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Recently, a novel data acquisition method has been proposed and experimentally implemented for differential phase-contrast
computed tomography (DPC-CT), in which a conventional X-ray tube and a Talbot-Lau-type interferometer were utilized in
data acquisition. The divergent nature of the data acquisition system requires a divergent-beam image reconstruction algorithm
for DPC-CT. This paper focuses on addressing this image reconstruction issue. We have developed a filtered backprojection
algorithm to directly reconstruct the DPC-CT images from acquired fan-beam data. The developed algorithm allows one to directly
reconstruct the decrement of the real part of the refractive index from the measured data. In order to accurately reconstruct an
image, the data need to be acquired over an angular range of at least 180◦ plus the fan angle. As opposed to the parallel beam
data acquisition and reconstruction methods, a 180◦-rotation angle for the data acquisition system does not provide sufficient
data for an accurate reconstruction of the entire field of view. Numerical simulations have been conducted to validate the image
reconstruction algorithm.

Copyright © 2008 Z. Qi and G.-H. Chen. This is an open access article distributed under the Creative Commons Attribution
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1. Introduction

In recent years, X-ray phase-contrast imaging methods have
attracted significant interest. Based upon the phase retrieval
method, phase-contrast imaging can be classified into three
categories: interferometric methods [1, 2], analyzer crystal
methods [3, 4], and free-space propagation methods [5–7].
These methods generally require excellent spatial coherence
and/or excellent spatial resolution of the detectors. Phase-
contrast imaging is thus normally conducted using high-
brilliance synchrotron beam lines or microfocus X-ray tubes.
It is difficult to adapt these phase retrieval methods to a
clinical setting for medical imaging.

The shearing interferometry method has been intro-
duced to measure the gradient of the local phase shift
distribution using synchrotron beam lines [8–11]. The key
theoretical foundation is the Talbot effect [11–14] and
Moiré interferometry [15]. Computed tomography imaging

methods have been developed [11, 16] based on the phase-
contrast projection images.

The shearing interferometry method only requires a mild
spatial coherence length, which opens up a new opportunity
to implement phase-contrast imaging using a conventional
X-ray tube. A method which takes advantage of these char-
acteristics was proposed and experimentally implement in X-
ray differential phase-contrast imaging [17] and differential
phase-contrast computed tomography (DPC-CT) [18, 19].
In this scheme, Pfeiffer et al. [17–19] proposed to mount an
absorption grating in front of a low-brilliance X-ray source
to generate an array of equidistant secondary line sources.
The coherence length of the beam is determined not by the
focal spot size of the X-ray tube, but rather by the width
of the opening of the absorption grating, which is about
20∼ 50 μm. This allows the use of a conventional X-ray
tube, where the high X-ray output can be turned into many
mutually incoherent line sources. In this paper, we refer to
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this grating as a beam slicer. Using this method, the spatial
coherence length of each line source has been improved
by a factor of ten or more over that of the X-ray tube
without the grating, thus enabling significant reduction of
the distance between the X-ray source and the image object.
As a consequence, this method enables construction of an
X-ray phase-contrast imaging system with compact size,
which is often a requirement in medical and nondestructive
inspection applications.

For a given X-ray detector with rectangular geometry, the
fan angle is determined by the angle given by the following
formula:

γm = 2tan−1
(
H

2D

)
, (1)

where H is the width of the detector and D is the distance
from the X-ray focal spot to the detector. Therefore, when
the source to detector distance D is very long, the divergence
of the X-ray beam is negligible, which is often the case for
synchrotron beam line experiments and inline holography
phase-contrast imaging. In this case, the beams are well
approximated as plane wave, and a parallel-beam image
reconstruction method is sufficient for image reconstruction
in DPC-CT.

However, using the new phase retrieval method by
Pfeiffer et al. [17–19], the distance D is significantly reduced
(D 160 cm in [19]). Note that the effective detector size is
limited by the size of the third grating in front of the detector,
about 6 cm in [19]. Using these parameters, the fan angle γm
in [19] can be estimated as

γm = 2tan−1
(
H

2D

)
∼ 2◦. (2)

In this case, the parallel-beam approximation is still accept-
able (see Section 4.2). Thus, the well-known parallel-beam
image reconstruction method [20] can be adapted to recon-
struct DPC-CT images [18, 21, 22].

When a larger image object is scanned with the same
detector-to-source distance D, the fan angle γm is increased
and the parallel-beam approximation becomes less accurate.
When the fan angle is increases beyond 5◦, the divergent
nature of the data acquisition system is no longer negligible
(see Section 4.2). For example, if the size of the image object
is doubled in the above estimation, the fan angle is nearly
5◦. For larger objects, a divergent beam image reconstruction
algorithm would be desirable for this new DPC-CT data
acquisition method. In this paper, we present an image
reconstruction formula for fan-beam DPC-CT which can be
utilized to accurately reconstruct DPC-CT images at any fan
angle provided that the data is acquired within the angular
range of 180◦ plus fan angle.

2. Derivation of the Fan-Beam Image
Reconstruction algorithm

In general, the experimental results should be explained
by wave optics. However, for convenience, an effective
geometrical model is utilized in this paper to develop the
image reconstruction algorithm.
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Figure 1: A geometric model of the parallel-beam data acquisition
model.

y

S(R cos t,R sin t)

R
t

D

x

Θ(t,u)

u
o

Figure 2: Geometrical model for fan-beam DPC-CT data acquisi-
tion. R is the radius of the source trajectory, and D is source-to-
detector distance.

2.1. Brief Review of the Parallel-Beam
Reconstruction of the Differential
Phase-Contrast X-Ray CT

As explained by Pfeiffer et al. [18], the fundamental idea in
differential phase retrieval is to locally measure the angular
change Θ(ρ, θ) of the incident X-ray beam (Figure 1). Here,
the measured data is labeled by the distance ρ, which is
measured from the origin of the coordinate system to the
incident ray direction and the angle θ, which specifies the
direction of the incident ray.

The quantity Θ(ρ, θ) is related to the local gradient of the
object’s phase shift can be written as follows [15, 23]:

Θ(ρ, θ) = ∂

∂ρ

∫
l
dlδ(x, y), (3)

where δ(x, y) is the decrement of the real part of the object’s
refractive index, n = 1−δ+ iβ. The letter l labels the incident
ray; therefore, the above line integral is performed along the
incident ray direction. Note that the integral in (3) is simply
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Figure 3: Reconstruction results for a fan-beam full scan. (a): Reconstructed image. (b), (c), and (d) Image intensity plots corresponding
to lines 1, 2, and 3, respectively. The solid line represents the reconstructed image, and the dashed line represents the ground truth. The
abscissas of (b), (c), and (d) are normalized to 0.35 m.

the Radon transform Rδ(ρ, θ) of the target function δ(x, y).
Thus, (3) can be rewritten as

Θ(ρ, θ) = ∂

∂ρ
Rδ(ρ, θ). (4)

After a Fourier transform with respect to the variable ρ, (4)
is recast into the following form:

Θ̃(ω, θ) = −i2πωR̃δ(ω, θ). (5)

Using the inverse Radon transform in Fourier space, one
can easily obtain the following image reconstruction formula
[19, 21, 22]:

δ(x, y)= 1
2π2

∫ π
0
dθ
∫ +∞

−∞
dω
[
iπsgn(ω)

]
Θ̃(ω, θ)ei2πω(xcos θ+y sin θ).

(6)

Therefore, after the data are acquired from view angles in the
angular range [0, π], a one-dimensional Fourier transform
is performed with respect to the Radon distance ρ to obtain
Θ̃(ω, θ). A filtering kernel iπsgn(ω) is used to filter the data.
Finally, an integral over the view angles is performed to
reconstruct images.

2.2. Effective Fan-Beam Data Acquisition for
Differential Phase Retrieval Method

Note that the image reconstruction formula (6), used by
Pfeiffer et al. [19], makes sense only when the acquired data
are written in terms of the Radon distance ρ and the view
angle θ. Namely, it is only convenient for the parallel-beam
data acquisition geometry.
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For the effective fan-beam data acquisition geometry as
shown in Figure 2, the X-ray tube and detector are assumed
to rotate around the image object along a circle with radius
R and source-to-detector distance D. The acquired data are
naturally labeled by the angular position, t, of the X-ray
focal spot and the detector position which is labeled by a
projection distance u. We refer to this measured data as
Θ(t,u) in this paper. The half width of the detector is um,
which implies that the fan angle γm = 2tan−1(um/D).

For fan-beam data, one way to reconstruct an image is
to rebin the acquired data into parallel-beam projection data
and then utilize (7) to reconstruct the image. In this paper, we
develop new image reconstruction formulae which directly
reconstruct images from the acquired data Θ(t,u) without
requiring the rebinning step.

2.3. Fan-Beam Reconstruction Formula for
Full Scan Case

In order to directly reconstruct the image without the
rebinning step, we rewrite (6) in the real domain by taking
the inverse Fourier transform:

δ(x, y) = 1
4π2

∫ 2π

0
dθ
∫ +∞

−∞
dρ

1
xcosθ + y sin θ − ρ Θ(ρ, θ).

(7)

This formula can simply be derived by noting that the
product in Fourier space is a convolution in real domain.
This formula dictates how each individual projection datum
Θ(ρ, θ) contributes to the final image. Note that we have
extended the integral limit from [0, π] to [0, 2π] and intro-
duced an extra factor of 1/2 to account for the redundancy.

We next derive image reconstruction formulae for the
fan-beam data acquisition geometry. Each individual pro-
jection datum Θ(t,u) can also be relabeled in terms of the
Radon distance ρ and angle θ by the following nonlinear
coordinate transforms:

ρ = −Ru√
u2 +D2

,

θ = π

2
+ t + arctan

u

D
.

(8)

This transform introduces an extra Jacobian factor:

dρ dθ = RD2

(
u2 +D2

)3/2 du dt,

xcosθ + y sin θ − ρ = L(x, y; t)√
u2 +D2

[
u−U(x, y; t)

]
,

(9)

where the functions L(x, y; t) and U(x, y; t) are given by

L(x, y; t) = R− xcos t − y sin t,

U(x, y; t) = D
x sin t − ycos t

R− xcos t − y sin t
.

(10)

Therefore, (7) can now be written as

δ(x, y) = 1
4π2

∫ 2π

0
dt

R

L(x, y; t)
F
[
t,U(x, y)

]
, (11)

where the filtered function F[t,U(x, y)] is given by

F(t,U) =
∫ +∞

−∞
du

1
u−UΘ(t,u). (12)

In this equation, the preweighted projection data Θ(t,u) is
defined as

Θ(t,u) = D2

u2 +D2
Θ(t,u). (13)

Equations (11)–(13) are the main results of the paper.
They give a direct image reconstruction from the measured
projection data Θ(t,u). The algorithm for fan-beam DPC-
CT is summarized in the following steps:

(1) preweight the acquired projection data using (13);

(2) filter the preweighted data using the Hilbert filtering
kernel in (12);

(3) back-project the filtered data to reconstruct an image
using (11).

Note that these formulae require that the data are
acquired along a full circle. This is referred to as the full scan
data acquisition mode. In the next subsection, we extend
the above result to the short scan case, where the data are
acquired from less than a full circle.

2.4. Fan-Beam Reconstruction Formula for
Short Scan Case

In absorption X-ray CT, it has been proven that the data are
sufficient to reconstruct the entire image object when the
angular range is greater than 180◦ + fan angle, where the fan
angle is defined as the entire angle subtended by the detector
from the source position. The same condition is also true
for differential phase-contrast CT, we refer to this case as the
short scan mode. When the short scan data acquisition mode
is utilized, some incident rays will have a conjugate ray, while
others will be measured only once. Therefore, a weighting
function is needed for the redundantly measured data. It is
not difficult to convince oneself that the following two data
points should be considered as the same:

(t,u) ⇐⇒
(
t′ = t + π − 2 arctan

(
u

D

)
,u′ = −u

)
. (14)

Thus, similar to absorption CT [24], the following weighting
function can be utilized to weight the data before the filtering
step:

W(t,u) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

sin2
(
π

2
t

γm − 2γ

)
, t ∈ [0, γm − 2γ

)
,

1, t ∈ [γm − 2γ,π − 2γ
)
,

sin2
(
π

2
π − t + γm
γm + 2γ

)
, t ∈ [π − 2γ,π + γm

]
,

(15)

where the variable γ is defined as γ = arctan(u/D). Thus,
by incorporating the normalized weighting function W(t,u)
into (13), the preweighted projection data become

Θ(t,u) =W(t,u)
D2

u2 +D2
Θ(t,u). (16)
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Figure 4: Numerical results for short scan data acquisition mode. (a) Reconstructed image. (b), (c), and (d) Image intensity plots
corresponding to lines 1, 2 and 3, respectively. The solid line represents the reconstructed image, and the dashed line represents the ground
truth. The abscissas of (b), (c), and (d) are normalized to 0.35 m.

The image reconstruction formulae (11)–(13) together with
(16) can be used to reconstruct the image.

3. Numerical Simulations and Results

In order to validate both the full scan and short scan DPC-
CT reconstruction formulae derived in this paper, numerical
simulations were conducted using the fan-beam data acqui-
sition geometry as shown in Figure 2. The mathematical
phantom consisted of a uniform elliptical disk and two
uniform circular disks. The projection data were numerically
generated using Snell’s law [23]. The radius of the circular
disks was 0.07 m. The semimajor axis and semiminor axis
of the elliptical disk were 0.35 m and 0.175 m, respectively.

The decrement of the real part of the refractive index was
assumed to be 1.0 × 10−6 and 0.5 × 10−6 for the circular
and elliptical disks, respectively. The radius of the source
trajectory R was assumed to be 1.4 m. The distance from
the source to the detector D was selected to be 2.1 m. The
sampling rate of the view angle was Δt = 0.5◦. The detector
was assumed to be collinear, with total width of 1.13 m.
The detector sampling rate Δu was 1.13 m/600 ≈ 2 mm. The
image matrices were 256× 256.

3.1. Full Scan Data Acquisition Mode

A fan angle of 30◦ was used in order to cover the entire image
object. The view angle sampling range was [0◦, 360◦]. The
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Figure 5: The reconstruction result for angular range less than a short scan. Figure 6(a) is the reconstructed image. Figures (b), (c), and (d)
are profile plots corresponding to lines 1, 2, and 3, respectively, in Figure 6(a). The solid line represents the reconstructed image, and the
dashed line represents the ground truth. The abscissas of (b), (c), and (d) are normalized to 0.35 m.

results are presented in Figure 3. From Figure 3(a) and the
corresponding image intensity plots, it is evident that the
image was accurately reconstructed using the new algorithm.

3.2. Short Scan Data Acquisition Mode

In the short scan mode, all parameters stay the same as
the full scan mode with the following exceptions: (1) the
decrement of the real part of the refractive index of the
circular objects is changed to 0, and (2) the angular range
of the data acquisition is reduced from 360◦ to 210◦, which
is sufficient for reconstruction according to X-ray absorption
CT image reconstruction theory [20]. The numerical results
are presented in Figure 4. Again, the image is faithfully

reconstructed with very high accuracy as indicated in image
intensity plots.

3.3. Super Short Scan Data Acquisition Mode

In this subsection, we numerically demonstrate that the
angular range for data acquisition should be at least π + fan
angle for the presented new algorithm. When the scanning
angular range is shorter than that, significant image artifacts
may occur. In numerical simulations, all of the parameters
are the same as the short scan case except that the source
angle is reduced to from 210◦ to 180◦, which is less than a
short scan. As shown in Figure 5, image artifacts appear in
the reconstructed image, and signal drop is clearly observed



X-Ray Optics and Instrumentation 7

in image intensity plots. This numerical experiment also
indicates that the short scan angular range is necessary for
the presented fan-beam DPC-CT reconstruction.

4. Discussion

In this section, several aspects of the newly developed image
reconstruction algorithm will be discussed. First, fan-beam
DPC-CT image reconstruction and fan-beam absorption CT
image reconstruction algorithms are compared. Next, the
differences between the fan-beam and known parallel-beam
reconstruction algorithms are discussed. Finally, the angular
range requirements for fan-beam DPC-CT data acquisition
are examined.

4.1. Comparison with Fan-Beam Absorption CT
Image Reconstruction Algorithm

In this paper, the fan-beam image reconstruction algo-
rithm was derived using a collinear detector geometry.
It is easy to change to the curved detector case using
the relation γ = arctan(u/D). For absorption CT, fan-
beam image reconstruction algorithms have been derived
for both full and short scan cases [20]. The DPC-CT fan-
beam image reconstruction algorithm is different from its
absorption counterpart in three ways. First, in DPC-CT, the
preweighting factor is D2/(D2 + u2). For absorption CT, the
preweighting factor is a square root, that is,

√
D2/(D2 + u2) =

D/
√
D2 + u2. Second, the distance weighting function in the

backprojection step in DPC-CT is R/L(x, y; t). While for
absorption CT, the weighting function is R2/L2(x, y; t), the
square of the DPC-CT expression. Finally, the filtering kernel
for DPC-CT image reconstruction is a Hilbert filter, whereas
a ramp filter is used in absorption CT image reconstruction.

4.2. Parallel-Beam Approximation

When the source to detector distance is much larger than
the size of the image object, one can expect that the
difference between the parallel-beam and fan-beam image
reconstruction methods is negligible. The numerical results
demonstrate that when the fan angle is smaller than 5◦,
the parallel-beam approximation is valid, and parallel-beam
image reconstruction can be utilized to reconstruct DPC-CT
images. However, for larger fan angles, a fan-beam image
reconstruction algorithm, such as the one presented in this
paper, is needed for an accurate image reconstruction.

In the first numerical experiment, we applied the
parallel-beam reconstruction algorithm [19, 21, 22] to the
case of a 30◦ fan angle, the same angle used in the reconstruc-
tion presented in Figure 3. The parallel-beam reconstruction
algorithm generates significant image artifacts as shown in
Figure 6(a). In the second numerical experiment, the radius
of the source trajectory is increased to 4 m and the fan angle
of the divergent beam is reduced to 10◦ in order to cover the
entire image object.

As shown in Figure 6(b), the image quality is improved
comparing with Figure 6(a), but blurring still exists at the

(a) (b)

(c) (d)

Figure 6: The parallel-beam reconstruction result for fan-beam
projection data. (a), (b), (c), and (d) correspond to fan angles 30◦,
10◦, 5◦, and 2.5◦, respectively.

boundaries. When the source to detector distance increases
such that the fan angle is reduced to 5◦, as shown in
Figure 6(c), the image artifacts become increasingly negli-
gible, indicating that the parallel beam approximation is
becoming more acceptable. In the last numerical experiment,
the fan angle of the divergent beam is reduced to 2.5◦ for
the same image object. In this case, as shown in Figure 6(d),
the parallel-beam reconstruction method is sufficient to
reconstruct DPC-CT images. Using the experimental data
presented in [19], the fan angle can be estimated to be
less than 2.5◦. Thus, parallel-beam reconstruction would be
sufficient to reconstruct near artifact-free DPC-CT images
[19].

5. Conclusions

In this paper, an image reconstruction formula for fan-
beam DPC-CT was derived and validated using numerical
simulations. It has been demonstrated that when the image
object is relatively large, the fan angle must increase to cover
the entire image object, and a parallel-beam approximation
cannot be directly applied to reconstruct images. In this case,
the fan-beam image reconstruction formula presented in this
paper can be directly applied to accurately reconstruct DPC-
CT images. The presented image reconstruction formula is
also useful for other DPC-CT imaging method [18] provided
that the divergent beam data acquisition geometry is utilized.

As a final remark, as shown in Figure 5, one limitation
of the presented algorithm in this paper is that the data
acquisition angular range must be longer than π + fan
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angle. Otherwise, significant image artifacts are observable in
the reconstructed image. In order to enable accurate image
reconstruction when the angular range is shorter than π +
fan angle, some other new image reconstruction must be
developed [25, 26]. Note that it is straightforward to extend
the fan-beam reconstruction algorithms such as the one
presented in this paper and others [25, 26] to cone-beam data
acquisition systems using the so-called FDK approximation
[27], where the only change is to replace the fan-beam data
by the projected cone-beam data, that is, the multiplication
of cone-beam data and a cosine weighting factor.

Acknowledgments

The authors would like to thank Nicholas Bevins and Joseph
Zambelli for editorial assistance in editing this paper. This
work is partially supported by the National Institutes of
Health through the Grant: R01EB 005712.

References

[1] U. Bonse and M. Hart, “An X-ray interferometer,” Applied
Physics Letters, vol. 6, no. 8, pp. 155–156, 1965.

[2] A. Momose, T. Takeda, Y. Itai, and K. Hirano, “Phase-contrast
X-ray computed tomography for observing biological soft
tissues,” Nature Medicine, vol. 2, no. 4, pp. 473–475, 1996.

[3] T. J. Davis, D. Gao, T. E. Gureyev, A. W. Stevenson, and
S. W. Wilkins, “Phase-contrast imaging of weakly absorbing
materials using hard X-rays,” Nature, vol. 373, no. 6515, pp.
595–598, 1996.

[4] D. Chapman, W. Thomlinson, R. E. Johnston, et al., “Diffrac-
tion enhanced X-ray imaging,” Physics in Medicine and
Biology, vol. 42, no. 11, pp. 2015–2025, 1997.

[5] S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W.
Steveson, “Phase-contrast imaging using polychromatic hard
X-rays,” Nature, vol. 383, no. 6607, pp. 335–338, 1996.

[6] K. A. Nugent, T. E. Gureyev, D. F. Cookson, D. Pagnin, and
Z. Barnea, “Quantitative phase imaging using hard X-rays,”
Physical Review Letters, vol. 77, no. 14, pp. 2961–2964, 1996.

[7] P. Cloetens, W. Ludwig, J. Baruchel, et al., “Holotomography:
quantitative phase tomography with micrometer resolution
using hard synchrotron radiation X-rays,” Applied Physics
Letters, vol. 75, no. 19, pp. 2912–2914, 1999.
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