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The cone beam transform of a tensor field of order m in n ≥ 2 dimensions is considered. We prove that the image of a tensor
field under this transform is related to a derivative of the n-dimensional Radon transform applied to a projection of the tensor
field. Actually the relation we show reduces for m = 0 and n = 3 to the well-known formula of Grangeat. In that sense, the
paper contains a generalization of Grangeat’s formula to arbitrary tensor fields in any dimension. We further briefly explain the
importance of that formula for the problem of tensor field tomography. Unfortunately, for m > 0, an inversion method cannot
be derived immediately. Thus, we point out the possibility to calculate reconstruction kernels for the cone beam transform using
Grangeat’s formula.
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1. INTRODUCTION

The cone beam transform for a symmetric covariant tensor
field f of order m reads as

Df(a,ω) =
∫∞

0

〈
f(a + tω),ωm

〉
dt, (1)

where a is the source of an X-ray, ω ∈ Sn−1 is a direction, and
ωm denotes the m-fold tensor product ωm = ω ⊗ · · · ⊗ ω.
If m = 0, this is the classical X-ray transform of functions
which represents the mathematical model for the cone beam
geometry in computerized tomography. For m = 1, the op-
erator D is the longitudinal X-ray transform of vector fields.
A lot of numerical algorithms have been developed in recent
years to solve the inverse problem Df = g in case m = 0 and
m = 1; see, for example, Louis [1], Katsevich [2], Schuster
[3], Derevtsov and Kashina [4], Sparr et al. [5] among oth-
ers. But also for tensor fields of orderm > 1, this transform is
of interest in various applications such as photoelasticity and
plasma physics. Solution approaches for the tensor tomogra-
phy problem are found in Derevtsov [6], and Kazantsev and
Bukhgeim [7]. A further important transform in computer-
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ized tomography is given by the Radon transform

R f (s,ω) =
∫
ω⊥

f (sω + y)dy, s ∈ R, (2)

which maps a scalar function to its integrals over hyper-
planes.

An important connection between D and R is given by
the formula of Grangeat:

∂

∂s
R f
(
ω, s = 〈a,ω〉) = −

∫
S2

D f (a, θ)δ′
(〈θ,ω〉)dθ, (3)

which is valid for differentiable scalar fields f with compact
support; see Grangeat [8]. In this paper, we prove a general-
ization of Grangeat’s formula to arbitrary tensor fields. More
explicitly, we show that

∂(n−2)

∂s(n−2)
R fa

(
ω, s = 〈a,ω〉)

= (−1)(n−2)
∫
Sn−1

Df(a, θ)δ(n−2)(〈θ,ω〉)dθ,

(4)

where δ is Dirac’s delta distribution and fa are projections of
the tensor field f .

In Section 2, we prove that D is a bounded linear map-
ping between suitable L2-spaces and give a representation for
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its adjoint D∗. In Section 3, we prove formula (4) using a du-
ality argument for D and R. We finish this paper by pointing
out the importance of this result for research in the area of
tensor field tomography.

2. THE CONE BEAM TRANSFORM OF TENSOR FIELDS

We consider the Euclidean space Rn. A covariant tensor of
order m in Rn is given by

f = fi1···imdx
i1 ⊗ · · · ⊗ dxim , x ∈ Rn, (5)

where fi1···im ∈ R, 1 ≤ i j ≤ n for j = 1, . . . ,m and dxi,
i = 1, . . . ,n, is the basis of covectors in (Rn)∗,

dxi(v) = vi, i = 1, . . . ,n, v ∈ Rn. (6)

As in (5), we use Einstein’s summation convention through-
out the paper, that means we sum up over equal indices. A
tensor (5) of order m is symmetric if

fiσ(1)···iσ(m) = fi1···im , (7)

where σ runs over all m! permutations of {1, . . . ,m}. The set
of all symmetric tensors of orderm is denoted by Sm. A scalar
product on Sm is given by

〈f , g〉 = fi1···img
i1···im , f , g ∈ Sm, (8)

where gi1···im are the contravariant components of the tensor
g. We write ‖f‖ = √〈f , f〉 for the norm on Sm. If m = 1, this
is the Euclidean norm. A symmetric covariant tensor field of
order m in Rn maps a point x ∈ Rn to an element of Sm,

x 
−→ f(x) = fi1···im(x)dxi1 ⊗ · · · ⊗ dxim , x ∈ Rn, (9)

where fi1···im(x) ∈ Sm for fixed x.
Let further Ωn = {x ∈ Rn : |x| < 1} be the open unit

ball in Rn. We introduce an inner product for tensor fields
defined on Ωn by

〈f , g〉L2 =
∫
Ωn

〈
f(x), g(x)

〉
dx =

∫
Ωn

fi1···im(x)gi1···im(x)dx,

(10)

which turns L2(Ωn, Sm) := {f ∈ Sm : ‖f‖L2 = 〈f , f〉1/2
L2 < ∞}

to a Hilbert space. Assume that Γ ⊂ (Rn\Ωn) is the path rep-
resenting the curve of sources of the X-ray beams. Examples
for Γ which are used in practice are a circle, two perpendicu-
lar circles, or a helix. The cone beam transform of a symmet-
ric tensor field f of order m is then defined by

Df(a,ω) =
∫∞

0

〈
f(a + tω),ωm

〉
dt

=
∫∞

0
fi1···im(a + tω)ωi1 · · ·ωimdt,

(11)

where ω ∈ Sn−1 = ∂Ωn is the direction and a ∈ Γ the source
of the beam and ωm = ω ⊗ · · · ⊗ ω means the m-fold ten-
sor product of ω. As an arrangement, we extend f(x) = 0 in
Rn\Ωn. Hence, integrals like (11) are well defined. Finally, we
denote Daf(ω) := Df(a,ω). We note that D coincides with
the longitudinal ray transform in the book of Sharafutdinov
[9]. The operators D and Da are linear and bounded between
L2-spaces.

Theorem 1. Let a ∈ Γ. The mappings Da : L2(Ωn, Sm) →
L2(Sn−1) and D : L2(Ωn, Sm) → L2(Γ × Sn−1) are linear and
bounded if

∫
Γ

(|a| − 1
)1−n

da <∞. (12)

Proof. For f ∈ L2(Ωn, Sm) and a ∈ Γ, we have

∫
Sn−1

∣∣Daf(ω)
∣∣2

dω =
∫
Sn−1

∣∣∣∣
∫∞

0

〈
f(a + tω),ωm

〉
dt
∣∣∣∣

2

dω

≤ 2
∫
Sn−1

∫∞
0

∥∥f(a + tω)
∥∥2

dt dω

= 2
∫
Ωn

∥∥f(x)
∥∥2|x − a|1−ndx

≤ 2
(|a| − 1

)1−n‖f‖2
L2 ,

(13)

where we used the substitution x = a + tω and the fact that
f(x) = 0 in Rn\Ωn. This shows the continuity of Da. The
continuity of D follows then by using Df(a,ω) = Daf(ω) and
∫
Γ

∫
Sn−1

∣∣Df(a,ω)
∣∣2

dω da ≤ 2‖f‖2
L2

∫
Γ

(|a| − 1
)1−n

da.

(14)

Theorem 1 implies that Da and D have bounded adjoints
D∗
a and D∗.

Lemma 1. The adjoints D∗
a : L2(Sn−1) → L2(Ωn, Sm) and

D∗ : L2(Γ × Sn−1) → L2(Ωn, Sm) have the following repre-
sentations:

D∗
a g(x) = |x − a|1−n−mg

(
x − a
|x − a|

)
(x − a)m, (15)

D∗g(x) =
∫
Γ

{
|x − a|1−n−mg

(
x − a
|x − a|

)
(x − a)m

}
da.

(16)

In (15), (16), the power m again is to be understood as the m-
fold tensor product

(x − a)m = (x − a)⊗ · · · ⊗ (x − a). (17)

Proof. Let f ∈ L2(Ωn, Sm), g ∈ L2(Sn−1). Then
∫
Sn−1

Daf(ω)g(ω)dω

=
∫
Sn−1

∫∞
0
fi1···im(a + tω)ωi1 · · ·ωimg(ω)dt dω

=
∫
Ωn
|x − a|1−n fi1···im(x)

(x − a)i1 · · · (x − a)im

|x − a|m

× g
(
x − a
|x − a|

)
dx

= 〈f , D∗
a g
〉
L2 .

(18)

Here, again we substituted x = a + tω. This shows the rep-
resentation of D∗

a . Equation (16) follows easily from (15) by
an integration over Γ.
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For m = 0, n = 3, D∗ is the backprojection operator in
classical 3D cone beam tomography. If m = 1, n = 3, we
obtain the adjoint of the cone beam transform in vector field
tomography

D∗g(x) =
∫
Γ
|x − a|−3g

(
a,

x − a
|x − a|

)
(x − a)da. (19)

Remark 1. Note that the integrals (12) and (16) are well de-
fined since Γ has a positive distance from Ωn.

To prove formula (4), we will also need the adjoint of
the Radon transform. The following lemma summarizes ba-
sic results of the Radon transform (2) which can be found,
for example, in the book of Natterer [10].

Lemma 2. The transforms R : L2(Ωn) → L2([−1, 1] × Sn−1)
and Rω : L2(Ωn) → L2([−1, 1]) where Rω f (s) = R f (s,ω) are
linear and continuous with bounded adjoints R∗ : L2([−1, 1]×
Sn−1) → L2(Ωn) and R∗ω : L2([−1, 1]) → L2(Ωn) represented
by

R∗ωg(x) = g
(〈x,ω〉),

R∗g(x) =
∫
Sn−1

g
(〈x,ω〉,ω)dω. (20)

3. A CONNECTION BETWEEN RADON AND
CONE BEAM TRANSFORM

The proof of (4) essentially relies on the duality of the pairs
(Rω, R∗ω), (Da, D∗

a ) on the one side and the fact that δ(k),
where δ denotes Dirac’s delta distribution, is homogeneous
of degree −k− 1 on the other side. To see the latter property,
we take φ ∈ C∞

0 (R), λ > 0 and compute

∫
R
φ(s)δ(k)(λs)ds

= λ−1
∫
R
φ
(
λ−1s

)
δ(k)(s)ds

= λ−1(−1)k
∂k

∂sk
{
φ
(
λ−1s

)}
|s=0
= λ−k−1(−1)kφ(k)(0)

=
∫
R
φ(s)λ−k−1δ(k)(s)ds.

(21)

For a tensor field f ∈ L2(Ωn, Sm) and a ∈ Γ, we further-
more define

fa(x) = 〈f(x), |x − a|−m(x − a)m
〉

= fi1···im(x)|x − a|−m(x − a)i1 · · · (x − a)im ,

1 ≤ i j ≤ n, j = 1, . . . ,m.

(22)

Using the Cauchy-Schwartz inequality, we easily get

∫
Ωn

∣∣ fa(x)
∣∣2

dx ≤
∫
Ωn

∥∥f(x)
∥∥2

dx. (23)

Thus, fa ∈ L2(Ωn), when f ∈ L2(Ωn, Sm).
We are now able to state the main result of this paper.

Theorem 2. Let n ≥ 2 and f ∈ C(n−2)
0 (Ωn, Sm). Then

∂(n−2)

∂s(n−2)
R fa

(
ω, s = 〈a,ω〉)

= (−1)(n−2)
∫
Sn−1

Df(a, θ)δ(n−2)(〈ω, θ〉)dθ,
(24)

where a ∈ Γ, ω ∈ Sn−1.

Proof. We follow the proof of Grangeat’s classical formula as
outlined in Natterer and Wübbeling [11, Section 2.3]. For
ψ ∈ L2([−1, +1]), we have from lemma 2 that

∫ +1

−1
Rω fa(s)ψ(s)ds

=
∫
Ωn

fa(x)ψ
(〈x,ω〉)dx

=
∫
Ωn

〈
f(x), |x − a|−m(x − a)m

〉
ψ
(〈x,ω〉)dx.

(25)

Using (15), we obtain in the same way for h ∈ L2(Sn−1),
∫
Sn−1

Daf(θ)h(θ)dθ

=
∫
Ωn

〈
f(x), |x − a|1−n−m(x − a)m

〉
h
(
x − a
|x − a|

)
dx.

(26)

Assertion (24) is then proved when setting h(θ) = δ(n−2)(〈θ,
ω〉), ψ(s) = δ(n−2)(s − 〈a,ω〉) and taking into account that
δ(n−2) is homogeneous of degree 1− n.

Remark 2. Obviously, δ(n−2) is not in L2([−1, +1]). But since
δ(n−2) ∈ (C(n−2)([−1, +1]))′ and the cone beam transform
Df(a, y) can be extended homogeneously to Rn with respect
to the second variable for any m according to m = 1 (see
[11, Section 2.3]), the integrals in the proof of Theorem 2 are
well defined by the smoothness requirement for f . The ex-
pression on the right-hand side of (24) is to be understood
as

(−1)(n−2)
∫
Sn−1

Df(a, θ)δ(n−2)(〈ω, θ〉)dθ
=
∫
Sn−1∩ω⊥

〈
d(n−2)Df(a, y = θ),ω(n−2)〉dθ,

(27)

where dm = d ⊗ · · · ⊗ d means the m-fold inner derivative
with respect to the second variable in Df(a, y). We have that
d1 = ∇ is the gradient, d2 is the Hessian.

If n = 3, m = 0, (24) is just the classical formula of
Grangeat (3). For m = 1, we get an extension of Grangeat’s
formula to vector fields, where

fa(x) = 〈f(x), |x − a|−1(x − a)
〉
. (28)

The benefits of formula (24) can barely be anticipated.
Let us consider the scalar case, that is, m = 0. If there exists
to each s ∈ [−1, 1] a source point a ∈ Γ such that 〈a,ω〉 = s,
then the derivative ∂(n−2)

s R f (ω, s) can be obtained for arbi-
trary ω ∈ Sn−1, s ∈ [−1, 1] by integrating a corresponding
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derivative of the data D f (a, θ) over the manifold Sn−1 ∩ ω⊥.
This condition is well known as Tuy’s condition (see, e.g.,
[10, Section VI.5]) and means that every hyperplane pass-
ing through Ωn has to intersect the source curve Γ in at least
one point. The situation changes decisively for m > 0 since
the projections fa depend on the source point a. Even if we
found to every s a source a satisfying 〈a,ω〉 = s, this would
not help since the object function fa of R changes with a.
Thus applying formula (24) would give us R fa(ω, s) for a sin-
gle s, namely, s = 〈a,ω〉. Tuy’s condition is not sufficient for
m > 0. Moreover, we have to take into account that there is a
nontrivial null space for m > 0 anyway. To see this, we note
that Df = 0 if f is a potential field, that means f = dp for
p ∈ H1

0 (Ωn, Sm−1). We refer to the book of Sharafutdinov
[9] for a characterization of the null space of D. Denisjuk
[12] suggested a generalization of Tuy’s condition for higher
order tensor fields. He obtained similar formulas as (24) and
showed that every plane through Ωn has to intersect Γ at least
m− 1 times.

If it is possible to compute fa with the help of formula
(24), the curve Γ additionally has to satisfy the requirement
that f(x) can be computed from the projections

〈
f(x), |x − a|−m(x − a)m

〉
. (29)

This is possible, if the curve Γ fulfills the condition, that
for each x ∈ Ωn there exist dim(Sm) = nm source points
a1, . . . , anm such that the tensors |x − ai|−m(x − ai)m are lin-
early independent for fixed x and 1 ≤ i ≤ nm. The tensor
field f(x) can then be recovered from the projections (29).
In case of three-dimensional vector fields (n = 3, m = 1),
we need three linearly independent vectors x − ai to each
x. Hence, this condition is not fulfilled when, for example,
Γ = {a ∈ R3 : |a− a0| = r, a3 = 0} is a single circle since we
find no such vectors for x in {|x − a0| < 1, x3 = 0}.

Formula (24) could be used to calculate reconstruction
kernels for D, that is we could try to solve

D∗ν
γ
i1···im(x) = E

γ
i1···im(x, ·) (30)

using that relation to the Radon transform, where E
γ
i1···im(x,

y) ≈ δ(x − y)dxi1 ⊗ · · · ⊗ dxim for small γ > 0 is an approx-
imation to the delta distribution. Reconstruction kernels are
necessary to cope the problem of tensor tomography with the
method of approximate inverse; see, for example, Louis [13],
Schuster [3], Rieder and Schuster [14]. It is clear that

Df(a,ω)ω + α1
(
a,ω,ω1

)
ω1 + α2

(
a,ω,ω2

)
ω2

=
∫∞

0
f(a + tω)dt

(31)

for certain coefficients α1, α2, where {ω,ω1,ω2} forms an or-
thonormal basis of R3. Unfortunately, α1, α2, are unknown.
An idea to apply the method of approximate inverse to D
might be to approximate

Df(a,ω)ω ≈
∫∞

0
f(a + tω)dt, (32)

and to use methods for 3D cone beam CT to solve the prob-
lem. If νγ(x) denotes a reconstruction kernel for D in case

m = 0, then ν
γ
i (x) := νγ(x) · ei represents a reconstruc-

tion kernel for the right-hand side of (32). This approach
is subject of current research. Hence, relation (24) might be
of large interest in the area of tensor tomography problems.
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