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reduction method based on empirical balanced truncation is developed and applied to the Galerkin model. The rationale for doing
so is that linear subspace approximations to exact submanifolds associated with nonlinear controllability and observability require
only standard matrix manipulations utilizing simulation/experimental data. The proposed method uses a chirp signal as input
to produce the output in the eigensystem realization algorithm (ERA). This method estimates the system’s Markov parameters
that accurately reproduce the output. Balanced truncation is used to show that model reduction is still effective on ERA produced
approximated systems. The method is applied to a prototype convective flow on obstacle geometry. AnH∞ feedback flow controller
is designed based on the reduced model to achieve tracking and then applied to the full-order model with excellent performance.

Copyright © 2008 Seddik M. Djouadi et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. INTRODUCTION

Recently there has been significant interest in model reduc-
tion for the purpose of control design [1–9]. One such
application of reduced-order modeling is control design in
the context of aerodynamic flow. Aerodynamic flow control
is a research area of great interest to the air force and the
fluid mechanics community. Presently considerable research
efforts are working with feedback control law design for
systems described by PDEs that need a very large number of
states to accurately simulate their characteristics. However,
recent advances in the design of actuators and sensors can
be leveraged for better system control only if the control
design methods provide a reliable low-order controller [10].
Additionally, simulation, and experimental diagnostics are
making applications such as the suppression of acoustic
tones in cavities, separation control for high lift, and
trajectory control without the need to move hinged surfaces

a possibility [11]. However, these applications require the
integration of feedback control because of the need for
robustness to flight condition and vehicle attitude, precision
tracking, overcoming low-fidelity models, or moving a
system away from a stable solution or limit cycle as efficiently
as possible [11].

The traditional systematic development of feedback
control laws for these systems subject to a large number of
states is currently an intractable problem. Feedback control
strategies offer the possibility to improve performance and
reduce control power through the control of unstable
structures in the flow field. Reduced models are important
for the design of feedback control laws, which rely on models
that capture the relevant dynamics of the input-output
system and are amenable to control design.

Unfortunately, it is very difficult to create models that
capture the relevant dynamics of the input-output system.
For example, computational fluid dynamics simulations can
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provide good solutions to a discretized version of the Navier-
Stokes equation [1, 12]. However, accurate simulations for
simple shapes such as two-dimensional airfoils, or complex
shapes, such as a full vehicle, require several thousands to
millions of states. Therefore, the simulation results are not
directly useful for control design [11]. Complexity in the
model is a legitimate need. The large number of states is
necessary to capture important flow features that occur at
extremely small spatial scales. Although these small flow
features might seem insignificant, if they are not captured,
it is not possible to analyze if they are necessary in securing
the closed-loop system’s overall stability [10].

POD has been extensively investigated in distributed
parameters systems due to its order reduction capability [7–
9, 13, 14], and balanced truncation, which is a simple yet
efficient model reduction technique widely used in reducing
model orders of high-order linear systems [15–17]. POD
models of only a few dozen states can often accurately
capture the input-output behavior of systems that have
full-order system models of thousands of states [11]. In
addition to using the POD method in conjunction with
model reduction techniques, the idea of using empirical
gramians is growing in popularity for use in an approximate
balanced truncation [4, 18–20]. Further, some work has been
done on finding nonlinear empirical Gramians for balanced
truncation [20, 21].

In fluid flow configurations it is not uncommon for
discretized flow models to describe thousands to millions of
state variables, for example, if one uses a linear quadratic
regulator (LQR) control formulation, roughly 1012 Riccati
unknowns need to be calculated for a discretized flow
model describing 106 states. Existing computing power and
computational algorithms are not capable of solving an LQR
problem of such large dimension. For dynamical models
that are very large scale, such as those describing fluid flow
configurations, it is apparent that the order of the system
must be reduced prior to control law design [22]. This
prevents us from using closed-loop model reduction strategy
wherein the system is part of a closed-loop system with a
controller [23].

In the area of fluid mechanics controls must often be
fixed to the boundary of the problem geometry. For example,
control of flow separation over an airfoil requires that
actuation and sensing be done on the airfoil surface [11]. The
problem geometry used for this project is one example of a
case where control is restricted to the boundaries by physical
necessity.

The paper is organized as follows. In Section 2, we
introduce a prototype flow problem geometry that is used
to apply the proposed order reduction techniques. Section 3
introduces the eigensystem realization algorithm (ERA) to
identify the Markov parameters of the system, and as a
product of the empirical gramians. Section 4 introduces
empirical balanced truncation. This method is based on
approximate (empirical) controllability and observability
gramians and uses only a single simulation/experimental
test. In Section 5, empirical balanced truncation and the
ERA algorithm are applied to the Galerkin model, and
numerical results are provided to show the effectiveness of

the proposed method. In Section 6, an H∞ controller based
on the empirical reduced model and which achieves tracking
is discussed. The responses of the controlled closed loop
on the full-order model are presented and show that the
H∞ controller achieves good tracking performances despite
being designed on a much lower model than the original
model. Section 7 contains concluding remarks.

2. PROBLEM GEOMETRY

The specific problem geometry considered is shown in
Figure 1. The idea and methods presented here could be
modified to apply to a different geometry or obstacle shape.
The problem statement with its corresponding boundary
conditions and governing equations was taken from [10].
A realistic example of this geometry in an aerodynamic
application would be a payload hatch open during flight with
actuator control only on the boundary. LetΩgap be the region
defined by [a1, a2] × [b1, b2]. Let Ωfull be the region defined
by (a0, aend) × (b0, bend). Then the problem domain is given
by Ω = Ωfull/Ωgap. In this problem setup, Ωgap is an obstacle.

The system dynamics that act within the problem
domain are described by the two-dimensional (2D) Burgers’
equation [10]

∂

∂t
w(t, x, y) +∇ · F(w)

= 1
r

(
∂2

∂x2
w(t, x, y) +

∂2

∂y2
w(t, x, y)

)
,

(1)

where the form of F(w) is

F(w) =
[
c1
w2(t, x, y)

2
c2
w2(t, x, y)

2

]T
. (2)

In this case, the value for c1 is equal to 1 and c2 is equal
to 0. The value r is similar to the Reynolds number used
in the Navier-Stokes equation. This parameter controls how
much nonlinearity is present in the problem. The value used
is 300, a small “Reynolds number,” but it still allows for the
nonlinearity to show in the problem.

Dirichlet boundary conditions located on the obstacle
top and bottom are denoted by Γtop and Γbottom. A Dirichlet
boundary condition is a first-type boundary condition that
specifies the values of the solution defined by f (x) on a
domain boundary [24]. The form of the boundary condition
is

w(t, x, y) = f (t, x, y) ∀(x, y) ∈ ∂Ω. (3)

The boundary conditions on the top and bottom are
described by the following:

w
(
t,Γbottom

) = ubottom(t)Ψbottom(x),

w
(
t,Γtop

) = utop(t)Ψtop(x).
(4)

Here utop(t) and ubottom(t) are the control inputs on the top
and bottom boundaries, respectively; the spatial functions
Ψtop(x) and Ψbottom(x) describe the spatial effect that the
controls have on the top and bottom boundaries.
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Figure 1: Problem geometry.

The boundary condition on the airflow intake side is

w
(
t,Γin

) = f (y) (5)

and it is parabolic in nature. The airflow outtake side has a
Neumann boundary condition that has the form [24]

∂

∂x
w
(
t,Γout

) = 0. (6)

On all of the remaining boundaries of Ω,w(t, x, y) is set
equal to 0 for all values of t. Finally, the initial conditions
for the interior are given by

w(0, x, y) = w0(x, y) ∈ L2(Ω). (7)

A numerical solution was found by simulation using a
uniformly spaced grid. The resulting system model contains
a little more than 2000 states [11]. The POD model con-
struction is based on the total energy captured. A condition
that 99.9% of system energy must be captured was used for
determining how many system modes were retained. This
condition was met by a 40 POD basis. Although this is
a major reduction from the numerical solution, it will be
shown that important system dynamics can be retained with
even lower state number system models.

The general approach of POD is to construct a series
of solution “snapshots.” These snapshots are generated by
numerical simulations of the governing system equation(s)
with a variety of input equations [6, 25]. The snapshots are
needed to generate the correlation matrix that is used to
find the POD basis. It is important to choose relevant input
signals for the numerically simulated system. Further, these
inputs should be similar to the expected inputs of the real
system. The inputs used for system identification are of the
form [10]

ubottom(t) = β sin
(
0.25t2

)
, utop(t) = 0,

ubottom(t) = 0, utop(t) = β sin
(
0.25t2

)
,

ubottom(t) = β sin
(
0.25t2

)
, utop(t) = β sin

(
0.25t2

)
,
(8)

where the values for β are −3, − 2 and −1 and the range for
t is 0 to 10 seconds with a sample every 50 milliseconds. The
squelch signal for all three values of β is shown in Figure 2.

The numerical simulation was performed to create the
ensemble of solution snapshots {Sk(x, y)}Mk=1 [10]. The value
for M (the number of snapshots) must be greater than the
number of modes that one will choose for the approximated
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Figure 2: Test inputs used to generate the snapshots.

system model. For a good representation M should be much
larger than the desired size for the POD basis [10].

The solution to the PDE is assumed be finite energy, that
is, belongs to the Hilbert space L2([0, T)×Ω) . The solution
can be approximated as

w(t, x, y) ≈
n∑
k=1

αk(t)φk(x, y), (9)

where the αk’s are time varying coefficients that multiply the
spatial functions φk’s and

αk ∈ L2([0,T)
)
, φk(x, y) ∈ L2(Ω), (10)

where L2([0, T)) and L2(Ω) are the standard Hilbert spaces
of absolutely square integrable functions defined, respec-
tively, on the time interval [0, T) and spatial domain Ω. The
approximation (9) can be as accurate as desired since the
tensor space

L2([0,T))⊗ L2(Ω)

:=
{ n∑
k=1

αk(t)φk(x, y), αk(t) ∈ L2([0,T)),

φk(x, y) ∈ L2(Ω), ∀n integer

} (11)

is dense in L2([0, T)×Ω) [18].
Any basis for L2(Ω) can be used to construct the

approximation of the solution w(t, x, y). Here we use the
POD basis {φk} since it is optimal in the following sense [2]:

μn := inf
αk∈L2([0,T)),
φk(x,y)∈L2(Ω)

∥∥∥∥∥w(t, x, y)−
n∑
k=1

αk(t)φk(x, y)

∥∥∥∥∥
2

.

μn −→
n→∞ 0.

(12)
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In [2], it is shown that solving the above optimization
reduces to the usual POD optimality in the average kinetic
energy sense (15) discussed below [25].

The POD basis function ϕi is chosen to maximize
the average projection of the member ui onto ϕi suitably
normalized [25]

max
ϕi∈L2(Ω)

∣∣〈ui,ϕi〉∣∣2

∥∥ϕi∥∥2
2

. (13)

To construct numerically the POD basis {ϕj}, we build the
correlation matrix L, of size M ×M, composed of the inner
products of the snapshots. In L2(Ω) we have

Lk, j =
〈
Sk, Sj

〉
, (14)

〈
Sk, Sj

〉 =
∫
Ω
SkS

∗
j dx dy, (15)

where ∗ denotes complex conjugate transpose.
A spectral decomposition of the matrix L is performed.

The n largest eigenvalues {λ1, λ2, . . . , λn} of the matrix L
are found and placed in descending order. Then the set of
eigenvectors are identified to be {v1, v2, . . . , vn}.

The resulting orthonormal POD basis {ϕj} of dimension
n can be constructed using the information found from
the correlation matrix L. First, the eigenvectors of L are
weighted by their corresponding eigenvalues and normalized
according to [10]

λk
∥∥vk∥∥2 = 1, for k = {1, 2, . . . ,n}. (16)

Then, the POD basis set is formed according to

ϕk(x, y) =
M∑
j=1

vk, jS j(x, y) (17)

with vk, j being the jth component of the eigenvector vk.
Solving (17) gives n ϕk’s, which constitute the POD basis of
dimension n.

The governing equation is projected onto the POD
basis. The projection is accomplished via a Galerkin type
projection and results in a system of ordinary differential
equations (ODEs). The Galerkin projection results in only a
weak solution to the PDE. However, this weak solution with
finite difference approximations of the boundary conditions
eventually leads to a nonlinear temporal model for the
temporal or POD coefficients {αk} [10].

Projecting (1) onto the POD basis yields [10]
∫
Ω

∂

∂t
w(t, x, y)ϕk(x, y)dx

= 1
Re

(∫
∂Ω

(∇w(t, x, y) · n)ϕk(x, y)dA(x)

−
∫
Ω
∇w(t, x, y) · ∇ϕk(x, y)dx

)

−
(∫

∂Ω

(
F(w) · n)ϕk(x, y)dA(x)

−
∫
Ω
F · ∇ϕk(x, y)dx

)
,

(18)

where the first term on the right-hand side is

∫
∂Ω

(∇w(t, x, y) · n)ϕk(x, y)dA(x)

=
∫ a2

a1

∂

∂y
w
(
t, x, b1)ϕk

(
x, b1

)
dx

−
∫ a2

a1

∂

∂y
w
(
t, x, b2

)
ϕk
(
x, b2

)
dx

−
∫ bend

b0

∂

∂x
w
(
t, a0, y

)
ϕk
(
a0, y

)
dy.

(19)

The Neumann boundary condition forces the portion of the
boundary integral over b0 to bend along aend to be 0, that is,

∫ bend

b0

∂

∂x
w
(
t, aend, y

)
ϕk
(
aend, y

)
dy = 0. (20)

The second boundary integral is decomposed as follows

∫
∂Ω

(
F(w) · n)ϕk(x, y)dA(x)

= 1
2

∫ bend

b0

(
w
(
t, aend, y

)2
ϕk
(
aend, y

)
− f (y)2ϕk

(
a0, y

))
dy.

(21)

This solution does not explicitly include the control inputs
or boundary condition information into the governing
equation. In order to do so an approximation of the partial
derivatives is carried out including the control inputs and the
boundary data. If h denotes the step size between the points
on the uniform Cartesian grid used for the finite-difference
solution, then we have [10]

∂

∂y
w
(
t, x, b1

) ≈ ubottom(t)Ψbottom(x)−w(t, x, b1 − h
)

h
,

∂

∂y
w
(
t, x, b2

) ≈ w
(
t, x, b2 + h

)− utop(t)Ψtop(x)

h
,

∂

∂x
w
(
t, a0, y

) ≈ w
(
t, a0 + h, y

)− f (h)
h

.

(22)

After substitutions w(t, x, y) can be approximated as a linear
combination of POD modes when the αk’s are solved in the
following system model. Then, the temporal model for the
system is given by [10]

α̇ = Aα + Bu +N(α) + F, α(0) = αo, (23)

where α ∈ Rn and the matrices A is n× n, B is n× 2, N and
F are both vectors n× 1. The output equation will be simply
chosen to be

y(t) = α(t). (24)

In this model, the dimension of the state vector α is 40
which corresponds to 40 POD modes. The first 8 POD modes
corresponding to the first 8 temporal coefficients are shown
in Figure 3. The first model corresponds to the baseline mode
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and the remaining modes to actuated modes, that is, the
modes due only to the input.

To assess the validity of the POD model the following test
inputs, which are different from the inputs used to generate
the snapshots, are applied at the boundary

u1(t) = sin
(

3πt
4

)
, u2(t) = sin

(
3πt

2

)
. (25)

In Figure 4, dashed lines denote the linear combination of
POD modes restricted to the boundary. Solid lines denote the
boundary test inputs. As can be seen in Figure 4, there is very
good agreement between the boundary conditions specified
for the full-order system and the linear combination of POD
modes restricted to the boundary.

The goal of model reduction is to construct another
nonlinear system [10, 11]

α̇r = Arαr + Bru +Nr
(
αr
)

+ Fr , (26)

where αr ∈ Rr and r < n, such that the behavior of the
two systems is similar for states in some region of the state
space. The reduced model is derived via the construction of
an immersion/projection pair [21]

α = T̃αr , αr = Tα, TT̃ = Ir , (27)

where Ir is the r×r identity matrix, resulting in the following
reduced model:

α̇r = TAT̃αr + TBu + TN
(
T̃αr

)
+ TF,

y(t) = CT̃αr(t).
(28)

This is carried out by developing an empirical balanced
truncation algorithm which is based on simulation input-
output measurements of the nonlinear Galerkin model. To
do so we need first to introduce balanced truncation model
reduction for linear time-invariant systems.

3. EIGENSYSTEM REALIZATION ALGORITHM (ERA)

Several frequency domain identification techniques are used
in practice to identify the model parameters. One such
method is the eigensystem realization algorithm (ERA)
technique [26]. The ERA-based system realization model is
created directly from empirical data and frequency domain
characteristics of transfer functions. This method is applied
to discrete time versions of system models.

A basic relationship between the Markov parameters and
the input and output relationship in discrete time is

y(k) =
∞∑
	=0

Y(	)u(k − 	), (29)

Y(0) = D, Y(1) = CB, . . . ,Y(k) = CAk−1B. (30)

An alternative form to (29) can be created not using
the actual outputs and inputs but replacing the output
term by the cross-correlation between the inputs and the
corresponding outputs [26]

Ryu(k) =
∞∑
	=0

Y(	)Ruu(k − 	), (31)

where the length of the data sequence is

Ruu(k) = 1
m

m−1∑
τ=0

u(τ)uT(k − τ),

Ryu(k) = 1
m

m−1∑
τ=0

y(τ)uT(k − τ).

(32)

The basic process for finding the Markov parameters starts
using the ratio of the power spectral density of the cross-
correlation between the inputs and outputs and the power
spectral density of the autocorrelation between the input
signals. These power spectral densities are given by the
following:

Pyu(k) = 1
m

m−1∑
τ=0

Ryu(τ)e− j(2πk/m)τ ,

Puu(k) = 1
m

m−1∑
τ=0

Ruu(τ)e− j(2πk/m)τ .

(33)

The ratio of the two power spectral densities is the frequency
response function and is given by [26]

G(zk) = Pyu(k)

Puu(k)
. (34)

Then, the final step is to take the inverse Fourier transform
to find the pulse response (Markov parameter) matrices [26]

Yk := Y(k) =
∞∑
	=0

G
(
zk
)
e j(2π	/m)k. (35)

The Hankel matrix containing the Markov parameters is of
the following form:

Hlq =

⎡
⎢⎢⎢⎢⎣
Y1 Y2 · · · Yq
Y2 Y3 · · · Yq+1
...

...
...

...
Yl Yl+1 · · · Yq+l−1

⎤
⎥⎥⎥⎥⎦ . (36)

The individual Yk’s correspond to the following sequence:

Y0 = D, Y1 = CB, . . . ,Yk = CAk−1B. (37)

In some cases, the input data for the ERA method might be
provided by an experiment on a real system. However, in
this paper a unique approach of using the Galerkin model
in the place of the real system was used to generate the
empirical data. The full-order system model was created
using finite-difference methods. Recall that the control
inputs were explicitly placed in the boundary conditions
because the control inputs do not show up explicitly in two-
dimensional Burgers’ equation. However, the weak Galerkin
model results in a nonlinear state space model that simplifies
the relationship between the input and outputs. The chirp
signals used for the excitation of the Galerkin model are of
the following form and are shown in Figure 5:

u1(t) = − sin
(
0.55t2

)
,

u2(t) = − sin
(
0.60t2

)
.

(38)
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Figure 3: First eight POD modes.

4. EMPIRICAL BALANCED TRUNCATION

The dynamics of (finite dimensional) linear time-invariant
(LTI) systems are governed by a state space model of the form

G : ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t) +Du(t),
(39)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the input,
and y(t) ∈ Rp is the output.

The first step in applying balanced truncation is to
compute a coordinate transformation M such that the
controllability and observability gramians, denoted Wc and

Wo, respectively, of the system are equal and diagonal.
Assuming that (39) is stable, these gramians are solutions of
the following Lyapunov equations [16, 17, 19]:

AWc +WcA
∗ + BB∗ = 0,

A∗Wo +WoA + C∗C = 0,
(40)

where A∗ denotes complex conjugate transpose.
A balanced realization needs a similarity transformation

M such that the transformed gramians are equal and satisfy
[16, 17, 19]

Ŵo = Σ = Ŵc, (41)
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Figure 4: Boundary control accuracy.

where the matrix Σ is a diagonal matrix containing constants
in monotonically decreasing order.

Balanced model reduction requires the knowledge of
the controllability and observability gramians. The latter are
obtained by solving Lyapunov equations, which is prohibitive
for large-scale systems. For a system with n states, the
controllability and observability matrices are n×n symmetric
matrices and therefore solving each one of them involves
finding n(n + 1)/2 unknowns. An alternative is to develop a
balanced truncation algorithm based on empirical gramians,
which are constructed solely from a single simulation using a
sufficiently rich input. In the next paragraph we discuss how
this is carried out.

The computation cost to solve large Lyapunov equations
for the controllability and observability gramians prompts
us to propose a balanced truncation algorithm, based on
empirical gramians constructed from input-output data
measurements. To this end, let us first introduce the l-step
observability and q-step controllability matrices [15]

Ol :=

⎡
⎢⎢⎢⎢⎢⎢⎣

C
CA
CA2

...
CAl−1

⎤
⎥⎥⎥⎥⎥⎥⎦

,

Rq := [B AB A2B · · · Aq−1B
]

(42)

which give rise to the l-step observability and q-step
controllability gramians

Wol := O∗l Ol, Wcq := RqR
∗
q . (43)

As the numbers q and l approach infinity, these empirical
gramians approach the true gramians [15]

lim
l→∞

Wol =Wo, lim
q→∞Wcq =Wc. (44)

The goal is to find a balancing transformation matrix M that
will approximately balance the empirical gramians, that is,

Ŵcq :=MWcqM
∗ = (M∗)−1

WolM
−1 =: Ŵol = Σ. (45)

The matrix M can then be applied back to the original system
model to produce an approximately balanced realization.

The product of the l-step controllability and the q-step
observability matrices gives a Hankel matrix, simply a matrix
that has the ith column identical to the ith row, denoted Hlq,
containing the Markov parameters CAkB, k = 0, 1, . . . , of
the system in the following way:

Hlq := OlRq =

⎡
⎢⎢⎢⎢⎣

CB CAB · · · CAq−1B
CAB CA2B · · · CAqB

...
...

. . .
...

CAl−1B CAlB · · · CAl+q−2B

⎤
⎥⎥⎥⎥⎦ (46)

for integers l and q chosen such that [15]

rank
(
Hlq

) = rank
(
H(l+1)(q+ j)

) = n, ∀ j ≥ 1. (47)

In terms of the SVD decomposition of Hlq

Hlq = UΣV∗

= [U1 U2
][Σ1 0

0 0

][
V∗

1

V∗
2

]
.

(48)

The balancing transformation M is constructed as [4]

M = RqV1Σ
−1/2
1 . (49)

A straightforward computation shows

Ŵcq :=M−1WcqM
∗−1

=M∗WolM

=: Ŵol = Σ1.

(50)

Balanced truncation can be realized by the usual way; if σr �
σr+1 for some r, then we can partition Σ1 as

Σ1 =
[
Σr 0
0 Σr+1

]
, (51)

where

Σr = diag
(
σ1, σ2, . . . , σr

)
,

Σr+1 = diag
(
σr+1, σr+2, . . . , σn

)
.

(52)

A columwise conformal partition of U1 and V1

U1 =
[
Ur Un−r

]
, V1 =

[
Vr Vn−r

]
(53)
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Figure 5: Excitation inputs for ERA method.

yields the immersion/projection pair [4]

T̃r = RqVrΣ
−1/2
r , Tr = Σ−1/2

r U∗
r Ol, TrT̃r = Ir (54)

and from which a reduced-order r-dimensional model with
state matrices is deduced

Ar = TrAT̃r , Br = TrB, Cr = CT̃r . (55)

The above construction only requires estimates of the
Markov parameters

CAkB, k = 0, 1, . . . , l + q − 1. (56)

The Markov parameters can be computed from a single
simulation in which a sufficiently rich input signal is applied
and the output responses are collected. In the next section,
the discrete Fourier transform (DFT) is used to map time
domain data into spectral densities from which frequency
response estimates are calculated using the ERA [26].

5. APPLICATION TO THE GALERKIN MODEL

The empirical balanced truncation based on linear systems is
applied to the Galerkin model

α̇ = Aα + Bu +N(α) + F, α(0) = αo (57)

which has an equilibrium in steady state, denoted by αss. The
rationale for doing so is that linear subspace approximations
to exact submanifolds associated with nonlinear controlla-
bility and observability require only standard matrix manip-
ulations utilizing simulation/experimental data as explained
in [4, 20, 21]. The computational advantages of the scheme
presented here carry over directly to the nonlinear setting.

The reduced-order model is derived as discussed through
the construction of the immersion/projection nonlinear
system pair

α = T̃αr , αr = Tα. (58)

This results in the following reduced-order model:

α̇r = Arαr + Bru +Nr
(
T̃αr

)
+ Fr , αr(0) = Tαo,

Ar := TArT̃ , Br := TB, Nr := TN , Fr := TF.
(59)

If (57) has a linearization around the steady state equilibrium
αss,

α̇ = A	α + B	u, α(0) = αo, (60)

where

A	 =
∂
(
Aα + Bu(t) +N(α) + F

)
∂α

∣∣∣∣
α=αss

,

B	 =
∂
(
Aα + Bu(t) +N(α) + F

)
∂u

∣∣∣∣
u
= B,

(61)

and the reduced system linearization around the steady state
equilibrium αss

α̇r = A	rαr + B	ru, αr(0) = Tαo, (62)

where

A	r =
∂
(
Arαr + Bru(t) +Nr

(
T̃αr

)
+ Fr

)
∂α

∣∣∣∣∣
α=αss

,

B	r =
∂
(
Arαr + Bru(t) +Nr

(
T̃αr) + Fr

)
∂u

∣∣∣∣∣
u

= Br.

(63)

The linearization of both models about equilibrium αss is
related by

A	r = TA	T̃ , B	r = TB	. (64)

Empirical balanced truncation applied to the 40th-order
Galerkin model resulted in 14th-order reduced models. The
first 8 temporal coefficients of the 14th-order reduced model
and 2000th full-order model are plotted in Figure 6. Figure 6
shows good agreement between the temporal coefficients.

In Figure 7, we compare the Hankel singular values of
the 2000th full-order linearized and reduced 14th-order
empirical models. As expected the Hankel singular values
corresponding to the reduced-order model are smaller than
the full-order model; nevertheless, the figure shows that they
are close.

In Figure 8, we compare the full-order solutionw(t, x, y)
of Burgers’ equation with the solution based on the 14th-
order ERA model wr(t, x, y). The figure shows that they
behave similarly especially at the boundary where control is
applied.

6. CONTROLLER DESIGN

An H∞ controller was designed based on the linearized 14th
reduced model and applied to the full-order model using
Matlab. The performance was to achieve tracking a fixed
reference signal wref(x) specified for the full-order model.
The tracking problem is depicted in Figure 9, where C is the
controller and P the plant. The computation of the H∞ is
based on the 14th-order reduced model.
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From Figure 9, for tracking purposes the controlled
output is chosen to be the error signal e which is defined to
be the difference between the reference αref and the actual
output y(t), that is,

e(t) := α(t)− αref. (65)

The objective of theH∞ controller C is to stabilize the closed-
loop system and minimize the error e. From Figure 9, in
terms of transfer function matrices of P and C, the transfer
matrix from αref to e is given by the sensitivity function Teαref

defined by

Teαref := (I + PC)−1. (66)
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Figure 8: Full- and reduced-order models’ responses.

αref e(t)
C P

y(t)

−

Figure 9: Closed-loop control system for tracking.

The H∞ control design reduces to the following optimiza-
tion. Find C such that the closed-loop system is stable and
minimizes

∥∥Teαref

∥∥
∞ = sup

‖αref‖2≤1
‖e‖2. (67)

Projecting wref(x) onto the POD basis yields the tracking
coefficients for the reduced-order model. After computing
the H∞ controller we close the loop on the original 2000th
full-order model. The controller is only 14th order since
based on the 14th-order reduced model. The projected
reference onto the POD basis initial condition and reference
are shown in Figure 10. The controlled flow with the action
of the boundary controller is shown in Figure 11. The figure
shows good tracking performance.

7. CONCLUSION

Empirical balanced truncation has been considered in con-
junction with POD as an approach for deriving reduced-
order models and applied to 2D Burgers’ equation. Like
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Figure 10: Flow initial condition and reference.
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POD, empirical balanced truncation is based on simula-
tion/experimental data and can be implemented via standard
matrix computations. Improvements to the scheme origi-
nally proposed in [4, 20] have been presented that lead to
reduced data requirements that may become significant for
applications such as aerodynamic flow control. Essentially,
the balancing transformation is constructed via Markov
parameters that can be identified from measurements col-
lected in a single experiment/simulation. The approach has
been applied with favorable results to 2D Burgers’ equation,
a partial differential equation in two spatial dimensions that
possesses features comparable to the Navier-Stokes equations
governing fluid flow. An H∞ feedback flow controller was
designed based on the empirical reduced model to achieve
flow tracking. The closed loop on the full-order model shows
good flow tracking performance.
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