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Delay-dependent Stability Criteria for Systems with

Differentiable Time Delays

ZHU Xun-Lin1,2 YANG Guang-Hong1, 3

Abstract This paper studies the problem of stability for continuous-time systems with differentiable time-varying delays. By
using the information of delay derivative, improved asymptotic stability conditions for time-delay systems are presented. Unlike the
previous methods, the upper bound of the delay derivative is taken into consideration even if this upper bound is larger than or equal
to 1. It is proved that the obtained results are less conservative than the existing ones. Meanwhile, the computational complexity
of the presented stability criteria is reduced greatly since fewer decision variables are involved. Numerical examples are given to
illustrate the effectiveness and less conservatism of the obtained stability conditions.
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During the past decades, considerable attention has been
devoted to the problem of stability and stabilization for
time-delay systems. When time delays are considered, the
dynamics of systems generally become more complicated
and the stability problem is more challenging. Two types
of stability conditions have been reported in the litera-
ture: the so-called delay-dependent conditions (the condi-
tion containing delay information) and delay-independent
conditions (the condition not containing delay informa-
tion). Because delay-dependent criteria make use of in-
formation on the length of delays, they are less conserva-
tive than the delay-independent ones. For delay-dependent
criteria[1−9], there are two approaches which are now widely
used, the first one is based on model transformation[4], the
other is called the free-weighting matrix method[7].

The approaches based on model transformation can be
classified into four types[4]. The first is a first-order trans-
formation. The second is a neutral transformation. The
third uses the Park′s inequalities and yields a transformed
system that is equivalent to the original one. Fridman and
Shaked[4] combined a descriptor model transformation with
Park and Moon′s inequalities[10] to yield the fourth type of
transformation, which produced less conservative stability
criteria, and whose main merit is the simpleness of con-
troller design. A simplified descriptor system approach to
delay-dependent stability analysis for time-delay systems
was provided in [11]. By this approach, the derived results
were equivalent to those obtained by the descriptor system
approach in [3], but with fewer variables to be determined
compared with those in [3] (that is, some variables in [3] are
redundant). Hence, they are elegant from a mathematical
point of view.

The free-weighting matrix method uses the Newton-
Leibniz formula to obtain a delay-dependent condition[7],
which is more intuitional than the method afore mentioned.
Recently, [8] extended the results in [7] by estimating the
upper bound of the derivative of Lyapunov functional with-

Received April 23, 2007; in revised form December 24, 2007
Supported by Program for New Century Excellent Talents in Uni-

versity (NCET-04-0283), the Funds for Creative Research Groups of
China (60521003), Program for Changjiang Scholars and Innovative
Research Team in University (IRT0421), the State Key Program of
National Natural Science Foundation of China (60534010), National
Natural Science Foundation of China (60674021) and the Funds of
Ph.D. Program of Ministry of Education, China (20060145019)
1. College of Information Science and Engineering, Northeastern

University, Shenyang 110004, P.R. China 2. School of Computer
and Communication Engineering, Zhengzhou University of Light In-
dustry, Zhengzhou 450002, P.R. China 3. Key Laboratory of In-
tegrated Automation of Process Industry, Ministry of Education,
Northeastern University, Shenyang 110004, P. R. China
DOI: 10.3724/SP.J.1004.2008.00765

out ignoring some useful terms. The result obtained in [8]
is one of the latest results in the existing literature.

For systems with time-varying delays, the above men-
tioned literature usually demand that the upper bound of
the derivative of delays must be smaller than 1. If the up-
per bound of the derivative of delays is larger than 1, the
results in [3, 11] are not applicable, whereas [7−8] discard
the information of the derivative of the delays, which is ob-
viously unreasonable. In many cases, the upper bound of
the derivative of delays may not be less than 1, for exam-
ple, in the networked control systems[12−13], the derivative
of delays is equal to 1 almost everywhere. Thus, how to
eliminate the constraint on the upper bound of the delay
derivative is very significant, but there is not any answer
to this problem in the existing literature.

In this paper, a new method is proposed to eliminate the
constraint on the upper bound of the delay derivative, and
new stability conditions are also presented for the systems
with delay. It is proved that the new results are less conser-
vative than some existing ones. Meanwhile, the obtained
stability criteria contain fewer decision variables, hence
they are mathematically less complex and computationally
more efficient. Without changing the conservatism of the
results, the methods for simplifying the delay-dependent
stability conditions obtained by the free-weighting matrix
approach and the descriptor system approach are also pre-
sented.

1 Main results

In this section, the stability of continuous-time systems
with differentiable time-varying delay is analyzed, and a
sufficient condition is derived by using delay derivative de-
pendent Lyapunov function.

Consider the following linear system

ẋxx(t) = Axxx(t) + Adxxx(t − d(t)), t > 0 (1)

xxx(t) = φφφ(t), t ∈ [−η, 0] (2)

where xxx(t) ∈ Rn is the state vector, A and Ad are constant
matrices of appropriate dimensions, and the time delay,
d(t), is a time-varying continuous function that satisfies

τ ≤ d(t) ≤ η (3)

and

ḋ(t) ≤ µ (4)

where τ, η (0 ≤ τ < η), and µ are constants. The initial
condition, φφφ(t), is a continuous vector-valued function with
t ∈ [−η, 0].
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In the previous work, such as [3] and [6], the upper bound
of delay derivative, µ, should be smaller than 1. Though
the results in [7−8] can be applied to the case of µ ≥ 1,
these stability conditions were independent on the upper
bound of the delay derivative, µ.

For the time-delay system described by (1) ∼ (4), the
term

∫ t

t−d(t)

xxx
T(s)Qxxx(s)ds (5)

with Q = QT ≥ 0 is usually taken as Lyapunov functional
(for example, [6−7], [11]). However, if µ ≥ 1, then the term
∫ t

t−d(t)
xxxT(s)Qxxx(s)ds is redundant because

(

∫ t

t−d(t)
xxxT(s)Qxxx(s)ds

)
′

=

xxxT(t)Qxxx(t) − (1 − ḋ(t))xxxT(t − d(t))Qxxx(t − d(t)) ≤

xxxT(t)Qxxx(t) − (1 − µ)xxxT(t − d(t))Qxxx(t − d(t))

and −(1−µ) ≥ 0. This implies that the information of the
derivative of the time-delay term d(t) is not used, which is
obviously unreasonable.

As a matter of fact, the case that the delay derivative is
larger than or equal to 1 is universal. For example, in net-
work control systems, the delay d(t) denotes t − ik, where
ik (k = 1, 2, · · · ) are the sampling instants. Thus, this

kind of delay satisfies ḋ(t) = 1 almost for all t ≥ 0.
For the case of µ ≥ 1, if choosing a positive scalar

0 < α < 1 satisfying αµ < 1, then it follows that

(αd(t))
′

= αḋ(t) ≤ αµ < 1 (6)

and
(

∫ t

t−d(t)
xxxT(s)Qxxx(s)ds

)
′

≤

xxxT(t)Qxxx(t) − (1 − αµ)xxxT(t − αd(t))Qxxx(t − αd(t))
(7)

Thus, the information of the derivative of d(t) can be used.
On the basis of this fact, the following theorem can be

obtained.
Theorem 1. For given scalars τ, η (0 ≤ τ < η), and

0 < α < 1 satisfying αµ < 1, the system described by
(1) ∼ (4) is asymptotically stable if there exist matrices
P = PT > 0, Qi = QT

i ≥ 0 (i = 1, 2, 3, 4), and
Zj = ZT

j > 0 (j = 1, 2, 3), such that

Π =

















Π1 Π2 0 0 (αη)−1Z3 ATU

∗ Π3 θ−1Z2 θ−1Z (βη)−1Z3 AT
d U

∗ ∗ Π4 0 0 0
∗ ∗ ∗ Π5 0 0
∗ ∗ ∗ ∗ Π6 0
∗ ∗ ∗ ∗ ∗ −U

















< 0

(8)
holds, where

Π1 = PA + ATP +
4

∑

i=1

Qi − η−1Z1 − (αη)−1Z3

Π2 = PAd + η−1Z1

Π3 = −(1 − µ)Q3 − η−1Z1 − θ−1Z − θ−1Z2 − (βη)−1Z3

Π4 = −Q1 − θ−1Z2

Π5 = −Q2 − θ−1Z

Π6 = −γQ4 − (αη)−1Z3 − (βη)−1Z3

Z =
3

∑

i=1

Zi

U = ηZ1 + θZ2 + ηZ3

θ = η − τ

β = 1 − α

γ = 1 − αµ

Proof. Construct a Lyapunov functional as

V (xxxt) = xxxT(t)Pxxx(t) +
∫ t

t−τ
xxxT(s)Q1xxx(s)ds+

∫ t

t−η
xxxT(s)Q2xxx(s)ds+

∫ t

t−d(t)
xxxT(s)Q3xxx(s)ds+

∫ t

t−αd(t)
xxxT(s)Q4xxx(s)ds+

∫ 0

−η

∫ t

t+β
ẋxxT(s)Z1ẋxx(s)dsdβ+

∫

−τ

−η

∫ t

t+β
ẋxxT(s)Z2ẋxx(s)dsdβ+

∫ 0

−η

∫ t

t+β
ẋxxT(s)Z3ẋxx(s)dsdβ

(9)

where P > 0, Qi ≥ 0 (i = 1, 2, 3, 4), and Zj > 0 (j =
1, 2, 3) are matrices to be determined.

From the Leibniz-Newton formula, the following equa-
tions are true for any matrices Ni, Si, Mi, Yi, and Ti

(i = 1, 2, · · · , 5) with appropriate dimensions:

2ζζζT(t)N [xxx(t) − xxx(t − d(t)) −

∫ t

t−d(t)

ẋxx(s)ds] = 0 (10)

2ζζζT(t)S[xxx(t − d(t)) − xxx(t − η) −

∫ t−d(t)

t−η

ẋxx(s)ds] = 0 (11)

2ζζζT(t)M [xxx(t − τ ) − xxx(t − d(t)) −

∫ t−τ

t−d(t)

ẋxx(s)ds] = 0 (12)

2ζζζT(t)Y [xxx(t) − xxx(t − αd(t)) −

∫ t

t−αd(t)

ẋxx(s)ds] = 0 (13)

2ζζζT(t)T [xxx(t−αd(t))−xxx(t−d(t))−

∫ t−αd(t)

t−d(t)

ẋxx(s)ds]=0

(14)

where N = [NT
1 NT

2 · · · NT
5 ]T, S = [ST

1 ST
2 · · · ST

5 ]T,

M = [MT
1 MT

2 · · · MT
5 ]T, Y = [Y T

1 Y T
2 · · · Y T

5 ]T,

T = [TT
1 TT

2 · · · TT
5 ]T and ζζζ(t) = [xxxT(t) xxxT(t−d(t)) xxxT(t−

τ ) xxxT(t − η) xxxT(t − αd(t))]T.
Alternatively, the following equations are true:

−

∫ t

t−η

ẋxx
T(s)Z1ẋxx(s)ds = −

∫ t

t−d(t)

ẋxx
T(s)Z1ẋxx(s)ds−

∫ t−d(t)

t−η

ẋxx
T(s)Z1ẋxx(s)ds (15)

−

∫ t−τ

t−η

ẋxx
T(s)Z2ẋxx(s)ds = −

∫ t−τ

t−d(t)

ẋxx
T(s)Z2ẋxx(s)ds−

∫ t−d(t)

t−η

ẋxx
T(s)Z2ẋxx(s)ds (16)

−

∫ t

t−η

ẋxx
T(s)Z3ẋxx(s)ds = −

∫ t

t−αd(t)

ẋxx
T(s)Z3ẋxx(s)ds−

∫ t−αd(t)

t−d(t)

ẋxx
T(s)Z3ẋxx(s)ds−

∫ t−d(t)

t−η

ẋxx
T(s)Z3ẋxx(s)ds (17)
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Taking the time derivative of V (xxxt) for t > 0 along the
trajectory of (1) yields that

V̇ (xxxt) = 2xxxT(t)Pẋxx(t) − xxxT(t − η)Q2xxx(t − η)+

4
∑

i=1

xxxT(t)Qixxx(t) − xxxT(t − τ )Q1xxx(t − τ )−

(1 − ḋ(t))xxxT(t − d(t))Q3xxx(t − αd(t))−

(1 − αḋ(t))xxxT(t − αd(t))Q4xxx(t − αd(t))+

ẋxxT(t)
(

ηZ1 + (η − τ )Z2 + ηZ3

)

ẋxx(t)−
∫ t

t−η
ẋxxT(s)Z1ẋxx(s)ds −

∫ t−τ

t−η
ẋxxT(s)Z2ẋxx(s)ds−

∫ t

t−η
ẋxxT(s)Z3ẋxx(s)ds ≤

2xxxT(t)Pẋxx(t) − xxxT(t − η)Q2xxx(t − η)+

4
∑

i=1

xxxT(t)Qixxx(t) − xxxT(t − τ )Q1xxx(t − τ )−

(1 − µ)xxxT(t − d(t))Q3xxx(t − d(t))

−(1 − αµ)xxxT(t − αd(t))Q4xxx(t − αd(t))+

ẋxxT(t)
(

ηZ1 + (η − τ )Z2 + ηZ3

)

ẋxx(t)−
∫ t

t−d(t)
ẋxxT(s)Z1ẋxx(s)ds−

∫ t−d(t)

t−η
ẋxxT(s)(Z1 + Z2 + Z3)ẋxx(s)ds−

∫ t−τ

t−d(t)
ẋxxT(s)Z2ẋxx(s)ds −

∫ t

t−αd(t)
ẋxxT(s)Z3ẋxx(s)ds−

∫ t−αd(t)

t−d(t)
ẋxxT(s)Z3ẋxx(s)ds+

2ζζζT(t)N [xxx(t) − xxx(t − d(t)) −
∫ t

t−d(t)
ẋxx(s)ds]+

2ζζζT(t)S[xxx(t − d(t)) − xxx(t − η) −
∫ t−d(t)

t−η
ẋxx(s)ds]+

2ζζζT(t)M [xxx(t − τ ) − xxx(t − d(t)) −
∫ t−τ

t−d(t)
ẋxx(s)ds]+

2ζζζT(t)Y [xxx(t) − xxx(t − αd(t)) −
∫ t

t−αd(t)
ẋxx(s)ds]+

2ζζζT(t)T [xxx(t − αd(t)) − xxx(t − d(t))−
∫ t−αd(t)

t−d(t)
ẋxx(s)ds] ≤

ζζζT(t)[Φ1 + Φ2 + ΦT
2 + ηNZ−1

1 NT + θSZ−1ST+

θMZ−1
2 MT + αηY Z−1

3 Y T + βηTZ−1
3 TT+

ĀTUĀ]ζζζ(t)
(18)

where

Φ1 =











Φ11 PAd 0 0 0
∗ −(1 − µ)Q3 0 0 0
∗ ∗ −Q1 0 0
∗ ∗ ∗ −Q2 0
∗ ∗ ∗ ∗ −γQ4











Φ11 =
4

∑

i=1

Qi + PA + (PA)T

Φ2 =
[

N + Y S − N − M − T M −S T − Y
]

Ā =
[

A Ad 0 0 0
]

By the Schur complement, inequality Φ1 + Φ2 + ΦT
2 +

ηNZ−1
1 NT + θSZ−1ST + θMZ−1

2 MT + αηY Z−1
3 Y T +

βηTZ−1
3 TT + ĀTUĀ < 0 is equivalent to

Φ =

[

Φ1 + Φ2 + ΦT
2 Φ3

∗ Φ4

]

< 0 (19)

where

Φ3 =













ηN1 θS1 θM1 αηY1 βηT1 ATU

ηN2 θS2 θM2 αηY2 βηT2 AT
d U

ηN3 θS3 θM3 αηY3 βηT3 0
ηN4 θS4 θM4 αηY4 βηT4 0
ηN5 θS5 θM5 αηY5 βηT5 0













Φ4 = diag{−ηZ1,−θZ,−θZ2,−αηZ3,−βηZ3,−U}

Thus, if Φ < 0 holds, then V̇ (xxxt) < 0 for all t > 0.
Note that

Γ1ΦΓT
1 =

[

Π Π7

∗ Π8

]

(20)

where

Γ1 =

[

I Γ2

0 Γ3

]

Γ2 =













− 1
η
I 0 0 − 1

αη
I 0 0

1
η
I − 1

θ
I 1

θ
I 0 1

βη
I 0

0 0 − 1
θ
I 0 0 0

0 1
θ
I 0 0 0 0

0 0 0 1
αη

I − 1
βη

I 0













Γ3 =















0 0 0 0 0 I

I 0 0 0 0 0
0 I 0 0 0 0
0 0 I 0 0 0
0 0 0 I 0 0
0 0 0 0 I 0















Π7 =











Π71 θS1 θM1 αηY1 + Z3 βηT1

Π72 Π73 θM2 − Z2 αηY2 βηT2 − Z3

ηN3 θS3 θM3 + Z2 αηY3 βηT3

ηN4 Π74 θM4 αηY4 βηT4

ηN5 θS5 θM5 αηY5 − Z3 βηT5 + Z3











Π71 = ηN1 + Z1

Π72 = ηN2 − Z1

Π73 = θS2 + Z

Π74 = θS4 − Z

Π8 = diag{−ηZ1,−θZ,−θZ2,−αηZ3,−βηZ3}

and Γ1 is nonsingular, so it follows that Π < 0 if Φ < 0.
Contrarily, if Π < 0 holds, then Φ < 0 is also true from

(20) by letting

N =











−η−1Z1

η−1Z1

0
0
0











, S =











0
−θ−1Z

0
θ−1Z

0











, M =











0
θ−1Z2

−θ−1Z2

0
0











Y =











−(αη)−1Z3

0
0
0

(αη)−1Z3











, T =











0
(βη)−1Z3

0
0

−(βη)−1Z3











Thus, Φ < 0 holds if and only if Π < 0 holds. �

Remark 1. Theorem 1 gives a new stability criterion,
which is based on linear matrix inequalities (LMIs), and
this criterion is different from existing ones for ordinary
time-delay systems. Its novelty is shown in two aspects.
The first one is that the information of the delay derivative
can be used even if the upper bound of the delay derivative
is not smaller than 1. The second one is that the free-
weighting matrices Ni, Si, Mi, Yi, and Ti(i = 1, 2, · · · , 5)
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introduced by using the Newton-Leibniz formula are all
eliminated in the final stability criterion by (20). Compared
with the existing results, the stability criterion in Theorem
1 contains fewer decision variables, hence it is mathemati-
cally less complex and computationally more efficient.

Remark 2. Theorem 1 presents a new stability condi-
tion for the system with a single delay. Using the similar
method proposed in Theorem 1, we can also get new sta-
bility conditions for the system with multiple delays, here
they are omitted for space limit.

For the case of τ = 0, we can directly derive the following
corollary from Theorem 1.

Corollary 1. For given scalars η > 0, τ = 0, and
0 < α < 1 satisfying αµ < 1, the system described by
(1) ∼ (4) is asymptotically stable if there exist matri-
ces P = PT > 0, Qi = QT

i ≥ 0 (i = 2, 3, 4) and
Zj = ZT

j > 0 (j = 1, 3), such that

Θ =













Θ11 Θ12 0 (αη)−1Z3 ηAT(Z1 + Z3)
∗ Θ22 Θ23 (βη)−1Z3 ηAT

d (Z1 + Z3)
∗ ∗ Θ33 0 0
∗ ∗ ∗ Θ44 0
∗ ∗ ∗ ∗ −η(Z1 + Z3)













< 0

(21)
holds, where

Θ11 = PA + ATP +
4

∑

i=2

Qi − η−1Z1 − (αη)−1Z3

Θ12 = PAd + η−1Z1

Θ22 = −(1 − µ)Q3 − η−1(2Z1 + Z3) − (βη)−1Z3

Θ23 = η−1(Z1 + Z3)

Θ33 = −Q2 − η−1(Z1 + Z3)

Θ44 = −γQ4 − (αη)−1Z3 − (βη)−1Z3

β = 1 − α

γ = 1 − αµ

2 Relation to the existing results

In the above section, new LMI-based delay-dependent
conditions ensuring the stability of system (1) ∼ (4) have
been presented. In the following, we will prove that the
stability conditions obtained in [3], [7], and [8] are more
conservative than Theorem 1. In addition, compared with
[11], the result in [3] can be simplified further.

For convenience of comparison, the result in [8] is listed
as the following lemma.

Lemma 1[8]. For given scalars τ , and η (0 ≤ τ < η),
the linear system (1) ∼ (4) is asymptotically stable if there
exist matrices P = PT > 0, Qi = QT

i > 0 (i = 1, 2, 3),
Zj = ZT

j > 0 (j = 1, 2, 3), and Ni, Mi, Si (i = 1, 2),
such that the following LMI holds:

Λ =

[

Λ1 Λ2

∗ Λ3

]

< 0 (22)

where

Λ1 =









Λ11 Λ12 M1 −S1

∗ Λ22 M2 −S2

∗ ∗ −Q1 0
∗ ∗ ∗ −Q2









Λ11 = PA + A
T
P +

3
∑

i=1

Qi + N1 + N
T
1

Λ12 = PAd + N
T
2 − N1 + S1 − M1

Λ22 = −(1 − µ)Q3 + S2 + S
T
2 − N2 − N

T
2 − M2 − M

T
2

Λ2 =









ηN1 (η − τ )S1 (η − τ )M1 ATU1

ηN2 (η − τ )N2 (η − τ )M2 AT
d U1

0 0 0 0
0 0 0 0









Λ3 = diag{−ηZ1,−(η − τ )

2
∑

i=1

Zi,−(η − τ )Z2,−U1}

U1 = ηZ1 + (η − τ )Z2

In the following, we will prove that Theorem 1 is less
conservative than Lemma 1.

Theorem 2. If inequality (22) is feasible, then inequal-
ity (8) is also feasible.

Proof. If inequality (22) is feasible, then there exists a
sufficient small positive scalar ε > 0, such that

∆ = Λ + εη



















0 0 0 · · · 0 AT

∗ 0 0 · · · 0 AT
d

∗ ∗ 0 · · · 0 0
...

...
...

. . .
...

...
∗ ∗ ∗ · · · 0 0
∗ ∗ ∗ · · · ∗ −I



















+

diag{εI, 0, · · · , 0, 0} < 0

(23)

where Λ is defined in (22). By taking Yi = 0 , Ti = 0 (i =
1, 2, · · · , 5), Nj = 0, Sj = 0, Mj = 0 (j = 3, 4, 5)
and Q4 = εI, Z3 = εI in (19), (19) is equivalent to ∆ < 0
by the Schur complement. Thus, (19) is feasible too. This
implies that (8) is also feasible because (8) is equivalent to
(19). �

Next, to compare the stability result reported in [7] with
Corollary 1 in this paper, the following lemma is needed.

Lemma 2. If Z is a positive definite matrix and A is
a symmetrical matrix, and if Z, A, Y are of appropriate
dimensions and h is a positive constant, then there exists
a symmetrical matrix N ≥ 0, such that

A + hN < 0 (24)

and
[

N Y

Y T Z

]

≥ 0 (25)

hold, if and only if
[

A hY

hY T −hZ

]

< 0 (26)

Proof. (Necessity) From (25), we have

0 ≤ Y Z
−1

Y
T ≤ N (27)

so, from (24), it is seen that A is a negative definite matrix
and that

A + hY Z
−1

Y
T ≤ A + hN < 0 (28)

Thus, it implies that (26) holds by the Schur complement.
(Sufficiency) If (26) holds, by letting N = Y Z−1Y T and

using the Schur complement, (24) is equivalent to (26), and

[

N Y

Y T Z

]

=

[

I Y Z−1

0 I

] [

0 0
0 Z

] [

I Y Z−1

0 I

]T

(29)
so, (25) holds. �

Now, we re-write Theorem 2 in [7] as follows.
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Lemma 3[7]. System (1) ∼ (4) with η > 0, τ = 0, and
µ < 1 is asymptotically stable if there exist positive definite
matrices P > 0, Q > 0, and Z > 0, semipositive definite

matrix N =

[

N11 N12

∗ N22

]

≥ 0, and any appropriately

dimensioned matrices Y and T , such that




Ω1 PAd − Y + TT + ηN12 ηATZ

∗ −(1 − µ)Q − T − TT + ηN22 ηAT
d Z

∗ ∗ −ηZ



 < 0

(30)

and




N11 N12 Y
∗ N22 T

∗ ∗ Z



 ≥ 0 (31)

where

Ω1 = PA + A
T
P + Y + Y

T + Q + ηN11

The following theorem shows that the stability condition
in Corollary 1 is less conservative than the one in Lemma
3.

Theorem 3. If inequalities (30) and (31) are feasible,
then inequality (21) is also feasible.

Proof. By Lemma 2 and under (31), inequality (30) is
equivalent to








Ω2 PAd − Y + TT ηATZ ηY

∗ −(1 − µ)Q − T − TT ηAT
d Z ηT

∗ ∗ −ηZ 0
∗ ∗ ∗ −ηZ









< 0 (32)

where Ω2 = PA + ATP + Y + Y T + Q.
Similar to (20), inequality (32) is equivalent to

Ω =





Ω3 PAd + 1
η
Z ηATZ

∗ −(1 − µ)Q − 1
η
Z ηAT

d Z

∗ ∗ −ηZ



 < 0 (33)

where Ω3 = PA + ATP + Q − 1
η
Z.

Thus, from (33), there exists a small enough positive
scalar ε > 0 such that

Ω + εη





0 0 AT

∗ 0 AT
d

∗ ∗ −I



 + εα(1 − α)ηΩT
4 Ω4 < 0 (34)

where Ω4 =
[

1
αη

I 1
(1−α)η

I 0
]

.

Taking Q3 = Q, Z1 = Z, Q2 = Q4 = 0, Z3 = εI and us-
ing the Schur complement, we can see that inequality (21)
is true from (34). �

Finally, to show the relationship between the delay-
dependent stability condition in [3] and Corollary 1 in this
paper, we rewrite Lemma 1 in [3] as follows.

Lemma 4[3]. System (1) ∼ (4) with τ = 0 and µ < 1 is
asymptotically stable if there exist matrices P1 > 0, S > 0,
Z > 0, N1 ≥ 0, N3 ≥ 0, and P2, P3, Y1, Y2, N2 satisfying
the following linear matrix inequalities (LMIs):





Ψ PT

[

0
Ad

]

− Y T

∗ −S(1 − µ)



 < 0 (35)

and
[

Z Y
∗ N

]

≥ 0 (36)

where

Y =
[

Y1 Y2

]

, N =

[

N1 N2

∗ N3

]

, P =

[

P1 0
P2 P3

]

(37)
and

Ψ = PT

[

0 I
A −I

]

+

[

0 I
A −I

]T

P+

ηN +

[

S 0
0 ηZ

]

+

[

Y

0

]

+

[

Y

0

]T (38)

To compare Lemma 4 with Corollary 1, we compare
Lemma 4 with Lemma 3.

Theorem 4. If inequalities (35) and (36) are feasible,
then inequalities (30) and (31) are also feasible.

Proof. Substituting Ψ, Y , N , and P , in (35) and (36)
by (37) and (38), and permutating some rows and columns
in (35) and (36), respectively, we can get





Ψ1 PT
2 Ad − Y T

1 Ψ2

∗ −(1 − µ)S AT
d P3 − Y2

∗ ∗ Ψ3



 < 0 (39)

and




N1 N2 Y T
1

∗ N3 Y T
2

∗ ∗ Z



 ≥ 0 (40)

where

Ψ1 = PT
2 A + ATP2 + S + Y1 + Y T

1 + ηN1

Ψ2 = P1 − PT
2 + ATP3 + Y2 + ηN2

Ψ3 = −P3 − PT
3 + ηZ + ηN3

Using Lemma 2, we have









Ψ4 PT
2 Ad − Y T

1 Ψ5 ηY T
1

∗ −(1 − µ)S AT
d P3 − Y2 0

∗ ∗ Ψ6 ηY T
2

∗ ∗ ∗ −ηZ









< 0 (41)

where
Ψ4 = PT

2 A + ATP2 + S + Y1 + Y T
1

Ψ5 = P1 − PT
2 + ATP3 + Y2

Ψ6 = −P3 − PT
3 + ηZ

Obviously, the above inequality can be rewritten as

Ξ + CT

[

PT
2

PT
3

]

B + BT
[

P2 P3

]

C < 0 (42)

where

Ξ =









S + Y1 + Y T
1 −Y T

1 P1 + Y2 ηY T
1

∗ −(1 − µ)S −Y2 0
∗ ∗ ηZ ηY T

2

∗ ∗ ∗ −ηZ









C =

[

I 0 0 0
0 0 I 0

]

, B =
[

A Ad −I 0
]

By the elimination Lemma[14], it is readily seen that there
exist matrices Pi (i = 2, 3) that solve inequality (42), if
and only if

NB
TΞNB < 0, NC

TΞNC < 0 (43)
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hold, where NB and NC denote the full-rank matrix repre-
sentations of the right annihilators of B and C, respectively,

NB =









I 0 0
0 I 0
A Ad 0
0 0 I









, NC =









0 0
I 0
0 0
0 I









Because

NB
TΞNB =





Ξ1 Ξ2 ηȲ T
1

∗ Ξ3 ηȲ T
2

∗ ∗ −ηZ



 (44)

where

Ξ1 = S + Ȳ1 + Ȳ T
1 + P1A + ATP1 + ηATZA

Ξ2 = −Ȳ T
1 + P1Ad + Ȳ2 + ηATZAd

Ξ3 = −(1 − µ)S − Ȳ2 − Ȳ T
2 + ηAT

d ZAd

Ȳ1 = Y1 + Y2A

Ȳ2 = Y2Ad

and

NC
TΞNC =

[

−(1 − µ)S 0
0 −ηZ

]

(45)

(45) is obviously true because S and Z are positive def-
inite matrices, so by the Schur complement and (44),
NB

TΞNB < 0 is equivalent to








Ψ7 P1Ad − Ȳ T
1 + Ȳ2 ηȲ T

1 ηATZ

∗ −(1 − µ)S − Ȳ2 − Ȳ T
2 ηȲ T

2 ηAT
d Z

∗ ∗ −ηZ 0
∗ ∗ ∗ −ηZ









< 0

(46)
where Ψ7 = S + Ȳ1 + Ȳ T

1 + P1A + ATP1, Ȳ2 = Y2Ad and
Ȳ1, Y2 are slack variables. This means that (35) with (36)
is equivalent to (46).

Therefore, if Y = Ȳ T
1 , T = Ȳ T

2 , Q = S, and P = P1 in
(32), then (32) is feasible when (35) and (36) are feasible.
This implies that Lemma 3 is less conservative than Lemma
4. �

Remark 3. Theorem 2 shows that the stability condi-
tion in Theorem 1 of this paper is less conservative than
the one in [8], which stated that its result is less conser-
vative than the one in [7]. As shown in Theorem 4, the
stability condition in [7] is less conservative than the one
in [3]. From a mathematical point of view, the condition
in Theorem 1 of this paper is more efficient than those in
[3], [7−8], and [11] because it involves the least number of
variables and provides the least conservatism. Table 1 (see
next page) provides a comparison of the numbers of the
variables involved in [3], [7−8], and [11].

Remark 4. As shown in [11], the slack variables N1, N2,
and N3 in Lemma 4 are all redundant. Compared with
[11], we further prove that the slack variables P2 and P3

are redundant too in the proof of Theorem 4, which can
be seen from the equivalence between (35) under (36) and
(46). Therefore, the delay-dependent stability conditions
obtained by the descriptor system approach in [3] can be
further simplified. Similarly, the results in [11, 15−16] can
also be simplified in this way. In addition, the variables
Y1, Y2 in (41), and Ȳ1 and Ȳ2 in (46) can be eliminated by
the method given in (20), thus more simplified results can
be easily derived.

Theorem 2 shows that the obtained stability condition
in Theorem 1 is less conservative than the one in [8] for any
given scalar α satisfying 0 < α < 1. To seek an appropri-
ate α satisfying 0 < α < 1 such that the upper bound η

of delay d(t) satisfying (3) and (4) is maximal, we give an
algorithm as follows.

Algorithm 1. (Maximizing η > 0):
Step 1. Set appropriate step lengths, ηstep and αstep,

for η and α, respectively. Set α = αstep. For given µ and τ ,
choose an upper bound on η satisfying (8), and then select
this upper bound as the initial value η0 of η.

Step 2. Set k as a counter, and choose k = 1. Mean-
while, let η = η0 + ηstep and the initial value α0 of α equal
αstep.

Step 3. Let α = kαstep, and if inequality (8) is feasible,
go to Step 4; otherwise, go to Step 5.

Step 4. Let η0 = η, α0 = α, k = 1, and η = η0 + ηstep,
and go to Step 3.

Step 5. Let k = k + 1. If kαstep < 1 and kαstepµ < 1,
then go to Step 3; otherwise, stop.

Remark 5. In the above algorithm, the final η0 is the
desired maximum of the upper bound of delay d(t) satisfy-
ing (8), and α0 is the corresponding value of α.

3 Numerical examples

In this section, we use two numerical examples to show
the benefits of our results. Here, we set step lengths,
ηstep = 0.01 and αstep = 0.01, for η and α, respectively.

Example 1. Consider the following system[8]:

ẋxx(t) =

[

−2 0
0 −0.9

]

xxx(t) +

[

−1 0
−1 −1

]

xxx(t − d(t))

(47)
and

0 ≤ d(t) ≤ η, ḋ(t) ≤ µ (48)

where η and µ are constants.
According to Algorithm 1, for various µ, the computed

upper bounds, η, which guarantee the stability of system
(47) for τ = 0 are listed in Table 2 (see next page). It is
clear that our results are superior to those in [8], and the
results of [8] are better than the ones obtained by [3].

Example 2. Consider the following system described
by

ẋxx(t) =

[

−2 0
1 −3

]

xxx(t) +

[

−1.4 0
−0.8 −1.5

]

xxx(t − d(t))

(49)
and

τ ≤ d(t) ≤ η, ḋ(t) ≤ µ (50)

where τ, η, and µ ≥ 1 are constants.
For various τ , the computed upper bounds, η, which

guarantee the stability of system (49), are listed in Table 3
(see next page), which also illustrates the merits of the
method proposed in this paper.

From (48) and (50), we observe that the lower bound of
d(t) used in Example 1 is 0, whereas in this example, it
may be larger than 0, which is the main difference between
Example 1 and Example 2.

4 Conclusion

In this paper, the problem of stability analysis for
continuous-time systems with time-varying delays has been
investigated. The information about the upper bound of
delay derivative is taken into consideration even if this up-
per bound is not smaller than 1. The obtained stability
conditions are less conservative and have fewer decision
variables than the corresponding ones in the existing liter-
ature. In addition, the methods for simplifying the delay-
dependent stability conditions obtained by the descriptor
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Table 1 Comparison of the numbers of the variables involved

Methods Number of the variables involved

Lemma 1 in [8] 9.5n
2 + 3.5n

Lemma 3 in [7] 5.5n
2 + 2.5n

Lemma 4 in [3] 7.5n
2 + 2.5n

Theorem 1 in [11] 5.5n
2 + 1.5n

Theorem 1 in this paper 4n
2 + 4n

Table 2 Allowable upper bounds of η and the corresponding α for various µ

Methods µ = 0.9 µ = 1.0 µ = 1.2 µ = 1.5

Lemma 4 in [3] 1.18 0.99 0.99 0.99

Lemma 1 in [8] 1.37 1.34 1.34 1.34

Corollary 1 1.43 (α = 0.80) 1.39 (α = 0.62) 1.36 (α = 0.6) 1.35 (α = 0.5)

Table 3 Allowable upper bounds of η and the corresponding α for given τ

µ Methods τ = 0 τ = 0.1 τ = 0.2 τ = 0.3 τ = 0.4

− Lemma 1 in [8] 0.92 0.95 1.02 1.09 1.16

1.0 Theorem 1 1.09 (α = 0.73) 1.10 (α = 0.70) 1.12 (α = 0.72) 1.14 (α = 0.73) 1.17 (α = 0.60)

1.2 Theorem 1 1.03 (α = 0.62) 1.04 (α = 0.58) 1.06 (α = 0.58) 1.10 (α = 0.52) 1.16 (α = 0.01)

system approach and by the free-weighting matrix ap-
proach are presented, and the proposed methods can reduce
the computational complexity without changing the con-
servatism of those conditions. Two numerical examples are
given to illustrate the effectiveness and less conservatism of
the presented stability conditions.
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