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An auxiliary model based stochastic gradient algorithm
for multivariable output error systems

DING Feng1, 3 LIU Peter X.2, 3

Abstract The identification problem of multivariable output error systems is considered in this paper. By constructing an auxiliary
model using available input-output data and by replacing the unknown inner variables in the information vector with the outputs
of the auxiliary model, an auxiliary model based stochastic gradient (AM-SG) identification algorithm is presented. Convergence
analysis using the martingale convergence theorem indicates that the parameter estimates given by the AM-SG algorithm converge
to their true values. In order to improve the convergence rate of the AM-SG algorithm, the AM-SG algorithm with a forgetting
factor is given. The simulation results confirm the theoretical findings.
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systems, convergence properties, martingale convergence theorem

Parameter estimation has had wide applications in many
areas, including signal processing, adaptive prediction and
control, time-series analysis, process modelling, and so on.
In the area of system identification, Zheng used the bias
correction method in the identification of linear dynamic
error-in-variable systems [1]; Yang and Zhang made com-
parisons of some bias compensation methods and other
identification approaches for Box-Jenkins models [2], and
Zhang and Yang presented a bias compensation recursive
least squares identification for output error systems with
colored noises [3]; Zong et al studied the iterative identi-
fication problem related to control design [4]; Zhong and
Song discussed the hierarchical optimization identification
for linear state space systems [5].

The least squares identification algorithms have fast con-
vergence rates. Recently, Wang presented an auxiliary
model based recursive extended least squares identifica-
tion method for output error moving average systems [6].
However, the stochastic gradient (SG) parameter estima-
tion algorithms have less computation load and have re-
ceived much attention in self-tuning control and system
identification. In the literature, many gradient based iden-
tification approaches were reported. For example, Ding
and Chen proposed a hierarchical stochastic gradient algo-
rithm for multivariable systems [7] and a multi-innovation
stochastic gradient algorithm for linear regression model [8].
Wang and Ding developed an auxiliary model based multi-
innovation generalized extended stochastic gradient iden-
tification algorithm for Box-Jenkins models [9] using the
multi-innovation identification theory [8], but no conver-
gence analysis was carried out. Also, Wang and Ding gave
an extended stochastic gradient identification algorithm for
Hammerstein-Wiener nonlinear ARMAX Systems [10].

This paper studies the gradient based identification ap-
proach and convergence for multivariable systems with out-
put measurement noises. For such a system, the difficulty
of identification is that the information vector contains un-
measurable variables. Our solution is to use the auxiliary
model technique [11, 12]: to replace these unknown variables
with the outputs of the auxiliary model, to present an aux-
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iliary model based stochastic gradient (AM-SG) identifi-
cation algorithm and further to analyze the convergence
of the proposed algorithms. In order to improve the con-
vergence rate of the gradient based algorithm, an AM-SG
algorithm with a forgetting factor is given (the AM-FFSG
algorithm for short). Compared with the auxiliary mode
based recursive least squares algorithm, the AM-FFSG al-
gorithm requires less computation burden. The simulation
results indicate that if we choose appropriately the forget-
ting factor, the AM-FFSG algorithm can achieve a faster
convergence rate and the parameter estimation accuracy is
closer to that of the least squares algorithm. The AM-SG
algorithm with the unknown information vector for the out-
put error systems in this paper differs from the standard
stochastic gradient algorithm in [13] which assumes that
each entry of the information vector is known.

Briefly, the rest of the paper are organized as follows.
Section 1 simply describes the identification problem to be
discussed in the paper. Section 2 derives a basic identi-
fication algorithm for multivariable systems based on the
auxiliary model technique. Sections 3 analyzes the perfor-
mance of the proposed algorithm. Section 4 presents an
illustrative example for the results in this paper. Finally,
concluding remarks are given in Section 5.

1 Problem formulation

Consider a multivariable (i.e. MIMO: multi-input multi-
output) output error system

x(t) = G(z)u(t), (1)

y(t) = x(t) + v(t), (2)

= G(z)u(t) + v(t),

which is different from the equation error systems
(CAR/ARX model) in [13], where u(t) ∈ Rr is the sys-
tem input vector, x(t) ∈ Rm the system output vector (the
true output or noise-free output), y(t) ∈ Rm is the mea-
surement of x(t) contaminated by the noise v(t) ∈ Rm, as
depicted in Figure 1, G(z) ∈ Rm×r the transfer matrix of
the system with z−1 representing the unit delay operator
z−1 [z−1u(t) = u(t− 1)].

According to the matrix polynomial theory [14], any
strictly proper rational fraction matrix can be decomposed
into a matrix fraction description: G(z) = A−1(z)B(z),
where A(z) and B(z) are polynomial matrices in z−1 and
defined as

A(z) = I + A1z
−1 + A2z

−2 + · · ·+ Anaz−na ∈ Rm×m,

B(z) = B1z
−1 + B2z

−2 + · · ·+ Bnbz−nb ∈ Rm×r.
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Figure 1 The output-error system

Here, the inner variable x(t) is unknown, y(t) the mea-
surement output vector and v(t) the observation noise vec-
tor with zero mean. {u(t), y(t)} are the measurement
input-output data and Ai ∈ Rm×m and Bi ∈ Rm×r are the
parameter matrices to be identified. Assume that na and
nb are known and that u(t) = 0, y(t) = 0 and v(t) = 0 for
t 6 0. The system in (1)-(2) contains m2na + mrnb =: S1

parameters. The objective is to present an auxiliary model
stochastic gradient algorithm to estimate the unknown pa-
rameter matrices Ai and Bi using the input-output data
{u(t), y(t)}.

The model in (1)-(2) may be equivalently written as an

MIMO ARMAX model [15, 16]:

A(z)y(t) = B(z)u(t) + D(z)v(t), D(z) = A(z).

This model can be identified by using the extended least
squares (ELS) or extended stochastic gradient (ESG) algo-

rithm [16]. Using the ELS algorithm to estimate the pa-
rameters of such a special ARMAX model indeed requires
identifying m2na more parameters than the actual model
parameters. Although the noise model D(z) equals A(z),
their estimates are different. In other words, the size of
the parameter matrix increases, so this directly leads to
a larger computational burden. Therefore, exploring com-
putationally efficient identification approach is the goal of
this paper. The following is to derive an auxiliary model
identification algorithms with less computation.

2 Basic Algorithms

Let us introduce some notations first. The symbol I
(Im) stands for an identity matrix of appropriate sizes (of
m×m); the superscript T denotes the matrix transpose; the
norm of a matrix X is defined by ‖X‖2 = tr[XXT]; 1m×n

represents an m×n matrix whose elements are 1 and 1n :=
1n×1; λmax[X] and λmin[X] represent the maximum and
minimum eigenvalues of the square matrix X, respectively;
for g(t) > 0, we write f(t) = O(g(t)) if there exists positive
constants δ1 and t0 such that |f(t)| 6 δ1g(t) for t > t0.

Let n := mna + rnb. Define the parameter matrix θ and
information vector ϕ0(t) as

θT := [A1, A2, · · · , Ana , B1, B2, · · · , Bnb ] ∈ Rm×n,

ϕ0(t) := [−xT(t− 1),−xT(t− 2), · · · ,−xT(t− na),

uT(t− 1), uT(t− 2), · · · , uT(t− nb)]
T ∈ Rn.

Then from (1) to (2), we have

x(t) = θTϕ0(t),

y(t) = θTϕ0(t) + v(t). (3)

Here, a difficulty arises in that the information vector ϕ0(t)
contains unknown x(t− i) so that the standard stochastic
gradient (SG) methods cannot be applied to (3) directly.
The objective of this work is to establish an auxiliary model
by using the available data {u(t), y(t)}, and to present aux-
iliary model based SG algorithms by using the output xa(t)

of this auxiliary model in place of the unknown x(t), and
to make performance analysis of the algorithms involved.

Let θ̂(t) be the estimate of θ at time t:

θ̂T(t) = [Â1(t), · · · , Âna(t), B̂1(t), · · · , B̂nb(t)],

and use the entries of the estimate θ̂(t) to form the poly-
nomials:

Â(z) = I + Â1(t)z
−1 + Â2(t)z

−2 + · · ·+ Âna(t)z−na ,

B̂(z) = B̂1(t)z
−1 + B̂2(t)z

−2 + · · ·+ B̂nb(t)z
−nb .

In terms of Â(z) and B̂(z), we construct an auxiliary model:

xa(t) = Ga(z)u(t), Ga(z) := Â−1(z)B̂(z), (4)

where Ga(z) denotes the estimate of G(z) and is used as
the transfer function matrix of the the auxiliary model.

Equation (4) may be also written as a matrix form,

xa(t) = θ̂T(t)ϕ(t),

ϕ(t) := [−xT
a (t− 1), · · · ,−xT

a (t− na),

uT(t− 1), · · · , uT(t− nb)]
T.

If we use ϕ(t) to replace ϕ0(t) in (3), then the identifica-
tion problem of θ can be solved. Using this idea, we can
obtain an auxiliary model based stochastic gradient (AM-
SG) algorithm of estimating the parameter matrix θ of the
multivariable systems in

θ̂(t) = θ̂(t− 1) +
ϕ(t)

r(t)
eT(t), (5)

e(t) = y(t)− θ̂T(t− 1)ϕ(t), (6)

r(t) = r(t− 1) + ‖ϕ(t)‖2, r(0) = 1, (7)

ϕ(t) = [−xT
a (t− 1), · · · ,−xT

a (t− na),

uT(t− 1), · · · , uT(t− nb)]
T, (8)

xa(t) = θ̂T(t)ϕ(t). (9)

The initial value is generally chosen to be a small real ma-

trix, e.g., θ̂(0) = 10−61m×n.

3 Main convergence results

We assume that {v(t),Ft} is a martingale difference
vector sequence defined on a probability space {Ω,F , P},
where {Ft} is the σ algebra sequence generated by the ob-

servation data up to and including time t [16]. The sequence
{v(t)} satisfies:

(A1) E[v(t)|Ft−1] = 0, a.s.;

(A2) E[‖v(t)‖2|Ft−1] = σ2rε(t− 1), a.s., σ2 < ∞, ε < 1.

Lemma 1. [13] For the algorithm in (5)-(9), the follow-
ing inequality holds:

tX
i=1

‖ϕ(i)‖2
r(i)

6 ln r(t), a.s.

Theorem 1. For the system in (3) and algorithm in
(5)-(9), define the data product moment matrices,

Q(t) :=

tX
i=1

ϕ(i)ϕT(i),
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and assume that (A1) and (A2) hold, A(z) is a strictly posi-
tive real matrix, r(t) →∞. Then the parameter estimation

matrix θ̂(t) consistently converges to θ.
The stochastic martingale theory is one of the main tools

of analyzing the convergence of identification algorithms
[11, 12]. The following proves this theorem by formulating
a martingale process and by using the martingale conver-
gence theorem in [16].

Proof Define the parameter estimation error matrix:

θ̃(t) := θ̂(t)− θ.

Using (5) gives

θ̃(t) = θ̃(t− 1) +
ϕ(t)

r(t)
eT(t). (10)

Let

ỹ(t) :=−θ̃T(t)ϕ(t),

η(t) := y(t)− θ̂T(t)ϕ(t). (11)

Using (6), it follows that

η(t) =
r(t− 1)

r(t)
e(t) = y(t)− xa(t)

= x(t) + v(t)− xa(t). (12)

Taking the norm of both sides of (10) and using (11) yield

‖θ̃(t)‖2 = ‖θ̃(t− 1)‖2 − 2ỹT(t)[η(t)− v(t)]

r(t− 1)

+
2ϕT(t)θ̃(t− 1)v(t)

r(t− 1)
+

2‖ϕ(t)‖2
r(t− 1)r(t)

[e(t)− v(t)]Tv(t)

+
2‖ϕ(t)‖2‖v(t)‖2

r(t− 1)r(t)
− ‖ϕ(t)‖2

r2(t)
‖e(t)‖2. (13)

From (12), we have

A(z)[η(t)− v(t)] = A(z)x(t)−A(z)xa(t)

= B(z)u(t)−A(z)xa(t) = θTϕ(t)− xa(t)

= θTϕ(t)− θ̂T(t)ϕ(t) = −θ̃T(t)ϕ(t) = ỹ(t). (14)

Since A(z) is strictly positive real, referring to Appendix C
in [16], the following inequality holds,

S(t) :=

tX
i=1

2ỹT(i)[η(i)− v(i)]

r(t− 1)
> 0, a.s.

Let W (t) := ‖θ̃(t)‖2 + S(t). Adding both sides of (13) by
S(t) gives

W (t) = W (t− 1) +
2ϕT(t)θ̃(t− 1)v(t)

r(t− 1)

+
2‖ϕ(t)‖2

r(t− 1)r(t)
[e(t)− v(t)]Tv(t) +

2‖ϕ(t)‖2‖v(t)‖2
r(t− 1)r(t)

−‖ϕ(t)‖2
r2(t)

‖e(t)‖2.

Since S(t − 1), ϕT(t)θ̃(t − 1), r(t − 1), ϕ(t), r(t) and
e(t) − v(t) are uncorrelated with v(t) and Ft−1 measur-
able, taking the conditional expectation of both sides of

the above equation with respect to Ft−1 and using (A1)-
(A2) yield

E[W (t)|Ft−1] = W (t− 1) +
‖ϕ(t)‖2σ2rε(t− 1)

r(t− 1)r(t)

−E

�‖ϕ(t)‖2
r2(t)

‖e(t)‖2|Ft−1

�
, a.s. (15)

The summation of the right-hand third term of the above
equation from t = 1 to t = ∞ is finite [16], i.e.,

σ2
∞X

t=1

‖ϕ(t)‖2
[r(t− 1)]1−εr(t)

< ∞, a.s., 1− ε > 0.

Applying the martingale convergence theorem (Lemma
D.5.3 in [16]) to (15) to get that W (t) a.s. converges to
a finite random variable, say, C, i.e.,

lim
t→∞

‖θ̃(t)‖2 + S(t) = C < ∞, a.s., (16)

and also ∞X
t=1

‖ϕ(t)‖2
r2(t)

‖e(t)‖2 < ∞, a.s. (17)

Hence

∞X
t=1

‖ỹ(t)‖2
r(t− 1)

< ∞, a.s.,

∞X
t=1

‖η(t)− v(t)‖2
r(t− 1)

< ∞, a.s.

(18)
Using the Kronecker lemma (Lemma D.5.5 in [16]), it fol-
lows that

lim
t→∞

1

r(t− 1)

tX
i=1

‖ỹ(i)‖2 = 0, a.s.,

lim
t→∞

1

r(t− 1)

tX
i=1

‖η(t)− v(t)‖2 = 0, a.s.

Equation (16) shows that the parameter estimation error
is consistent bounded. From (10), we have

θ̃(t) = θ̃(t− i) +

i−1X
j=0

ϕ(t− j)

r(t− j)
eT(t− j), i > 1. (19)

Thus, we have

∞X
t=i

‖θ̃(t)− θ̃(t− i)‖2 =

∞X
t=i

‖θ̂(t)− θ̂(t− i)‖2

=

∞X
t=i

i−1X
j=0

ϕ(t− j)

r(t− j)
eT(t− j)

2

6 i

i−1X
j=0

∞X
t=i

‖ϕ(t− j)‖2
r2(t− j)

‖e(t− j)‖2 < ∞, a.s., i < ∞,

∞X
t=1

‖e(t)− v(t)‖2
r(t− 1)

=

∞X
i=1

‖y(t)− θ̂T(t− 1)ϕ(t)− v(t)‖2
r(t− 1)

=

∞X
i=1

‖y(t)− θ̂T(t)ϕ(t)− v(t) + [θ̂T(t)− θ̂T(t− 1)]ϕ(t)‖2
r(t− 1)

=

∞X
i=1

‖η(t)− v(t) + [θ̃T(t)− θ̃T(t− 1)]ϕ(t)‖2
r(t− 1)
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∞X

i=1

2‖η(t)− v(t)‖2
r(t− 1)

+

∞X
i=1

2‖[θ̃T(t)− θ̃T(t− 1)]ϕ(t)‖2
r(t− 1)

6
∞X

i=1

2‖η(t)− v(t)‖2
r(t− 1)

+ 2

∞X
i=1

‖ϕ(t)‖2
r(t− 1)

‖θ̃(t)− θ̃(t− 1)‖2

=

∞X
i=1

2‖η(t)− v(t)‖2
r(t− 1)

+ 2C1

∞X
i=1

‖θ̃(t)− θ̃(t− 1)‖2

=: C2 < ∞, a.s., C1 < ∞.

Here, we have assumed that ‖ϕ(t)‖2 6 C1r(t − 1). Using
the Kronecker lemma gives

lim
t→∞

1

r(t− 1)

tX
t=1

‖e(t)− v(t)‖2 = 0, a.s.

From (19), we have

θ̃(t− i) = θ̃(t)−
i−1X
j=0

ϕ(t− j)

r(t− j)
eT(t− j). (20)

Replacing t in (11) by t− i yields

ϕT(t− i)θ̃(t− i) = −ỹT(t− i).

Using (20), we have

ϕT(t−i)θ̃(t) = −ỹT(t−i)+ϕT(t−i)

i−1X
j=0

ϕ(t− j)

r(t− j)
eT(t−j).

To some extent, the rest of the proof is similar to that of
reference [13]. Squaring and using the relation, (a + b)2 6
2(a2 + b2), yield

‖ϕT(t− i)θ̃(t)‖2 6 2‖ỹ(t− i)‖2 + 2‖ϕ(t− i)‖2

×
i−1X

j=0

ϕ(t− j)

r(t− j)
{[e(t− j)− v(t− j)] + v(t− j)}T

2

.

Since e(t− j)− v(t− j) is uncorrelated with v(t− j) and
is Ft−1 measurable, taking the conditional expectation on
both sides with respect to Ft−1 and using (A1)-(A2) give

E[‖ϕT(t− i)θ̃(t)‖2|Ft−1] 6 2‖ỹ(t− i)‖2

+2‖ϕ(t− i)‖2
i−1X
j=0

‖ϕ(t− j)‖2
r2(t− j)

×{‖e(t− j)− v(t− j)‖2 + σ2rε(t− 1)}.
Summing for i from i = 0 to i = t − 1 of both sides and
dividing by r(t) yield

E{tr[θ̃T(t)Q(t)θ̃(t)]|Ft−1}
r(t)

=
2

r(t)

tX
i=1

‖ỹ(i)‖2 + S1(t) + S2(t),

where

S1(t) := 2

t−1X
i=1

‖ϕ(t− i)‖2
r(t)

i−1X
j=0

‖ϕ(t− j)‖2
r2(t− j)

σ2rε(t− 1),

S2(t) := 2

t−1X
i=1

‖ϕ(t− i)‖2
r(t)

i−1X
j=0

‖ϕ(t− j)‖2
r2(t− j)

×‖e(t− j)− v(t− j)‖2.

Using Lemma 1, we have

S1(t) =
2

r(t)

tX
i=2

[r(i− 1)− r(0)]‖ϕ(i)‖2
r2(i)

σ2rε(t− 1)

6 2

[r(t)]1−ε

tX
i=2

‖ϕ(i)‖2
r(i)

σ2 6 2σ2 ln r(t)

[r(t)]1−ε
→ 0, a.s.,

S2(t) =
2

r(t)

t−1X
i=2

[r(i− 1)− r(0)]‖ϕ(i)‖2
r2(i)

‖e(i)− v(i)‖2

6 2

r(t)

tX
i=2

‖ϕ(i)‖2
r(i)

‖e(i)− v(i)‖2

6 2

r(t)

tX
i=2

‖e(i)− v(i)‖2 → 0, a.s., as t →∞.

Hence

‖θ̃(t)‖2 = o

�
r(t)

λmin[Q(t)]

�
, a.s.

This proves Theorem 1. ¤
The auxiliary model stochastic gradient (AM-SG) algo-

rithm has low computational burden, but its convergence
is slow, just like the stochastic gradient algorithm of scalar
systems in [16]. In order to improve the convergence rate
and tracking performance, introducing a forgetting factor
λ in the AM-SG algorithm obtains the AM-SG algorithm
with forgetting factor (the AM-FFSG algorithm for short)
as follows:

θ̂(t) = θ̂(t− 1) +
ϕ(t)

r(t)
[yT(t)−ϕT(t)θ̂(t− 1)], (21)

r(t) = λ r(t− 1) + ‖ϕ(t)‖2, 0 < λ < 1, r(0) = 1, (22)

ϕ(t) = [−ϕT(t− 1)θ̂(t− 1), · · · ,−ϕT(t− na)θ̂(t− na),

uT(t− 1), · · · , uT(t− nb)]
T. (23)

When λ = 1, the AM-FFSG algorithm reduces to the AM-
SG algorithm; when λ = 0, the AM-FFSG algorithm is the
auxiliary model projection algorithm.

For comparison, the following gives the auxiliary model
based recursive least squares (AM-RLS) algorithm of esti-
mating θ:

θ̂(t) = θ̂(t− 1) + P (t)ϕ(t)[yT(t)−ϕT(t)θ̂(t− 1)], (24)

P (t) = P (t− 1)− P (t− 1)ϕ(t)ϕT(t)P (t− 1)

1 + ϕT(t)P (t− 1)ϕ(t)
. (25)

4 Simulation tests

Consider the following 2-input and 2-output system (the
output error system):�

x1(t)
x2(t)

�
+

� −0.50 0.30
0.30 −0.70

� �
x1(t− 1)
x2(t− 1)

�
=

�
2.00 0.80
0.60 1.50

� �
u1(t− 1)
u2(t− 1)

�
,�

y1(t)
y2(t)

�
=

�
x1(t)
x2(t)

�
+

�
v1(t)
v2(t)

�
.

In simulation, the inputs {u1(t)} and {u2(t)} are taken as
two independent persistent excitation sequences with zero
mean and unit variances, and v1(t) and v2(t) as two white
noise sequences with zero mean and variances σ2

1 and σ2
2 .
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Applying the AM-SG, AM-FFSG and AM-RLS algorithms
to estimate the parameters of this system, the parameter
estimates are shown in Tables 1 to 3 and the estimation
errors δ versus t are shown in Figures 2 and 3, where δ :=

‖θ̂(t)−θ‖/‖θ‖×100% is the the parameter estimation error.
Changing the noise variances σ2

1 and σ2
2 can adjust the

noise-to-signal ratios δns(1) and δns(2) of two output chan-
nels. When σ2

1 = 0.202 and σ2
2 = 0.202, the noise-to-

signal ratios are δns(1) = 7.61% and δns(2) = 7.99%; when
σ2

1 = 1.002 and σ2
2 = 1.002, the noise-to-signal ratios are

δns(1) = 38.06% and δns(2) = 39.96%.

0 500 1000 1500 2000 2500 3000 3500 4000
0
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0.2

0.3

0.4

0.5

0.6

AM−SG ( AM−FG, λ = 1 )

AM−FG, λ = 0.99 AM−FG, λ = 0.98

AM−RLS

            t

δ

Figure 2 The estimation errors δ vs. t with different forgetting
factors (σ2

1 = 0.202 and σ2
2 = 0.202)

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.1

0.2

0.3

0.4

0.5

0.6

AM−SG ( AM−FG, λ = 1 )

AM−FG, λ = 0.99 AM−FG, λ = 0.98

AM−RLS

            t

δ

Figure 3 The estimation errors δ vs. t with different forgetting
factors (σ2

1 = 1.002 and σ2
2 = 1.002)

From these simulation results in Tables 1 to 3 and Fig-
ures 2 and 3, we can draw the conclusions: 1. A lower
noise level leads to a faster rate of convergence of the pa-
rameter estimates to the true parameters. 2. As long as
an appropriate forgetting factor is chosen, the faster con-
vergence rate can be achieved and the smaller estimation
errors may be obtained. 3. The estimation errors δ are be-
coming smaller (in general) as the data length t increases.
In other words, increasing data length generally results in
smaller parameter estimation errors. 4. If we choose an
appropriate forgetting factor, the parameter estimation er-
ror of the AM-FFSG algorithm is very close to that of the
AM-RLS algorithm. 5. These show the effectiveness of the
proposed theorem.

5 Conclusions

Using the auxiliary model technique, the auxiliary model
based stochastic gradient algorithms are presented for

MIMO systems. The convergence of the proposed algo-
rithm is analyzed by using the martingale convergence the-
orem. The simulation results show that the proposed algo-
rithms are effective.
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Table 1 The AM-SG estimates and errors (σ2
1 = 0.202 and σ2

2 = 0.202)

t a11 a12 b11 b12 a21 a22 b21 b22 δ (%)
100 -0.59922 0.17140 1.48708 -0.30071 0.33764 -0.71091 0.31219 1.11802 46.03369
200 -0.60059 0.17094 1.51063 -0.24293 0.31021 -0.69470 0.32900 1.13286 43.72964
500 -0.59547 0.16413 1.54290 -0.16607 0.30202 -0.68306 0.34396 1.16092 40.65912
1000 -0.59658 0.16547 1.56834 -0.10671 0.29320 -0.68347 0.35884 1.18001 38.27283
2000 -0.59529 0.16723 1.59320 -0.05864 0.29220 -0.69037 0.37232 1.19823 36.23175
3000 -0.59712 0.16900 1.60756 -0.02985 0.29159 -0.69500 0.38084 1.20899 35.02159
4000 -0.59702 0.17187 1.61694 -0.00982 0.29265 -0.69681 0.38608 1.21616 34.18509

True values -0.50000 0.30000 2.00000 0.80000 0.30000 -0.70000 0.60000 1.50000

Table 2 The AM-FFSG estimates and errors with λ = 0.99 and λ = 0.98 (σ2
1 = 0.202 and σ2

2 = 0.202)

λ t a11 a12 b11 b12 a21 a22 b21 b22 δ (%)
0.99 100 -0.60777 0.17692 1.51146 -0.25885 0.32854 -0.70781 0.31572 1.14094 44.21498

200 -0.61377 0.18746 1.55035 -0.16457 0.29378 -0.70023 0.34521 1.16656 40.41276
500 -0.57355 0.18923 1.65060 0.06882 0.30173 -0.68181 0.39410 1.24891 30.90156
1000 -0.55986 0.22650 1.75541 0.30436 0.28222 -0.69776 0.45650 1.32641 21.15147
2000 -0.52576 0.26546 1.88925 0.55857 0.29103 -0.70166 0.53029 1.42339 10.09261
3000 -0.51682 0.28012 1.94452 0.67591 0.29855 -0.69931 0.57385 1.46477 5.07976
4000 -0.50970 0.29168 1.97003 0.73266 0.30409 -0.69537 0.58706 1.48132 2.74364

0.98 100 -0.61258 0.18144 1.53585 -0.21435 0.31580 -0.69947 0.32049 1.16407 42.30653
200 -0.61699 0.20207 1.59079 -0.07974 0.27566 -0.70259 0.36541 1.20042 36.86039
500 -0.54834 0.23167 1.75031 0.28612 0.31004 -0.68227 0.44480 1.32795 21.77915
1000 -0.53044 0.26963 1.87190 0.54686 0.28936 -0.70362 0.51873 1.41278 10.87786
2000 -0.50726 0.28972 1.96794 0.72901 0.29620 -0.69964 0.57536 1.48445 2.94576
3000 -0.50522 0.29662 1.98799 0.77670 0.30052 -0.69631 0.60452 1.50000 0.96454
4000 -0.50621 0.29923 1.99316 0.78825 0.30504 -0.69347 0.60168 1.49924 0.60126

True values -0.50000 0.30000 2.00000 0.80000 0.30000 -0.70000 0.60000 1.50000

Table 3 The AM-RLS estimates and errors (σ2
1 = 0.202 and σ2

2 = 0.202)

t a11 a12 b11 b12 a21 a22 b21 b22 δ (%)
100 -0.50892 0.28087 2.02473 0.73734 0.29262 -0.69484 0.54565 1.48989 3.15273
200 -0.50403 0.30380 2.00898 0.77285 0.28644 -0.70340 0.57779 1.47845 1.56517
500 -0.50247 0.30326 2.00902 0.78733 0.29335 -0.69865 0.59075 1.49674 0.70049
1000 -0.49955 0.30134 2.00597 0.79384 0.29455 -0.70053 0.59248 1.49277 0.51227
2000 -0.50093 0.29993 1.99891 0.78932 0.29720 -0.70082 0.59432 1.49749 0.44703
3000 -0.50041 0.29945 1.99776 0.79155 0.29832 -0.70002 0.60076 1.49984 0.31355
4000 -0.50115 0.29986 1.99770 0.79179 0.30042 -0.70001 0.60161 1.49924 0.30776

True values -0.50000 0.30000 2.00000 0.80000 0.30000 -0.70000 0.60000 1.50000
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