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Miniaturized liquid sensors are essential devices in online process or condition monitoring. In case of viscosity and density sensing,
microacoustic sensors such as quartz crystal resonators or SAW devices have proved particularly useful. However, these devices
basically measure a thin-film viscosity, which is often not comparable to the macroscopic parameters probed by conventional
viscometers. Miniaturized cantilever-based devices are interesting alternatives for such applications, but here the interaction
between the liquid and the oscillating beam is more involved. In our contribution, we describe a measurement setup, which allows
the investigation of this interaction for different beam cross-sections. We present an analytical model based on an approximation
of the immersed cantilever as an oscillating sphere comprising the effective mass and the intrinsic damping of the cantilever and
additional mass and damping due to the liquid loading. The model parameters are obtained from measurements with well-known
sample liquids by a curve fitting procedure. Finally, we present the measurement of viscosity and density of an unknown sample
liquid, demonstrating the feasibility of the model.

Copyright © 2008 Christian Riesch et al. This is an open access article distributed under the Creative Commons Attribution
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1. INTRODUCTION

For many applications like online process or condition
monitoring, the liquid parameters viscosity and mass density
are of high relevance. The use of conventional labora-
tory equipment is often not applicable due to its cost,
space requirements, and other preconditions, for example,
vibration-free mounting. Furthermore, sample taking for
such devices often involves manual labor, tending to be time
consuming and error-prone.

Microacoustic sensors like quartz thickness shear mode
(TSM) resonators [1, 2] and surface acoustic wave (SAW)
devices, for example, [3] have proved particularly useful
alternatives to traditional viscometers [4]. However, these
devices measure viscosity at comparatively high-shear rates
and small vibration amplitudes. For non-Newtonian liquids,
the results are, therefore, not directly comparable to those
obtained from conventional viscometers. For complex liq-
uids such as emulsions, it has also been shown that microa-
coustic devices may not be sufficient to detect rheological
effects which are present only on the macroscopic scale [5].

Micromachined vibrating structures usually feature
lower resonance frequencies and higher vibration ampli-
tudes, making them more suitable for non-Newtonian and
complex liquids [6]. Microcantilevers commonly used in
atomic force microscopy [7–9] have been successfully used
as liquid property sensors. They allow for simultaneous
measurement of the liquid’s viscosity and mass density,
requiring sample volumes of less than 1 nL [10]. However,
a highly sensitive optical readout is required to determine
the beam’s vibration amplitudes. When immersed in liquid,
the cantilevers face strong deterioration of the quality
factor due to high-dissipative effects [10]. Consequently, the
vibration amplitudes drops even more, limiting the sensor’s
measurement range to low-viscous liquids. In other works,
micromachined cantilevers and doubly clamped beams
driven by Lorentz forces [6, 11–13] or by the piezoelectric
effect [14, 15] have been utilized as liquid property sensors,
and the feasibility of these sensors has been demonstrated for
viscosities in the range up to several Pa·s.

In this contribution, we characterize resonating can-
tilevers for the measurement of mass density and viscosity
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of liquids. They measure viscosity in a rheological domain
which is more comparable to that probed by conventional
laboratory instruments. The cantilevers feature piezoelectric
excitation as well as piezoelectric readout. The vibrating
part is about 55 mm long, but since only the cantilever
tip is immersed in the liquid, the induced damping of
the cantilever vibration is kept low. The sensors, therefore,
exhibit high-quality factors, ranging from 20 to 60 even
for highly viscous liquids. Consequently, the detection of
the resonances could be accomplished by a simple readout
electronics, and the measurement range is greatly extended.
On the other hand, the sensitivity of the sensor is decreased.
Furthermore, the sensor principle allows attaching different
tips of well-defined geometries to the cantilevers.

When the cantilever tip is immersed in a liquid, the
resonance frequency and the damping of the cantilever
are influenced by the viscosity and density of the liquid.
However, the cantilevers do not show a simple relationship
between the result of such a measurement and the liquid
parameters. Recently, several models have been devised to
give a proper description of the interaction of a vibrating
cantilever and the surrounding liquid, for example, [16–18]
but most of these models assume fully immersed cantilevers,
which are long and thin, that is, the width w is much
smaller than the length L. For the designs considered in
this work, only the cantilever tip is immersed in the liquid.
For modeling the sensor-fluid interaction, the cantilever
length L must therefore be replaced by the dipping depth d,
which is in the same range as w. A solution for cantilevers
featuring w ≈ L, and accordingly w ≈ d is given in
[19]. In [14] and other works, the influence of the liquid
loading on the cantilever’s frequency characteristics has been
successfully modeled by approximating the forces acting on
the cantilever tip by those acting on a sphere oscillating in
a fluid. The results indicate that the cantilever tip is subject
to an additional mass loading and an additional damping
caused by the surrounding liquid.

In our work, we present a vibrating cantilever sensor
and a setup for the measurement of viscosity and density.
The interaction of the sensor and the liquid in which
the tip is immersed is modeled by an oscillating sphere.
Possible simplifications of the model are discussed, and a
general model is devised. This model allows for simple
calibration of the sensor in a set of liquids with well-known
properties. Therefore, the knowledge of mechanical and
electrical properties of the cantilever is not required, the
model parameters are instead obtained from the calibration
procedure.

2. SENSOR FABRICATION

The cantilever sensors used in this work are based on com-
mercially available lead zirconate titanate (PZT) bimorph
bending actuators (Argillon GmbH, Redwitz, Germany).
They feature a length of 49.95 mm, a width of 7.2 mm, and
a total thickness of 0.8 mm [20]. The cantilevers consist
of two piezoelectric PZT layers on both sides of a carbon
fiber substrate (Figure 1(a)). The PZT layers are polarized in
thickness direction. Electrodes (1, 2, 3) allow for excitation
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Figure 1: (a) PZT bending actuator with attached tip. The bending
actuator consists of a carbon fiber substrate and two piezoelectric
layers. The electrodes (1, 2, 3) allow for excitation and readout of the
sensor. (b) Applying a voltage to the upper layer leads to contraction
or elongation of the upper layer as indicated by the arrows.

Table 1: Tip geometries (rectangular cross-section) and tip materi-
als.

Tip Width w Thickness Material

Tip A 7 mm 0.5 mm silicon

Tip B 5 mm 0.5 mm silicon

Tip C 4 mm 0.3 mm brass

Tip D 2 mm 0.5 mm silicon

of the actuator. Applying a voltage between the top electrode
(electrode 1) and the center electrode (2 in Figure 1(a)),
which is used as ground electrode (Figure 1(b)) causes a
contraction or elongation in the upper PZT layer but not
in the substrate, and, therefore, deforms the cantilever. In
our setup (Figure 2(a)) a sinusoidal voltage is applied, which
leads to bending vibrations of the beam. A maximum voltage
of 200 V can be applied to the cantilever. The actual beam
deflection is determined by measuring the voltage at the
sensing electrode.

The bending actuator is clamped at one end, whereas
different tips of well-defined cross-sections are attached to
the free end. These tips are immersed in the sample liquid.
The tip geometries and materials are given in Table 1. The
clamping fixture is mounted on a rigid frame allowing
for vertical (x-direction) positioning of the sensor and
preventing vibrations of the entire setup. A lock-in amplifier
(LIA) measures the sensor voltage Vs, resulting in the
cantilever’s frequency response. As voltage source Vd, the
internal oscillator of the lock-in amplifier is used.

The cantilever exhibits several resonant vibration modes.
As an example, Figure 3(a) shows the deflection (z-direction)
for a cantilever with tip A (Table 1) vibrating in air. The
corresponding sensing electrode voltage is shown in the
diagram below (Figure 3(b)). The resonance frequencies
are 100 Hz and 851 Hz for the first and second modes,
respectively. Further resonances were found at 2456 Hz
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Figure 2: Measurement setup. The PZT bending actuator is rigidly
clamped at one end. To the free end of the cantilever, a tip of well-
defined geometry (widthw) is attached and immersed in the sample
liquid (dipping depth d). The interaction of the cantilever tip and
the liquid changes the frequency characteristics, which is measured
by the lock-in amplifier (LIA).

(3rd mode) and 4870 Hz (4th mode). The mode shapes for
a uniform cantilevered beam without a load at the tip are
given in Figure 4 [21].

3. THEORETICAL MODEL

The vibration behavior of the piezoelectric bending actuator
is described by the Euler-Bernoulli beam equation [21]:

EI
∂4ψ(x, t)
∂x4

+ μ
∂2ψ(x, t)
∂t2

= ∂2Mp(x, t)

∂x2
, (1)

where EI and μ are the effective bending stiffness and the
effective mass per unit length of the composite beam, ψ(x, t)
is the beam deflection in z-direction (Figure 2), andMp is the
actuating moment due to the piezoelectric effect. Since Mp is
considered to be a constant moment along the entire beam,
∂2Mp/∂x2 = 0. Consequently, the boundary conditions for
the clamped-free beam are

ψ(0, t) = 0,

∂ψ(0, t)
∂x

= 0,

∂2ψ(L, t)
∂x2

= 1
EI
Mp,

∂3ψ(L, t)
∂x3

= − 1
EI
F,

(2)
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Figure 3: Frequency characteristics of a PZT cantilever with tip
A (Table 1), Vd = 400 mVrms driving voltage, vibrating in air. (a)
The tip deflection (peak-peak) was measured using a Polytec OFV-
5000/OFV-505 laser vibrometer. (b) The diagram below shows the
corresponding sensing electrode rms voltage.

0 L
x

1st mode

(a)

0 L
x

2nd mode

(b)

0 L
x

3rd mode

(c)

0 L
x

4th mode

(d)

Figure 4: Mode shapes of a uniform cantilevered beam. The mode
shapes have been obtained from solutions of the Euler-Bernoulli
beam equation and are also roughly valid for the piezoelectric
bimorph.

where L is the length of the beam and F is the force acting on
the tip due to the interaction with the surrounding liquid.
The actuating moment Mp is given by [22]

Mp =
∫
Ap

Ypd31EzzdA = wbYpd31Vdzm, (3)

where Ap, Yp, and d31 are the cross-sectional area, Young’s
modulus, and the piezoelectric modulus of the actuating
layer and Ez is the electric field in this layer in z-direction. wb

is the width of the bending actuator, zm is the mean distance
of the actuating layer from the beam center, and Vd is the
excitation voltage (Figure 2(a)).
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Figure 5: Time constant Tn and resonance frequency ωn of a resonant cantilever dipping in 4 different sample liquids LA, LB, LC, and LD as
given by the generalized models (15) and (16).

The measured voltage Vs is calculated by applying

Dz = d31Txx + εEz,

Txx = 1
K11

(
Sxx − d31Ez

) (4)

to the sensing PZT layer, where Dz, Txx, and Sxx are electric
displacement, stress, and strain. ε andK11 are the permittivity
and the compliance of the PZT layer. Since Vs is measured by
means of a voltage amplifier in our setup, the current Is from
the sensing electrode vanishes, and, therefore, the charge:

Q =
∫
Ae

DzdA = 0, (5)

where Ae is the surface area of the sensing electrode. From
(4), (5), and Sxx = −z∂2ψ(x, t)/∂x2,

Vs(t) = Kv
∂ψ(L, t)
∂x

(6)

is obtained, where Kv is a constant depending on material
and geometry parameters [22]. The voltage at the sensing
electrode is given by the slope of the beam deflection ψ(x, t)
at the free end, x = L, of the cantilever. This fact is greatly
confirmed by the measurements given by Figure 3. Despite
the lower tip deflection amplitude of the second mode the
resulting output voltage is higher than for the first mode of
vibration.

The interaction with the liquid surrounding, the can-
tilever tip can be modeled by approximating the vibrating
cantilever as an oscillating sphere immersed in a liquid [14],
exhibiting an effective sphere radius R and an effective sphere
mass. The force F acting on such a sphere is given by [23]

F = 6πηR
(

1 +
R

δ

)
du
dt

+ 3πR2

√
2ηρ
ω

(
1− 2R

9δ

)
d2u

dt2
, (7)

where u is the sphere displacement, R is the sphere radius,
ω is the angular oscillation frequency, and δ is the depth of
penetration of the acoustic wave, which is given by

δ =
√

2η
ωρ

. (8)

The tips are attached to the free ends of the cantilevers,
therefore, the sphere displacement is u = ψ(L, t).

In principle, solving the equations given above yields the
frequency characteristics of the vibrating cantilever with a
tip immersed in liquid for all modes of vibration. As the
cantilever represents a composite structure involving layers
featuring different material properties, effective parameters
have to be used in the beam equation, for example, for
Young’s modulus. As also the material parameters of the
layers are not, or only partly, available in the required
accuracy and since the solution of the beam equation would
require the solution of a higher order system in order to
determine the coefficients by a suitable expansion (e.g.,
eigenmode expansion), we have approximated the resonance
behavior of the sensor in the vicinity of the first mode
resonance frequency as a second-order system, given by

(
Me +Mi

)d2u

dt2
+
(
be + bi

)du
dt

+ Ku = F0e
jωt, (9)

where u is the deflection of the cantilever tip in z-direction
(Figure 2), Me and be are the effective mass and the intrinsic
damping of the cantilever and the tip, K is the spring
constant, and F0 and ω are the driving force amplitude
and angular frequency. Mi and bi are the induced mass and
damping due to the liquid loading, given by (7)

Mi = 3πR2

√
2ηρ
ω

(
1− 2R

9δ

)
, (10)

bi = 6πηR
(

1 +
R

δ

)
. (11)
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Figure 6: Magnitude and phase response of a cantilever with tip
A vibrating in air and immersed in different liquids (Table 2). The
dipping depth d is 2 mm, the driving voltage Vd = 200 mVrms.

For sample liquids exhibiting high viscosities, and low-
vibration frequencies, R is negligible compared to δ, leading
to a simplification of (10) and (11) [14]. For the considered
cantilever tips and dipping depths (Table 1), the effective
sphere radius R is in the range of a few millimeters. The
expected penetration depths δ for the sample liquids used in
this work were calculated for a vibration frequency of 100 Hz
and are given in Table 2. The results show that δ is in the
same range as R, and the prerequisites for said simplification
are not fulfilled.

Consequently, the consideration of the characteristic
penetration depth δ leads to a frequency dependence of the
liquid mass loading Mi, (cf. (10)), and the liquid damping bi

(cf. (11)). In the following, both Mi and bi are considered
constant in the vicinity of the resonance frequency, which
is justified by the high-quality factors and the accompanied
narrow bandwidths of the resonances. Therefore, solving the
differential equation (9) using the Laplace transform yields

U(s) = 1
1 +

(
2Dn/ωn

)
s +
(
1/ω2

n

)
s2
F(s), (12)

where U(s) and F(s) are the Laplace transforms of the tip
deflection u and the driving force:

1
ω2
n
= Me +Mi

K
,

2Dn

ωn
= be + bi

K
,

(13)

where ωn is the resonance frequency and Dn the damping
factor of the respective vibration mode. From (7) and (13),
one obtains

ω2
n = ω2

n,air
1

1 +
(
2πR3/3Me

)
ρ+
(
6πR2/

√
2Me

)(
1/
√
ωn
)√
ηρ

,

2Dn

ωn
= 2Dn,air

ωn,air

(
1 +

6πR
be

η +
6πR2
√

2be

√
ωn
√
ηρ
)

,

(14)

where ωn,air and Dn,air are the resonance frequency and
damping factor of the cantilever without liquid loading.
The oscillating sphere model shows that the cantilever’s
resonance frequency is affected by a term related to the liquid
density, and a second term containing the viscosity-density
product, whereas the time constant Tn = 2Dn/ωn depends
on the viscosity and the viscosity-density product.

For the interpretation of our measurement results involv-
ing rectangular cross-sections, we devised a more generalized
model. Based on (14) and by introducing four independent
coefficients c1, c2, c3, and c4, we have

ω2
n = ω2

n,air
1

1 + c1ρ + c2
(
1/
√
ωn
)√
ηρ

, (15)

Tn = Tn,air
(
1 + c3η + c4

√
ωn
√
ηρ
)
, (16)

where Tn,air is the in-air time constant 2Dn,air/ωn,air. The
values of the parameters ci are determined by the tip size
and geometry, the effective cantilever mass and damping, the
dipping depth d (Figure 2(b)), and the respective mode of
vibration n.

Figure 5 elucidates the model given by (15) and (16). We
consider four liquids LA, LB, LC, and LD of which LA and LB

are of the same density ρ1, whereas LC and LD are of the same
viscosity η3. The expected values of ωn and Tn are given by
markers in the figure. The curves in the figure represent the
results expected for liquids of the same viscosity and density,
respectively.

For the determination of viscosity and density of an
unknown liquid, (15) and (16) have to be solved for η and
ρ. The system of equations can be written as

A = Bρ + C
√
ηρ,

D = E
√
ηρ + Fη,

(17)
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Figure 7: Resonance frequency ω1 and time constant T1 obtained for the four different tips and a variety of sample liquids. The crosses (+)
in the diagrams represent the calculated values obtained from the parameter fit and show good agreement between the experimental results
and the model.
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Figure 9: Fitted parameter values c1, c2, c3, and c4 obtained by
fitting the model equations to the measurement results.

where A = ω2
n,air/ω

2
n−1, B = c1, C = c2/

√
ωn,D = Tn/Tn,air−

1, E = c4
√
ωn, and F = c3. Solving the system of equations

yields

ρ1,2 = −1
2
ACE − 2ABF − C2D

B(BF − CE)

±
√√√√1

4

(
ACE − 2ABF − C2D

)2

B2(BF − CE)2 − A2F

B(BF − CE)
,

η1,2 = −1
2
CDE − 2BDF − AE2

F(BF − CE)

±
√√√√1

4

(
CDE − 2BDF − AE2

)2

F2(BF − CE)2 − BD2

F(BF − CE)
.

(18)

For the cantilevers used in this work, it turns out that BF −
CE = c1c3 − c2c4 < 0. Furthermore, all the coefficients of
(17) are positive, that is, A,B,C,D,E,F > 0. Therefore, in
(18), only that ρ1,2 and η1,2, respectively, are positive which
exhibit a plus before the root sign, that is,

ρ = −1
2

(
c2c4 − 2c1c3

)(ω2
n,air

ω2
n
− 1
)
− c2

2

ωn

(
Tn
Tn,air

− 1
)

c1
(
c1c3 − c2c4

)

+

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
4

[(
c2c4 − 2c1c3

)(ω2
n,air

ω2
n
− 1
)
− c2

2

ωn

(
Tn
Tn,air

− 1
)]2

c2
1

(
c1c3 − c2c4

)2

−
c3

(ω2
n,air

ω2
n
− 1
)2

c1
(
c1c3 − c2c4

)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

1/2

,

η = −1
2

(
c2c4 − 2c1c3

)( Tn
Tn,air

− 1
)
− c2

4ωn

(ω2
n,air

ω2
n
− 1
)

c3
(
c1c3 − c2c4

)

+

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
4

[(
c2c4−2c1c3

)( Tn
Tn,air

−1
)
−c2

4ωn

(ω2
n,air

ω2
n
−1
)]2

c2
3

(
c1c3 − c2c4

)2

−
c1

(
Tn
Tn,air

− 1
)2

c3
(
c1c3 − c2c4

)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

1/2

.

(19)

4. MEASUREMENTS

With the setup depicted in Figure 2(a), the frequency
response of the cantilevers is examined. The lock-in amplifier
(Stanford Research SR830) is used to drive the cantilever and
to measure the sensor voltage Vs and the phase shift φ(jω)
between the driving voltage, that is, the driving force and
the sensor voltage, that is, the actual cantilever deflection.
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Table 2: Reference values (dynamic viscosity η and mass density ρ)
of the sample liquids used in the measurements and the expected
depth of penetration δ at an angular frequency of ω = 2π·100 Hz,
see (8). The dynamic viscosity was measured using a Brookfield
LVDV+II-CP cone/plate rheometer at an ambient temperature of
23◦C.

Sample liquid Viscosity η Density ρ δ (100 Hz)

AK150 silicone oil 130 mPa·s 965 kg/m3 0.65 mm

AK350 silicone oil 440 mPa·s 979 kg/m3 1.2 mm

SIL300 silicone oil 211 mPa·s 1078 kg/m3 0.79 mm

Alcatel A120 oil 270 mPa·s 881 kg/m3 0.99 mm

The measurements are carried out with a sinusoidal driving
voltage of 200 mVrms and within a frequency range from 70
to 110 Hz. At the resonance frequency of the first mode, a
maximum tip deflection of 19 μm (peak-peak) was measured
in air by means of a Polytec OFV-5000/OFV-505 laser
vibrometer.

A variety of oils are used as test liquids: AK150,
AK350 (Wacker Chemie), and SIL300 are silicone oils, and
Alcatel 120 (A120) oil. They exhibit liquid densities in the
range from 881 to 1078 kg/m3 and viscosities from 145 to
440 mPa·s. These nominal liquid parameters are obtained
from data sheets and measurements by means of a Brookfield
LVDV+II-CP cone/plate rheometer (Table 2). The param-
eters of the liquids vary with temperature. As especially
the viscosity is highly temperature dependent, temperature
control of the liquid container has been established by means
of a peltier heater/cooler system. All results presented here
have been obtained at 23◦C.

The dipping depth (Figure 2(b)) was adjusted by lower-
ing the sensor until the tip touches the liquid surface, and
then adding the desired d = 2 mm, using a micrometer
screw. For liquids exhibiting low-surface tensions, like those
considered in this work, a concave meniscus is formed at
the liquid-tip interface. We expect the resulting liquid surface
shape to increase the effective dipping depth, and, therefore,
to influence the sensor’s behavior. Consequently, the sensor
principle would be limited to liquids with similar surface
tensions, which can be assumed for the considered oils.

Figure 6 summarizes the measurement results at mode
1 for tip A in air and immersed in the sample liquids. As
expected from (15) and (16), the liquid loading decreases the
resonance frequencyω1 and increases the damping factorD1.

From the cantilever’s frequency response, we extract the
first mode resonance frequency ω1 = 2π f1 and the damping
factor D1 by fitting a second-order transfer function:

φ(jω) = arg
{

1
1 + jω

(
2D1/ω1

)− (ω2/ω2
1

)
}

(20)

to the phase shift measurements (Figure 6) with respect to
the parameters ω1 and D1.

Figure 7 shows the results for the cantilevers with tips A,
B, C, and D (Table 1) and the sample liquids (Table 2). The
left column of Figure 7 shows the measured time constant
T1 = 2D1/ω1 versus the dynamic viscosity η of the sample
liquids. The results for each cantilever appear to be nearly

Table 3: Determination of viscosity and density of an olive oil
sample by means of vibrating cantilevers. The density ρ and the
viscosity η have been calculated from the measurement results
ω1 = 2π f1 and T1 using (19). The density and viscosity obtained
by means of weighting and a cone-plate rotational viscometer,
respectively, are ηref = 66.4 mPa·s and ρref = 913 kgm−3.

Cantilever f1 T1 Viscosity η Density ρ

Tip A 95.07 Hz 88.24 μs 66.4 mPa·s 919.7 kgm−3

Tip B 103.15 Hz 58.80 μs 62.9 mPa·s 921.4 kgm−3

Tip C 94.44 Hz 50.43 μs 64.6 mPa·s 920.1 kgm−3

Tip D 95.83 Hz 40.88 μs 67.6 mPa·s 908.6 kgm−3

lying on a single trend curve, indicating that T1 is dominantly
influenced by the liquid’s dynamic viscosity. According to
model equation (16), the value of c4 thus must be small
compared to c3.

Figure 7, right column, depicts the resonance frequency
f1 versus the liquid density. The results are widely spread in
the ρ- f1 plane. Obviously, the resonance frequency of the
cantilever tip immersed in the liquid is strongly influenced
by both the liquid’s density and viscosity. In our model, this
relationship is described by (15).

Using the measurement results (Figure 7), the model
parameters c1, c2, c3, and c4 can be determined. Figure 8
illustrates the model equations (15) and (16) and the param-
eter fit procedure. The values of ω1,air and T1,air are obtained
from a single measurement of the vibrating cantilever in air.
Furthermore, each measurement in a sample liquid yields a
pair of (ω1,T1). The values of viscosity and density, η and
ρ, of each sample liquid are also known (Table 2). Finally, a
fit algorithm applied to the model equations results in the
model parameters c1, c2, c3, and c4 for a particular cantilever.
The results of this parameter fit are depicted in Figure 9.
The diagram shows the model parameters c1, c2, c3, c4 for
the cantilevers with different tips. It is important to note
that the parameters do not only depend on the width of the
attached tip, but also on the mass and the intrinsic damping
of the entire cantilever. Therefore, the parameter values do
not necessarily decrease with the tip width, as shown by the
location of the tip D marker in the c3-c4 plane (Figure 9).
The PZT bending actuator, with tip D has being attached,
was not sealed by a protective coating, and thus features
a lower intrinsic damping. However, the parameter fitting
process described above yields parameter values considering
such different behaviors of the cantilevers.

For a validation of the model, the parameters determined
above were used to calculate the values of ω1 and T1 for each
tip-liquid combination. These calculated values are indicated
by crosses (+) in Figure 7 and are in good agreement with the
experimental data.

At last, we use the model parameters obtained above to
determine the viscosity and density of an olive oil sample.
The measurement results, that is, the resonance frequencies
ω1 and the time constants T1 of the cantilevers immersed in
the sample liquid are given in Table 3. From these results, the
density and the viscosity of the liquid are calculated using
(19), respectively.
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5. CONCLUSION

The change of the dynamic behavior of a vibrating cantilever
allows to investigate the physical properties of liquids. Var-
ious types of small tips of different geometries are attached
to the cantilever and immersed into the sample solutions.
The liquid surrounding the cantilever tip changes both the
resonance frequency and the damping of the entire cantilever
structure. To be able to conclude, from the measured
frequency response to the liquid’s parameters, an analytical
model is needed. The developed model is based on the forces
acting on an oscillating sphere in liquid, but generalized
model parameters are used to consider the actual geometries
of the applied cantilever tips. These parameters, furthermore,
include the electrical and mechanical characteristics of the
beam, which, therefore, must not be known. The model
proved to be well suited for the characterization of various
cantilevers and tip geometries by measuring in liquids
with known density and viscosity. To extract the model
parameters from the measured data, a curve fitting procedure
was performed. The obtained parameters are specific for
each cantilever tip and allow the subsequent simultaneous
determination of density and viscosity of unknown liquids.
Compared to other works, the sensor features high-quality
factors of the considered resonance mode even for highly
viscous liquids, greatly extending the measurement range.
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