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Simultaneous Stabilization for a

Collection of Multi-input

Nonlinear Systems with

Uncertain Parameters
CAI Xiu-Shan1 HAN Zheng-Zhi2 ZHANG Wei2

Abstract Simultaneous stabilization for a collection of multi-
input nonlinear systems with uncertain parameters is dealt with
in this paper. A systematic method for obtaining a control
Lyapunov function (CLF) is presented by solving the Lyapunov
equation. A sufficient condition that a quadratic CLF is a com-
mon CLF for these systems is acquired. A continuous state
feedback is designed to simultaneously stabilize these systems.
Finally, the effectiveness of the proposed scheme is illustrated by
a simulation example.
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The stability analysis and controller design for uncer-
tain systems have been one of the main focuses in the field
of control. The simultaneous stabilization problem is im-
portant in practice. This problem is concerned with de-
termining a single controller which simultaneously stabi-
lizes a finite collection of systems. Petersen[1] obtained
a nonlinear state feedback controller that quadratically
stabilized a set of single-input linear systems simultane-
ously. Schmitendorf[2] acquired a sufficient condition for
the existence of a stabilizing linear state feedback for a
collection of single-input linear systems. Miller[3−4] em-
ployed linear periodically time-varying controllers for the
simultaneous stabilization and disturbance rejection for a
set of linear systems. For nonlinear systems, the simul-
taneous stabilization problem is more difficult to solve.
Ho-Mock-Qai[5] presented some relevant results for non-
linear systems. Wu[6] provided a method for designing
a controller that simultaneously stabilizes a collection of
single-input nonlinear systems based on the control Lya-
punov function (CLF). The concept of the CLF intro-

duced by Artstein[7] and Sontag[8], made tremendous im-
pact on stabilization theory. It converted stability descrip-
tions into tools for solving stabilization tasks. Sontag[9]

presented a universal feedback scheme by using the CLF.
The CLF has been widely adopted in various design
problems[6−12].

Simultaneous stabilization for a collection of multi-input
nonlinear systems with uncertain parameters is dealt with
in this paper. A systematic method for obtaining a
common CLF is presented. A continuous state feed-
back is designed to simultaneously stabilize these sys-
tems based on the common CLF. Finally, the effective-
ness of the proposed scheme is illustrated by a simulation
example.
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1 System description and preliminaries
Let us consider a collection of q nonlinear systems with

uncertain parameters described by

ẋxx = Axxx + B[FFF s(xxx,ddd) + Gs(xxx,ddd)uuu], s = 1, 2, · · · , q (1)

where xxx ∈ Rn and uuu ∈ Rm are the states and the inputs, re-
spectively, and ddd is the vector of uncertain parameters. We
assume that ddd varies in a compact set Ω. For s = 1, 2, · · · , q,
denote FFF s(xxx,ddd) = [ fs1(xxx,ddd) fs2(xxx,ddd) · · · fsl(xxx,ddd) ]T

and Gs(xxx,ddd) = (gsij(xxx,ddd))l×m. The functions fsi(xxx,ddd) and
gsij(xxx,ddd) are sufficiently differentiable for their variables xxx
and ddd. Moreover, we assume that fsi(000, ddd) = 0, ddd ∈ Ω, and
rankGs(xxx,ddd) = l for each xxx ∈ Rn and ddd ∈ Ω. The matrices
in (1) take the following canonical forms as

A =




A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · Al


 , Ai =




0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
0 0 · · · 0




ri×ri

B =




B1 0 · · · 0
0 B2 · · · 0
...

...
. . .

...
0 0 · · · Bl


 , BBBi =




0
...
0
1




ri×1

where r1 + r2 + · · ·+ rl = n.
Definition 1. A differentiable, radially unbounded, and

positive definite function V is a common CLF for systems
(1), if for any xxx ∈ Rn/000, and s = 1, 2, · · · , q,

inf
uuu

sup
ddd∈Ω

∂V

∂xxx
{Axxx + B[FFF s(xxx,ddd) + Gs(xxx,ddd)uuu]} < 0 (2)

The condition that V (xxx) is a common CLF of (1) is pre-
cisely the statement that

∂V

∂xxx
BGs(xxx,ddd) = 0, xxx 6= 000 ⇒ ∂V

∂xxx
(Axxx + BFFF s(xxx,ddd)) < 0

s = 1, 2, · · · , q (3)

The objective of this paper is to show that we can find
a common CLF for the collection of systems (1) if FFF s(xxx,ddd)
and Gs(xxx,ddd) hold some properties. Moreover, we intend to
find a determined state feedback which can globally asymp-
totically stabilize the collection of systems (1) simultane-
ously.

2 Main results
Consider the collection of systems (1). Divide Ai and BBBi

into their block forms as

Ai =

[
Ai−1 AAAi2

000 0

]
, BBBi =

[
000
1

]

where

Ai−1 =




0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
0 0 · · · 0


 , AAAi2 =




0
...
0
1




Assume that βi1, βi2, · · · , and βi,ri−1 are the coefficients
of the following polynomial

λi(β) = λri−1 + βi,ri−1λ
ri−2 + · · ·+ βi2λ + βi1 (4)
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Let Pi =

[
Pri−1 PPP i2

PPPT
i2 pi3

]
, i = 1, 2, · · · , l be sym-

metric matrices, where Pri−1 ∈ R(ri−1)×(ri−1), PPP i2 ∈
Rri−1, and pi3 ∈ R. It is required that p−1

i3 PPPT
i2 =[

βi1 βi2 · · · βi,ri−1

]
.

Then,

Ai−1−AAAi2p
−1
i3 PPPT

i2 = Ciβ =




0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

−βi1 −βi2 · · · −βi,ri−1




Let Pi, for each i = 1, 2, · · · , l satisfy the following hy-
potheses:

H1. pi3 > 0 and λi(β) is a Hurwitz polynomial.

H2. (Pri−1− p−1
i3 PPP i2PPP

T
i2)Ciβ +CT

iβ(Pri−1− p−1
i3 PPP i2PPP

T
i2)

is negative definite.
Denote

P =




P1

P2

. . .

Pl


 , V (xxx) = xxxTPxxx (5)

The following theorem shows that V (xxx) = xxxTPxxx is a
common CLF for the collection of multi-input systems (1).

Theorem 1. V (xxx) = xxxTPxxx is a common CLF for the
collection of systems (1) if Pi, for each i = 1, 2, · · · , l sat-
isfies hypotheses H 1 and H 2.

Proof. If Pi, for each i = 1, 2, · · · , l satisfies hypotheses
H 1 and H 2, then it is easy to deduce that Pi is positive
definite. It follows that V (xxx) = xxxTPxxx is positive definite.

Let φs(xxx,ddd) = Axxx+BFFF s(xxx,ddd) and ϕs(xxx,ddd) = BGs(xxx,ddd).
Since (Gs(xxx,ddd)) is of full row rank for each xxx ∈ Rn and
ddd ∈ Ω, we have

∂V

∂xxx
ϕs(xxx,ddd) = 2xxxTPBGs(xxx,ddd) = 000 ⇔ xxxTPB = 000 (6)

Owing to

∂V

∂xxx
φs(xxx,ddd) = (Axxx + BFFF s(xxx,ddd))TPxxx + xxxTP (Axxx+

BFFF s(xxx,ddd)) = xxxT(ATP + PA)xxx+

FFFT
s (xxx,ddd)BTPxxx + xxxTPBFFF s(xxx,ddd) (7)

by (6) and (7), we have

∂V

∂xxx
ϕs(xxx,ddd) = 000,xxx 6= 000 ⇒ xxxTPB = 000,xxx 6= 000

⇒ ∂V

∂xxx
φs(xxx,ddd) = xxxT(ATP + PA)xxx (8)

Using block matrix to express xxxT, we have

xxxT =
[
xxxT

1 xxxT
2 · · · xxxT

l

]
, xxxT

i =
[
XXXT

i,ri−1 xi,ri

]

XXXT
i,ri−1 =

[
xi1 xi2 · · · xi,ri−1

]
, i = 1, 2, · · · , l

Then,

xxxTPB =
[
xxxT

1 P1BBB1 xxxT
2 P2BBB2 · · · xxxT

l PlBBBl

]
(9)

and

xxxT
i PiBBBi =

[
XXXT

i,ri−1 xi,ri

] [
Pri−1 PPP i2

PPPT
i2 pi3

] [
0
1

]
=

XXXT
i,ri−1PPP i2 + pi3xi,ri , i = 1, 2, · · · , l (10)

From (9) and (10), because xxxTPB = 000,xxx 6= 000, there exists
an xxxi 6= 000 at least, and

xxxT
i PiBBBi = XXXT

i,ri−1PPP i2 + pi3xi,ri = 0, i = 1, 2, · · · , l (11)

Owing to

2xxxT
i PiAixxxi =

[
XXXT

i,ri−1 xi,ri

] [
Pri−1 PPP i2

PPPT
i2 pi3

]
×

[
Ai−1 Ai2

000 0

] [
XXXi,ri−1

xi,ri

]
+

[
XXXT

i,ri−1 xi,ri

] [
Ai−1 AAAi2

000 0

]T

×
[

Pri−1 PPP i2

PPPT
i2 pi3

] [
XXXi,ri−1

xi,ri

]
(12)

by (11) and (12), we arrive at

2xxxT
i PiAixxxi =XXXT

i,ri−1[(Pri−1 − p−1
i3 PPP i2PPP

T
i2)(Ai−1−

Ai2PPP
T
i2p

−1
i3 ) + (Ai−1 −AAAi2PPP

T
i2p

−1
i3 )T×

(Pri−1 − p−1
i3 PPP i2PPP

T
i2)]XXXi,ri−1 (13)

when xxxT
i PiBi = XXXT

i,ri−1PPP i2 + pi3xi,ri = 0.
By hypothesis H 2, there exists a positive definite matrix

Fi such that

2xxxT
i PiAixxxi = −XXXT

i,ri−1FiXXXi,ri−1 (14)

Thus,

xxxTPAxxx + xxxTATPxxx =2

l∑
i=1

xxxT
i PiAixxxi =

−
l∑

i=1

XXXT
i,ri−1FiXXXi,ri−1 < 0 (15)

when xxxTPB = 000,xxx 6= 000.
From (6), (7), and (15), we can deduce that

∂V

∂xxx
φs(xxx,ddd) = xxxT(ATP + PA)xxx < 0 (16)

for
∂V

∂xxx
ϕs(xxx,ddd) = 000,xxx 6= 000.

Thus, V (xxx) = xxxTPxxx is a common CLF for the collection
of systems (1). ¤

The following considers a common feedback to stabilize
systems (1) using the common CLF established by Theo-
rem 1. Now, for each j = 1, 2, · · · , m, denote Gsj(xxx,ddd) as
the j-th column of Gs(xxx,ddd) and

λj(xxx) = min
s

min
ddd∈Ω

xxxTPBGsj(xxx,ddd)

µj(xxx) = max
s

max
ddd∈Ω

xxxTPBGsj(xxx,ddd) (17)

Moreover, define

βj(xxx) =





λj(xxx), λj(xxx) > 0
0, λj(xxx) = 0
µj(xxx), λj(xxx) < 0

(18)

We are ready to verify Theorem 2.
Theorem 2. If there are m positive numbers rj > 1,

such that

rj max
s

max
ddd∈Ω

xxxTPBGsj(xxx,ddd) ≤ λj(xxx) (19)
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when λj(xxx) < 0, j = 1, 2, · · · , m, then there is a common
feedback which is independent of ddd and stabilizes these sys-
tems simultaneously.

Proof. By Theorem 1, V (xxx) = xxxTPxxx defined as (5)
is a common CLF for the collection of systems (1). The
derivative of V (xxx) along with the s-th system of (1) is

V̇s(xxx) = 2xxxTPAxxx + 2xxxTPBFFF s(xxx,ddd) + 2xxxTPBGs(xxx,ddd)uuu
(20)

Define

α(xxx) = xxxTPAxxx + max
s

max
ddd∈Ω

xxxTPBFFF s(xxx,ddd) (21)

and

βββ(xxx) = [β1(xxx), β2(xxx), · · · , βm(xxx)]T

λλλ(xxx) = [λ1(xxx), λ2(xxx), · · · , λm(xxx)]T (22)

The feedback is

uuu=uuu(xxx)=




−βββ(xxx)

α(xxx)+
√

(α(xxx))2+|βββ(xxx)|4
|βββ(xxx)|2 , xxxTPB 6= 000

0, xxxTPB = 000
(23)

First, we prove that uuu(xxx) is continuous. For j = 1,
2, · · · , m, if λj(xxx) goes to zero from the right side of zero,
βj(xxx) = λj(xxx) goes to zero. On the other hand, by assump-
tion, when λj(xxx) < 0, λj(xxx) ≤ µj(xxx) ≤ (1/rj)λj(xxx). So,
βj(xxx) = µj(xxx) goes to zero when λj(xxx) goes to zero from
the left side. This implies that βj(xxx) is continuous. In view
of (22), βββ(xxx) is continuous. It can be deduced that α(xxx) is
also continuous.

From the definition of βββ(xxx) and (18), βββ(xxx) = 000 is equiv-
alent to λ(xxx) = 000. Since every Gs(xxx, ddd) has full row rank,

λ(xxx) = 000 is equivalent to BTPxxx = 000. Thus, βββT(xxx) = 000 is
equivalent to xxxTPB = 000. Furthermore, when xxxTPB = 000
and xxx 6= 000, α(xxx) = xxxTPAxxx < 0 by Theorem 1. Thus, uuu(xxx)
is continuous.

Now, let us consider (20) in two cases.

1) βββ(xxx) = 000,xxx 6= 000. From the above, βββT(xxx) = 000 is equiv-
alent to xxxTPB = 000. Then, by (20),

V̇s(xxx) = 2xxxTPAxxx < 0

from Theorem 1.
2) βββ(xxx) 6= 000. For j = 1, 2, · · · , m, since xxxTPBGsj(xxx,

ddd) ≥ λj(xxx) and βj(xxx) = λj(xxx) ≥ 0 when λj(xxx) ≥ 0,
we have xxxTPBGsj(xxx, ddd)βj(xxx) ≥ β2

j (xxx) when λj(xxx) ≥ 0;
on the other hand, when λj(xxx) < 0, we have βj(xxx) =
µj(xxx) < 0 by (19), and in view of xxxTPBGsj(xxx,ddd) ≤ µj(xxx),
xxxTPBGsj(xxx,ddd)βj(xxx) ≥ β2

j (xxx) when λj(xxx) < 0. In conclu-
sion, it can be deduced that

m∑
j=1

xxxTPBGsj(xxx,ddd)βj(xxx) ≥
m∑

j=1

β2
j (xxx) (24)

In view of (23),

uuu = −βββ(xxx)
α(xxx) +

√
(α(xxx))2 + |βββ(xxx)|4
|βββ(xxx)|2 = βββ(xxx)

4(xxx)

βββT(xxx)βββ(xxx)

where

4(xxx) = −α(xxx)−
√

(α(xxx))2 + |βββ(xxx)|4 < 0

(24) is equivalent to

m∑
j=1

xxxTPBGsj(xxx,ddd)βj(xxx)
4(xxx)

βββT(xxx)βββ(xxx)
≤

m∑
j=1

β2
j (xxx)

4(xxx)

βββT(xxx)βββ(xxx)

(25)
i.e.

xxxTPBGs(xxx,ddd)βββ(xxx)
4(xxx)

βββT(xxx)βββ(xxx)
−4(xxx) ≤ 0

So,
xxxTPBGs(xxx,ddd)uuu−4(xxx) ≤ 0 (26)

By (20) and (26), we have

V̇s(xxx) ≤ 2xxxTPAxxx + 2xxxTPBFFF s(xxx,ddd) + 24(xxx) =

2xxxTPAxxx + 2xxxTPBFFF s(xxx,ddd)+

2(−α(xxx)−
√

α2(xxx) + |βββ(xxx)|4) ≤
− 2

√
α2(xxx) + |βββ(xxx)|4 < 0

The conclusion is followed from the Lyapunov theorem. ¤

3 Example
Consider a collection of multi-input nonlinear systems as

follows:

Qs :

{
ẋ1 = x2

ẋ2 = fs(xxx,ddd) + gs1(xxx,ddd)u1 + gs2(xxx,ddd)u2, s = 1, 2, 3
(27)

with xxx = [x1, x2]
T, ddd = [d1, d2]

T, Ω = {(d1, d2)|d1 ∈ [1, 2],
d2 ∈ [1, 3]}, f1(xxx,ddd) = d1x1e

x2 , f2(xxx,ddd) = d2x1, f3(xxx,ddd) =
d1x1cosx2, g11(xxx,ddd) = d1e

x1 , g21(xxx,ddd) = 1 + d2
1sin

2x2,
g31(xxx,ddd) = 1+ d2

1x
2
1, g12(xxx,ddd) = −1− d2cos2x1, g22(xxx,ddd) =

−d2e
x1+x2 , and g32(xxx,ddd) = −d2x

2
2.

By Theorem 1, there exists a common CLF for systems
(27). Let p13 = 1 and P12 = 1. Then,

V (xxx) = xxxT

[
1.5 1
1 1

]
xxx

is a common CLF for systems (27).
It is easy to check that the condition (19) in Theorem 2

holds. Denote

α(xxx) = (1.5x1 + x2)x2 + max
ddd∈Ω

{(x1 + x2)d1x1e
x2 ,

(x1 + x2)d2x1, (x1 + x2)d1x1cosx2}
λ1(xxx) = min

d1∈[1,2]
{(x1 + x2)d1e

x1 , (x1 + x2)(1 + d2
1sin

2x2),

(x1 + x2)(1 + d2
1x

2
1)}

λ2(xxx) = min
d2∈[1,3]

{−(x1 + x2)(1 + d2cos2x1),

− (x1 + x2)d2e
x1+x2 ,−(x1 + x2)d2x

2
2}

µ1(xxx) = max
d1∈[1,2]

{(x1 + x2)d1e
x1 , (x1 + x2)(1 + d2

1sin
2x2),

(x1 + x2)(1 + d2
1x

2
1)}

µ2(xxx) = max
d2∈[1,3]

{−(x1 + x2)(1 + d2cos2x1),

− (x1 + x2)d2e
x1+x2 ,−(x1 + x2)d2x

2
2}

β1(xxx) =





λ1(xxx), λ1(xxx) > 0
0, λ1(xxx) = 0
µ1(xxx), λ1(xxx) < 0

β2(xxx) =





λ2(xxx), λ2(xxx) > 0
0, λ2(xxx) = 0
µ2(xxx), λ2(xxx) < 0
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βββ(xxx) =

[
β1(xxx)
β2(xxx)

]

By Theorem 2, the feedback

uuu = uuu(xxx) =





−βββ(xxx)
α(xxx) +

√
(α(xxx))2 + |βββ(xxx)|4
|βββ(xxx)|2 ,

x1 + x2 6= 0
0, x1 + x2 = 0

(28)
globally asymptotically stabilizes all systems of (27) simul-
taneously.

Figs. 1 and 2 show the state trajectories and con-
trol inputs of these three systems (The initial states
are [−0.7, 0.4]T, [0.8,−0.6]T, and [0.5, 0.7]T, and random
choices of d1 ∈ [1, 2] and d2 ∈ [1, 3] for example d1 = 1.5
and d2 = 2) with the same feedback (28), respectively.

Fig. 1 State trajectories of the three systems in (27) with the
feedback (28)

Fig. 2 Control inputs of the three systems (27) with the
feedback (28)

4 Conclusion
In this paper, a systematic method is given for obtaining

a common CLF of the collection of multi-input nonlinear
systems with uncertain parameters. Furthermore, a con-
tinuous state feedback is designed which simultaneously
stabilizes these systems. Finally, the effectiveness of the
proposed scheme is illustrated by a simulation example.
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