in VANETs
• Sensing in vehicular environments
• Channel modeling for V2V communications
• MAC, routing, QOS protocols, and analysis for

VANETs
• VANET smart antenna technologies
• Dynamic spectrum access and cognitive radios for

VANETs

• Congestion control and cooperative VANETs
• Traffic modeling in VANETs
• Signal processing to utilize data correlation in VANETs
• High-speed (rapid) signal processing for VANETs
• Accurate/high-fidelity simulation of VANETs
• Signal processing considerations in real world deploy-

ments of VANETs
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After many years of exciting research, the field of multimedia
information retrieval (MIR) has become mature enough
to enter a new development phase—the phase in which
MIR technology is made ready to get adopted in practical
solutions and realistic application scenarios. High users’
expectations in such scenarios require high dependability
of MIR systems. For example, in view of the paradigm
“getting the content I like, anytime and anyplace” the service
of consumer-oriented MIR solutions (e.g., a PVR, mobile
video, music retrieval, web search) will need to be at least
as dependable as turning a TV set on and off. Dependability
plays even a more critical role in automated surveillance
solutions relying on MIR technology to analyze recorded
scenes and events and alert the authorities when necessary.

This special issue addresses the dependability of those
critical parts of MIR systems dealing with semantic infer-
ence. Semantic inference stands for the theories and algo-
rithms designed to relate multimedia data to semantic-
level descriptors to allow content-based search, retrieval,
and management of data. An increase in semantic inference
dependability could be achieved in several ways. For instance,
better understanding of the processes underlying semantic
concept detection could help forecast, prevent, or correct
possible semantic inference errors. Furthermore, the theory
of using redundancy for building reliable structures from
less reliable components could be applied to integrate
“isolated” semantic inference algorithms into a network
characterized by distributed and collaborative intelligence
(e.g., a social/P2P network) and let them benefit from the
processes taking place in such a network (e.g., tagging,
collaborative filtering).

The goal of this special issue is to gather high-quality and
original contributions that reach beyond conventional ideas
and approaches and make substantial steps towards depend-
able, practically deployable semantic inference theories and
algorithms.

Topics of interest include (but are not limited to):

• Theory and algorithms of robust, generic, and scalable
semantic inference

• Self-learning and interactive learning for online adapt-
able semantic inference

• Exploration of applicability scope and theoretical
performance limits of semantic inference algorithms

• Modeling of system confidence in its semantic infer-
ence performance

• Evaluation of semantic inference dependability using
standard dependability criteria

• Matching user/context requirements to dependability
criteria (e.g., mobile user, user at home, etc.)

• Modeling synergies between different semantic infer-
ence mechanisms (e.g., content analysis, indexing
through user interaction, collaborative filtering)

• Synergetic integration of content analysis, user
actions (e.g., tagging, interaction with content)
and user/device collaboration (e.g., in social/P2P
networks)
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Video cameras are becoming increasingly ubiquitous and
pervasive in our daily life. Along with the fast growing
number of exchanged and archived videos, there is an urgent
need for advanced video analysis techniques that can sys-
tematically interpret and understand the semantics of video
contents, within the application domains of security surveil-
lance, intelligent transportation, health/home care, video
indexing/retrieving, video summarization/highlighting, and
so on. Understanding human behaviors based on video
analysis calls for even greater challenges due to very large
variations of human bodies and their motion activities under
all kinds of contexts such as different viewing perspectives,
dressing colors, changing human poses, human-human
occlusions, and body parts self-occlusions. To overcome
these challenges, not only the traditional image processing,
computer vision, pattern recognition, and machine learning
techniques are required, but also advanced estimation theory
and statistical inference, articulated 2D/3D human body
modeling and synthesis, sophisticated database or rules for
events/behaviors, and so on are critically desired.

The primary focus of this special issue will be on
the advanced video analysis techniques for understanding
human behaviors, starting from human object detection,
segmentation and tracking, 2D/3D spatial and temporal
features extraction, 2D/3D human body modeling and
synthesis, event discovery and behavior learning, system
performance evaluation, and potential applications of these
techniques. The special issue is intended to become an
international forum for researches to summarize the most
recent developments and ideas in the field. The topics to be
covered include, but are not limited to:

• Modern wireless communication system techniques
such as multiantenna and multiaccess, spectrum sen-
sing and cognitive radio, wireless ad hoc and sensor
networks, cooperative signal processing, and informa-
tion theory

• Human object detection and segmentation
• Tracking of human objects
• Tracking under multiple cameras
• Crowd estimation and crowd behavior analysis
• Occlusions and segmentation errors handling

• 2D/3D articulated human body modeling
• Modeling and learning of human behaviors
• Knowledge interpretations of human behaviors

Before submission authors should carefully read over the
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