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Gas recognition is a new emerging research area with many civil, military, and industrial applications. The success of any gas
recognition system depends on its computational complexity and its robustness. In this work, we propose a new low-complexity
recognition method which is tested and successfully validated for tin-oxide gas sensor array chip. The recognition system is based
on a vector angle similarity measure between the query gas and the representatives of the different gas classes. The latter are
obtained using a clustering algorithm based on the same measure within the training data set. Experimented results on our
in-house gas sensors array show more than 98% of correct recognition. The robustness of the proposed method is tested by
recognizing gas measurements with simulated drift. Less than 1% of performance degradation is noted at the worst case scenario
which represents a significant improvement when compared to the current state-of-the-art.
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1. INTRODUCTION

The detection and discrimination of gases using microelec-
tronic gas sensor array are required in various industry
and domestic applications, such as automobiles, safety,
indoor air quality, medicine and food industry [1, 2].
SnO2-based gas sensing film technology is commonly used
for such applications because of a number of advantages
including cost effectiveness, high sensitivity to various gases,
and relative compatibility with standard CMOS fabrication
processes [3]. The SnO2-based sensors are operated at high
temperature (typically 300◦C) obtained using integrated
microhotplates (MHPs). SnO2-based gas sensing film shows
high response to a large variety of target gases but low level of
selectivity to a given target gas. This phenomenon is widely
exhibited in the animal and human biological olfactory
systems [4]. Besides low selectivity, other shortcomings
such as high sensitivity to humidity, nonlinearities of the
sensor’s response, drift and slow response are associated with
electronic gas sensors in general. Poor selectivity towards
the monitored gas, or cross sensitivity towards other gases
makes a sensor’s output unreliable. Long exposure cycles of

the sensors as well as aging factors and poor stability cause
a sensor’s calibration curve drift with time [5]. The drift can
be explained as a random temporal variation of the sensor
response when exposed to the same gases under identical
conditions. These drifts are due to unknown dynamic
processes in the sensor system (e.g., poisoning or aging of
sensors) or environmental changes (e.g., temperature and
pressure conditions). Many pattern recognition techniques
were proposed in the literature to deal with electronic nose
low selectivity and good overviews could be found in [2, 6].
However, the processing remains generally quite complex
involving many preprocessing operations as well as complex
pattern recognition algorithms especially with large number
of sensors. In addition, most of the proposed techniques do
not address the drift problem and those who deal with this
issue require the retraining of the proposed systems using
simulated drift observations.

Gas measurements issued from our sensor array are
vectors in R16. Usually, recognition in multidimensional
space requires a sufficient number of observations to esti-
mate the parameters of the underlaying model. This number
increases rapidly with the dimension therefore recognition
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Figure 1: (a) The structure of the sensor element. (b) The SEM picture of the sensor element.

becomes inaccurate in practice even each dimension often
brings additive information. This is the well-known curse
of dimensionality phenomenon [7]. One alternative to
overcome this problem is to use a dimensionality reduction
technique by either feature selection or feature extraction
to find a more compact representation of the data keeping
only relevant information. Pursuit projection (PP) [8] is a
dimensionality reduction technique finding iteratively pro-
jection axis that maximizes a given criterion called projection
index (PI). Principal component analysis (PCA) is a PP
with the variance as PI, linear discriminant analysis (LDA)
is a PP with the classes separability (classes separability is
usually measured as the ratio of the within covariance matrix
to the between covariance matrix) as PI and independent
component analysis (ICA) is a PP with the non-Gaussianity
as PI [9, 10]. In this paper, we use a low complexity yet
efficient reduction technique based on the vector angle
between observations vectors in R16 as a measure of their
closeness. The proposed recognition system uses the vector
angle similarity measure between the investigated gas and the
different gas class representatives obtained using a clustering
algorithm with the same similarity measure. This modelling
allowed us to reach high recognition rate and has shown high
robustness against the drift phenomenon.

The paper is organized as follows. The Sensor array is
described in Section 2. In Section 3, the recognition system
is detailed and experiments on real gas measurements are
presented. The robustness of the proposed technique is
investigated in Section 4. Finally, a conclusion is presented
in Section 5.

2. SENSOR ARRAY CHARACTERIZATION

The monolithic 4×4 tin-oxide gas sensor array was designed
and fabricated using our in-house 5 μm 1-metal, 1-poly
CMOS process [3]. The cross-sectional view of the gas sensor
is shown in Figure 1(a). The top view of the fabricated sensor

element with the micro heater and the electrodes is shown in
Figure 1(b).

The MHP is at the center of the sensor element and has
a dimension of 190 × 190 μm2. A 2.8 μm air gap is formed
between the hotplate membrane and the substrate using a
surface micromachining process. The SnO2 sensing film is
deposited onto the MHP using a sputtering method. The
sensor signal is measured from the resistance variation across
the two Pt electrodes. Different posttreatment combinations
were performed on the sensors within the array, including
metal catalysts (Pt, Pd, and Au) in 3 columns and ion
implantations (B, P, and H) in 3 rows, which results in a
response variation across the 16 sensors.

Vapors were injected into the gas chamber, with a
diameter of 90 mm and a reaction volume of 100 cm3, at a
flow rate determined by the mass flow controllers (MFCs).
The gas concentrations in the sensor chamber are adjusted
by selecting the correct flow rate for different gases. Input
signals generated by the data acquisition board and used to
control the MFC are pulse signals corresponding to different
concentrations. The output is then processed by the data
acquisition board (DAQ). In this measurement, all the MHPs
on the chip were heated to 300◦C, resulting in a total power
consumption of 352 mW.

The test gases are relevant for a number of applications
mainly in the area of toxic and combustible gas identi-
fication. CO, CH4, and Ethanol are commonly found in
mines and daily life, which are the potential causes for
explosion or poisoning coal mine accidents. Furthermore,
the mixture of gases is more dangerous than single gas
which is the case in real situations. Three binary mixtures
of CO–CH4, CH4–Ethanol, and CO–Ethanol are selected as
analyte gases and recognized as new gases.

The gas sensors array is characterized using a periodic
exposure-cleaning operating mode. Gases are injected over
time in a periodical manner and each gas injection is
followed by a cleaning phase which can be done in some cases
by injecting dry air. After the cleaning phase, the signal will
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reach the base-line which is taken as the reference measured
before gas injection.

3. THE PROPOSED GAS RECOGNITION ALGORITHM

3.1. Vector angle similarity measure

The measurement obtained from the 16-sensors array can
be represented by a sixteen-dimensional vector. In this rep-
resentation, vector angle can therefore be used as similarity
measure. Let A and B be two vectors belonging to R16. The
vector angle θAB is given by

θAB = arccos
( 〈A,B〉
‖A‖‖B‖

)
, (1)

where 〈·, ·〉 is the inner product between two vectors, and
‖·‖ is the magnitude of a vector. This is a simple way to
measure vectors similarity, that is, the closeness of their
orientation in R16 space, regardless of their magnitudes.
Indeed, vectors belonging to the same category most likely
occupy the same region in the high-dimensionality space
and therefore the angle between them is expected to be
small. Despite its simplicity, this measure has proven its
effectiveness with hyper and multispectral images for remote
sensing [11, 12], where it is called “spectral angle” due
to the origin of the observation vectors, which represent
the spectral reflectance of the soil in the observed area.
This measure has also been effectively used in color image
segmentation [13, 14]. In addition, using the vector angle
measure reduces substantially the problem complexity and
represents an efficient dimensionality reduction technique.
In fact, dealing with data in high-dimensional space gives
rise to the well-known curse of dimensionality problem
also known as Hughes phenomenon [7]. Usually the model
complexity increases with dimensionality, consequently, the
number of parameters increases and the size of the training
data set required for a reliable estimation becomes large.
In practice, the training data set is limited and the space
becomes more and more empty when dimensionality grows,
which implies a lack in parameters estimation accuracy and
therefore a degradation in recognition performance. Using
the vector angle is a simple way to overcome this problem.

3.2. Vector angle approximation

The ultimate goal of our research work is to integrate the
sensor array and the pattern recognition system in CMOS
technology. Typically, the arccos(·), which is a nonlinear
function, is implemented in hardware using a look-up
table. High accuracy requires a large size of the look-up
table which is a real drawback for our proposed pattern
recognition system. To overcome this problem, we propose
to use an approximation based on Taylor’s series expansion.
The expansion of the arccos(·) is given by

arccos(x) = π

2
−

∞∑
n=0

(2n)!

4n(n!)2(2n + 1)
x2n+1 for |x| < 1. (2)

Extensive simulation results show that a first-order approx-
imation is sufficient to keep the same recognition perfor-

mances as the full expansion. Thus, the following formula
is used for the computation of the arccos(·):

arccos(x) = π

2
− x − 1

6
x3 for |x| < 1. (3)

In the next section, this measure is used to design the gas
recognition system.

3.3. The recognition system

The K-means algorithm [9] is used to recover the potential
local clusters in the data structure of each gas class. The
choice of the number of clusters is a model selection problem
motivated by the Occam’s razor principle, which stipulates
that the simplest model that explains data is the one to
be preferred [9]. Since no parametric model is associated
with the K-means algorithm, model selection techniques
like Akaike information criterion and Bayesian information
criterion are not applicable. Thus, a large number of clusters
are used at the beginning then small clusters are eliminated
during the clustering process.

The centroids of the obtained clusters are treated as
representatives, which are compared to the candidate gas.
The decision follows the simple rule outlined as: “a candidate
gas belongs to the class whose one of the representatives is the
closest to the candidate (Figure 2)”.

Let Φ j = {F j
i }i=1,...,K j be the centroids of the class j, and

C be a candidate gas. The minimum angles γ j between C and
the sets Φ j are computed as follows:

γ j = min
i

∣∣θF j
i C

∣∣. (4)

The decision rule is then

h(C) = arg min
j

∣∣γ j
∣∣. (5)

The performances of this recognition system is investigated
in the next section.

3.4. Experiments

To experiment the proposed recognition system, a large data
set of measurements was generated. Different concentrations
of 6 categories of gases, namely: CO, CH4, Ethanol, CH4–CO,
Ethanol–CO, and Ethanol–CH4, were used with totally 432
vector measurements data set. The three last mixtures are
considered as separate gases. This data set is partitioned into
two parts: 90% for the learning and 10% for the test. The
technique proposed in this work is compared with different
classical recognition techniques. All these techniques are
preceded by a dimensionality reduction step using PCA,
while in our case dimensionality reduction is inherently
embedded into the classifier, which constitutes a significant
advantage. Table 1 reports the obtained average accuracy
with an increasing number of the retained projection axis
of the PCA. Despite its low complexity, the proposed system
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Table 1: Comparison of gas recognition results: PCA is used with a number of classical recognition techniques and compared to the proposed
method. The recognition accuracy is reported in %.

No. of PCA’s axis 2 3 4 5 6 7 8 9

KNN 95.45 98.18 99.32 99.77 99.77 99.77 99.77 99.77

MLP 97.27 97.95 100 99.77 99.77 100 100 100

RBF 96.36 96.59 98.18 98.41 98.41 98.41 98.41 98.41

GMM 98.49 99.55 100 100 100 100 100 100

No. of PCA’s axis 10 11 12 13 14 15 16

KNN 99.77 99.77 99.77 99.77 99.77 99.77 99.77

MLP 100 100 100 100 100 100 100

RBF 98.64 98.64 98.64 98.64 98.64 98.64 98.64

GMM 100 100 100 100 100 100 100

The proposed technique 98.02
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Figure 2: The gas recognition system. On the left, the offline learning: the classes data sets are partitioned into clusters using the vector angle
similarity measure. Each cluster is then represented by its centroids. On the right, the online recognition: the minimum angles between the
investigated gas and classes centroides are computed, then the class with the minimum angle is chosen.

performs well compared to the other techniques. In addition,
the use of the vector angle-based classifier also enables
dimensionality reduction from the original space to 1D space
without any further preprocessing. Only one cluster per gas
category is used in our experiments, therefore only one
representative is needed for each category which is a very
low complexity yet highly efficient recognition system. In
other words, our recognition system presents an embedded
dimensionality procedure which is very interesting since
reduction and classification are performed simultaneously
reducing the complexity of the proposed system. On-chip
implementation of the proposed classifier will therefore take
advantage of the small number of parameters needed to be
stored by the system while the computation requirements are
kept very low.

4. ROBUSTNESS STUDY

The drift phenomenon can be interpreted as a temporal
variation of the pattern distribution in the feature space,
which can cause a noxious robustness issue to the recognition
system. Therefore, it is generally necessary to retrain the
entire recognition system using measurements affected by
the drift to enhance the performance of the electronic noise.

Figure 3 illustrates an example of an additive drift in
which we have reported the response of the sensor as func-
tion of the concentration of gases periodically injected into a
gas chamber in which the sensors are being placed. We can
note that the baseline response of the sensor is shifted, which
complicates the classification problem even further since the
learned behavior of the sensor is varying with time. The drift
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Figure 3: The drift phenomenon. The sensor response varies along
with exposure time.

has been modelled as vd(t) = v(1 + αt), where v is the sensor
output before the drift experiment and αtmax was chosen
randomly for each sensor [16]. Drift varying between 0 and
30% has been artificially generated. The performance of the
recognition was evaluated over the drifted measurements.
The identification results of the drifted measurements using
the system trained on a nondrifted measurements are shown
in Figure 4 and compared to the recognition performances
obtained in [15]. The proposed technique shows a higher
accuracy than the one achieved in [15] with and without
retraining the system. It is also important to note the
significant invariance of our performance when increasing
the drift. In the worst case, more than 97.89% of recognition
accuracy is obtained. Less than 1% of performance degrada-
tion is noted with a drift figure of 30%. The robustness of
the proposed technique shows that using the angle between
the query gas and the class representatives tends to be more
robust than using other similarity measures. In our case,
the class representatives are characteristic signatures of the
corresponding gases, therefore even in the presence of drift
effects, the measurement vector of a given query gas is still
closer to its class signature than to the other signatures.

5. CONCLUSION

In this paper, a novel gas recognition algorithm based on a
vector angle similarity measure is proposed. The K-means
algorithm is adapted to recover the local data structures in
different classes training sets by starting with a large number
of clusters and eliminating small-size clusters during the
clustering process.

The obtained results show the effectiveness of the
proposed technique compared to the existing methods even
though it does not require any preprocessing. In fact, the
embedded dimensionality reduction performed using the
vector angle similarity measure avoids additional operations
of the preprocessing required by other methods.

In addition, the proposed technique shows a very
high robustness against the drift phenomenon without
any additional retraining. The small number of needed
parameters and low complexity of the required computations
suggest efficient on-chip hardware implementation of the
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Figure 4: Robustness Comparison: recognition accuracy as a
function of drift’s rate. In continuous line, the results of the
proposed recognition system without retraining. In dashed line,
the results obtained in [15] with retraining. In dashed-dot line, the
results obtained in [15] without retraining. The proposed method
outperforms the performances in [15] and shows a quite invariance
of the recognition accuracy of the drifted measurements, even the
system is trained on a nondrifted measurements.

recognition system. Work is underway to integrate the
proposed algorithms with the sensor array enabling single
chip electronic nose microsystem.
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