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We present investigation of gene expression profiles by means of singular spectrum analysis (SSA). The biological problem under
investigation is the decomposition of bicoid protein profiles of Drosophila melanogaster into the sum of a signal and noise, where
the former consists of an exponential-in-distance pattern and is close to constant nonspecific component, or “background.” The
signal processing problems addressed are (i) trend extraction from a noisy signal, (ii) batch processing of similar data, and (iii)
analytical approximation of the signal components by the sum of exponential and constant-like functions. The proposed methods
are evaluated on the given 17 series.
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1. INTRODUCTION

Singular spectrum analysis is a method intended to perform
decomposition of a sequence of measurements (usually a
time series) into a sum of interpretable components, such
as a trend, cycles, and noise [1]. SSA is recognized in geo-
sciences, and is giving promising results in other areas (see
http://www.math.uni-bremen.de/∼theodore/ssawiki/). This
work presents the use of SSA for signal extraction from
spatial one-dimensional gene expression data. SSA was
chosen as a compromise between parametric methods like
regression, which can lead to wrong results if the model is
not valid, and frequency methods like filtering.

The study of the activity of diverse genes has become
one of key approaches in modern functional genomics, and
is crucial for our understanding of embryo development.
The expression of genes is traced either in time or in
space (as in our case), along different tissues and organs or
even a whole embryo. The research of gene expression is
aimed at biomedical problems, but first it is systematically
tested and developed on so-called model organisms. D.
melanogaster (fruit fly) is one such organism, and the gene
ensemble governing early events of fly embryo segmentation
is one of the best studied genetic networks. This network

of cross-regulating genes makes complicated patterns of
their products, the segmentation factors. These patterns are
directing the embryo developmental processes. Exponential-
in-distance patterns are common at the very beginning of
segmentation, and the primary morphogenetic gradient of
the protein bicoid is most known and best studied [2, 3].

The biological problem under investigation is extraction
of a signal from the noisy bicoid protein profile. Following
[2], we assume bicoid to generate exponential pattern. The
measured protein profile contains also the smooth residual
referred to as “background” [4] and the measurement noise.
In general, the form of the background is still an open
question [2–4]. Moreover, it includes an unknown additive
function depending on the confocal microscopy settings
used. In this paper, we extend the model of [2], allowing
the background to differ from constant. The problem is
complicated by the fact that (i) the data contain outliers and
(ii) that the data are very noisy and the noise has unknown
structure. Although the noise appears to be multiplicative,
the carried out study showed that it is true in very rough
approximation only.

The SSA features demonstrated are as follows: (i) sig-
nal extraction with no parametric models of signal/noise
specified; (ii) robustness to outliers; (iii) taking into account
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a parametric model of signal, if specified; (iv) interactive
analysis with control over quality of separation of signal and
noise; (v) batch processing of a set of similar series; (vi)
derivation of an analytical formula of the signal.

Section 2 introduces the data, SSA, and the related
methods used. The results of data processing are presented
in Section 3. Finally, the conclusions are provided.

2. METHODS AND APPROACHES

Biological data

Expression level of protein in wild-type fruit fly embryos (D.
melanogaster, Oregon-R), was measured using fluorescently
tagged antibodies. For each embryo, a 1024 × 1024 pixel
image with 8 bits of fluorescence data was obtained. Image
processing transforms each image into an ASCII table
containing a series of records (fluorescence intensity), one
for each nucleus. About 1100–1300 nuclei are obtained from
each image. Each nucleus is characterized by a unique identi-
fication number, the anteroposterior (AP) and dorsoventral
(DV) coordinates of its centroid, and the average fluores-
cence level of the gene product. Because the expression of
segmentation genes is largely a function of position along the
AP axis, it is natural to use the AP profiles of gene expression.
We use straightened data from a rectangle of 50% of the DV
height of the embryo, centred on the AP axis; for details see
[2]. This captures approximately 700–800 nuclei. As in [2],
we investigate only the interval of the AP coordinate between
20 and 80% egg lengths (%EL). For examples of plotting
nuclear intensity versus AP position, see Figures 1(a) and
1(c). The considered test set consists of 17 embryo images
belonging to cleavage cycle 13 and thoroughly studied in
[2]. The data and software used in this study are available
at http://www.math.uni-bremen.de/∼theodore/GENESSA/.
For a description of the embryos, see [5], http://flyex.ams
.sunysb.edu/FlyEx/, or http://urchin.spbcas.ru/flyex/.

SSA

Let us describe the basic algorithm of SSA for extraction of
signal from a one-dimensional series F = ( f0, . . . , fN−1). For
the given data, fn represents the intensity measured at the
nth nucleus inside the considered interval of 20%EL–80%EL.
The first step of SSA has only the parameter L and the window
length, 1 < L < N , and consists of the construction of
the Hankel matrix of size L × K , K = N − L + 1, with
column vectors Xj = ( f j−1, . . . , f j+L−2)T, j = 1, . . . ,K , which
is called the trajectory matrix. Note that there is a one-to-one
relation between series of length N and Hankel matrices of
size L × K ; each secondary diagonal of a Hankel matrix has
equal values and produces a term of the series. The trajectory
matrix is then decomposed into the sum of the ordered
elementary matrices, X = ∑d

i=1Xi, where Xi =
√
λiUiV

T
i , λi

are nonzero eigenvalues of XXT in decreasing order, Ui are
the corresponding eigenvectors, and Vi are the factor vectors.
This is the so-called singular value decomposition (SVD), and
each SVD component generates an elementary reconstructed
component (elementary RC) of the series F as follows. The

matrix Xi is hankelized by averaging the entries with indices
i + j = const, and the corresponding series of length N is
reconstructed by the above-mentioned one-to-one relation.
Thus, we decompose F into the sum of elementary RCs, F =
F̃1 + · · · + F̃d, where d is the number of nonzero eigenvalues
λi (the so-called SSA rank of F). Then, we choose a group J
of r indices of the desirable components of F (signal in our
case), and gather the reconstructed signal as F̃ =∑i∈JF̃i.

The signal extraction problem is thus reduced to (i)
choice of window length L and (ii) selection of the subgroup
J of SVD components for reconstruction. These questions
are briefly discussed in the next paragraph.

Trend extraction in SSA

SSA needs no a priori specification of models of series and
signals, neither deterministic nor stochastic ones. In this
paper, we are interested in extraction of a slowly varying
signal, usually called the trend. Hereinafter, we refer to trend
instead of signal.

Generally, SSA is able to extract different kinds of trends.
Note that any trend can be approximated by a finite-rank
series as the class of finite-rank series includes all kinds
of sums of products of polynomials, exponentials, and
sinusoids. Let us assume that the trend is (or is approximated
by) a series of rank r. With large enough N and L (L ≤
N/2), the trend is separable from noise and is reconstructed
by the r-leading SVD components. The subspace spanned
by the r-corresponding eigenvectors contains information
about the finite-rank structure and, in particular, allows to
derive the approximate analytical formula of the trend. If N
is not large enough (for strong noise or high rank r) and
separability is bad, then the trend still can be extracted using
small L. In this case, trend is determined by a few leading
components, and SSA works like a smoothing adaptive linear
filter. However, the subspace spanned by the corresponding
eigenvectors does not reflect the finite-rank structure of the
trend and is liable to be affected by noise and outliers.

Grouping of SVD components is based on the fact
that the slowly varying component of the series generates
eigenvectors and factor vectors of slowly varying form [1, 6],
and therefore is composed of similar elementary RCs. Thus,
the identification of the components of a trend consists
in identification (visual or automatic) of slowly varying
eigenvectors, factor vectors, or elementary RCs.

AutoSSA for trend extraction

Here we present a method of identification of slowly varying
eigenvectors. This method is easy to use as it has only two
parameters (if the window length is fixed).

Firstly, we introduce the periodogram IY (ω) of a
vector Y ∈ RM , Y = (y0, . . . , yM−1)T: IY (k/M) =
(1/M)|∑M−1

n=0 e
−i2πnk/M yn|2, k = 0, . . . , �M/2�, which can

be interpreted as the contribution of the frequency k/M.
The cumulative contribution is evaluated as πY (ω) =∑

k:0≤k/M≤ωIY (k/M), ω ∈ [0, 0.5]. For ω0 ∈ (0, 0.5), the
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contribution of low frequencies to Y ∈ RM is defined as
C(Y ,ω0) = πY (ω0)/πY (0.5).

Let us consider eigenvectors Ui. Then, given ω0 ∈
(0, 0.5) and C0 ∈ [0, 1], we select SVD components with
eigenvectors satisfying C(Ui,ω0) ≥ C0. One may interpret
this method as selection of SVD components characterized
mostly by low-frequency fluctuations.

The low-frequency boundary ω0 manages the scale of
the extracted trend; the lower ω0 is, the slower the trend
varies. The parameter C0 regulates an acceptable share of
higher frequencies in the extracted component, and is usually
chosen close to 1. For more details on selecting ω0 and for
description of a fitting procedure to choose C0, see [6].

Derivation of the analytical form of a component

A series consisting of a sum of exponentials and sinusoids
has SSA-rank r, and is represented in the complex-valued
form as gn =

∑r
j=1Cjμ

n
j . The subspace spanned by the r-

leading eigenvectors of the trajectory matrix determines the
values μj . The methods calculating μj through this subspace
are called the subspace methods. Real-valued μj correspond
to exponential components; complex conjugate μj generate
sinusoids. For a noisy signal, the subspace of the signal can be
estimated using SSA as the space spanned by the eigenvectors
{Ui}i∈J . Subspace methods for calculation of exponentials μj

(mostly complex-valued) have been known for a long time.
Among their advantages are (i) high resolution (estimation
of close frequencies of summand sinusoids), (ii) robustness
to outliers, and (iii) little prior information (no signal model
specified, only its rank r).

In this paper, we use the method ESPRIT [7], which
was chosen to illustrate application of subspace methods.
Note that there are modifications of ESPRIT for more precise
results, for example, weighted/total least-squares ESPRIT.
Having μj estimated, the coefficients Ci can be computed
by means of one of the least-squares methods. In terms of
SSA, ESPRIT exploits the rotational invariance property of
the subspace of the signal found by SSA.

3. RESULTS AND DISCUSSION

3.1. Methodology

An ideal case (trend is separable from noise with L = N/2)

Let us consider the data ms19 (data from a single embryo)
as an example (see Figure 1(a)). The only parameter of SSA
is the window length L. SSA theory [1] implies that for
better separability between components of a given series,
one should choose L close to the half-length N/2. Having
performed SVD with L = 246 ≈ N/2, we visually examine
the elementary RCs produced (see Figure 1(b)). As only the
two leading elementary RCs vary slowly, we reconstruct the
trend with the two leading SVD components. The resulting
trend is depicted in Figure 1(a). One can easily see that the
result reasonably reconstructs the trend, but at the same time
is robust to the apparent outliers.
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Figure 1: (a),(b) ms19; (c),(d) ac2; (a),(c) original data with SSA
trend; (b),(d) elementary RCs produced with L = N/2.

A bad case (trend is not separable from noise with L = N/2)

However, for some cases the trend cannot be separated from
noise or cyclic components. For the data ac2 (see Figure 1(c))
with L = 285 = N/2, the third and fourth elementary
RCs contain both trend and noise (see Figure 1(d)). The
contribution of these SVD components is small and they
can be omitted for a tentative trend reconstruction. But for
background estimation, loss of even 1-2 intensity units is
sizeable. Let us consider two additional tricks which help to
reconstruct trend more precisely.

Use of small window length

The trend and noise components can be mixed between each
other due to the complicated trend shape or strong noise,
and the latter is observed in our study. The first strategy to
cope with the mixing is to choose small window length L.
With small L, SSA works like a smoothing adaptive linear
filter. With L = 35 for ac2, we get only the one leading
SVD component corresponding to the trend. Due to small
window length, this SVD component includes all terms of the
trend. This method is suitable for different kinds of signals,
and overcomes the mixing of trend and noise. However, the
resultant decomposition does not allow us to split the trend
into the pattern and background.
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Figure 2: ac2: (a) initial series and its ESPRIT-approximation
of trend; (b) trend components—exponential pattern and back-
ground.

Improvement of separability by the addition of a constant

Recall that we suppose the trend to be the sum of an
exponential pattern and an almost constant background,
where the latter is approximated by an exponential function
with small rate. Then, in this particular case another
trend extraction strategy can be exploited. Such a trend
generates two SVD components [1]. In order to enlarge the
contribution of the second SVD component and therefore
to reduce mixture with the rest, we add a constant to the
given data, thus artificially increasing the background. After
that we use the theoretically best window length L = N/2
with no effect of mixing. This strategy greatly helps; having
added A = 50 to the given data, the results for ac2 (with
L = 285) become visually the same as in the good case ms19
depicted in Figure 1(b). The value A equal to 50 was chosen
to provide separability for all series from the considered test
set and therefore to allow us to extract trends being split into
patterns and backgrounds. As for ms19, smaller values of A
that are enough for separability can be used.

3.2. Batch identification of trend components

Above we investigated the properties of the SSA represen-
tation of bicoid gene expression data, which contain the
exponential pattern and a close-to-constant background. Let
us apply AutoSSA for batch-processing the whole dataset
taking into account the experience of the previous section.
First, we set the parameter ω0. As mentioned above, ω0

defines the low-frequency interval [0,ω0]. Examining the
eigenvector periodogram, we can guess ω0 as a value
bounding the interval of large periodogram values next to
the zero frequency. Taking the data ms19 as an example,
we consider periodograms of its eigenvectors (L = N/2).
Exactly the two leading SVD components of ms19 are to
be identified. The first six frequencies 0, 1/L, . . . , 5/L of the
periodograms of both eigenvectors contain the prevailing
contribution. Thus, we select ω0 = 5/L. For five randomly
selected test series (ad36, as27, cb23, hx8, iz13), the procedure
of choice of C0 presented in [6] (Cmin = 0.5, Cmax =
1, ΔC = 0.01, ΔR = 0.01) produces the following C0:
0.85,0.87,0.88,0.85,0.88 of which the smallest C0 = 0.85 is
selected. AutoSSA with ω0 = 5/L and C0 = 0.85 identifies
the same SVD components as those visually identified above;
two leading SVD components for ms19 (L = N/2) and for ac2
increased by A = 50 (L = N/2), as well as only the leading
component for ac2 with L = 35.

Having added A = 50 to all series from the given
set, AutoSSA identifies exactly the two leading components.
The visual check of the identified eigenvectors proves their
slowly varying shape; this substantiates the use of AutoSSA,
especially for these data where addition of a constant
has enhanced the separability. Moreover, this uniformity
of results over the whole dataset allows us to derive the
analytical approximation using these SVD components.

3.3. Analytical trend approximation: exponential
pattern plus background

Let us consider two-rank approximation of the trend. A two-
rank series is either an exponentially modulated sinusoid or
a sum of two real exponentials [1], and a constant function
is a special case of an exponential. Note that we specify
no approximation model (from the two given above) but
only the rank. For the data ac2, the resulting formula for
the trend is gn = 79.29 · 0.994n + (59.88 · 0.9998n − 50),
where n runs through the nucleus numbers in the considered
AP interval. After transformation from nucleus number n
to AP coordinate x, we obtain the approximation for the
exponential pattern p(x) and the background b(x): p(x) =
302.35e−0.062x and b(x) = 11.7− 0.0865x (see Figure 2).

3.4. Summary results of the analytical approximation

The considered dataset contains 17 series, and we extracted
exponential patterns using ESPRIT for all of them, increased
by A = 50 in advance. The fact that the patterns tend to
zero close to the posterior end is confirmed by the biological
interpretation of the bicoid gradient. To generate reference
results, we fitted the curve gn = CeLn + B to each original
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series using the least-squares (LSs) method, like [2]. The
patterns produced with ESPRIT and with LS-fitting are very
similar, which confirms potential of ESPRIT in extracting
exponential patterns without fixing the model of constant
background. Both the MATLAB function fminsearch (v.7.4)
and the nonlinear estimation module of STATISTICA (v.6.0)
with randomly chosen initial values produce substantially
incorrect results. Thus, the initial values used are crucial.
It turns out that by using ESPRIT estimates of C, L, and
B = 1 as the initial values, the procedure of the LS-estimation
becomes stable and precise. This shows the usefulness of
ESPRIT in combination with LS-methods.

The SSA-based procedure presented here is more flex-
ible than the usual bicoid profile modeling with constant
background. On the other hand, as simultaneous estimation
of parameters of two exponents is less stable in general,
the variation of the resulting pattern parameters can be
potentially larger than that in the model with a constant
background. However, even for modeling with fixed shape of
the background, SSA can be useful for setting initial values of
the corresponding fitting procedure.

4. CONCLUSIONS

First, we developed the SSA-based technique for signal
extraction from one-dimensional spatial gene expression
profiles containing exponential-in-distance patterns and
constant-like backgrounds. The obtained results are con-
sistent with the state-of-the-art results for the given data,
though the data contain strong noise and outliers, and we do
not assume models of profile, pattern, and background to be
known a priori. Moreover, the feasibility of batch processing
of the given data using AutoSSA is demonstrated.

Second, using the SSA-related method ESPRIT, we
obtained an analytical representation of the signal as a sum
of two exponential functions. The first is the well-known
exponential pattern of the bicoid protein, and the second is
the background approximated by an exponential or linear
function in our case. The employed method produces stable
parameter estimates, even for noisy series. Moreover, these
estimates can be used as initial values for nonlinear least-
squares fitting procedures in which the model is assumed a
priori.
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