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Abstract. It is widely recognized that organic carbon ex-
ported to the ocean aphotic layer is significantly consumed
by heterotrophic organisms such as bacteria and zooplank-
ton in the mesopelagic layer. However, very little is known
for the trophic link between bacteria and zooplankton or the
function of the microbial loop in this layer. In the northwest-
ern Mediterranean, recent studies have shown that viruses,
bacteria, heterotrophic nanoflagellates, and ciliates distribute
down to 2000 m with group-specific depth-dependent de-
creases, and that bacterial production decreases with depth
down to 1000 m. Here we show that such data can be
analyzed using a simple steady-state food chain model to
quantify the carbon flow from bacteria to zooplankton over
the mesopelagic layer. The model indicates that bacterial
mortality by viruses is similar to or 1.5 times greater than
that by heterotrophic nanoflagellates, and that heterotrophic
nanoflagellates transfer little of bacterial production to higher
trophic levels.

1 Introduction

The current view of ocean biogeochemistry is that organic
carbon (OC) exported from the euphotic layer is mostly rem-
ineralized in the mesopelagic layer, otherwise considered
buried in the ocean interior (e.g. Fowler and Knauer, 1986).
While sinking particulate organic carbon (POC) is consumed
by particle-attached bacteria and detritivorous zooplankton
during the sinking process (Martin et al., 1987; Cho and
Azam, 1988; Smith et al., 1992), dissolved organic carbon
(DOC), which is exported from the euphotic layer or released
from sinking POC, is accessible only for free-living bacteria.
However the trophic link between bacteria and zooplankton,
i.e. the structure and function of the microbial loop, is un-
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known in the mesopelagic layer, by which our understanding
of biological process in global material cycling may be lim-
ited.

Recent studies in the northwestern Mediterranean reported
vertical and seasonal variations in abundance of viruses, bac-
teria, heterotrophic nanoflagellates (HNF), and ciliates, and
of bacterial production, in the aphotic layers down to 2000 m
(Harris et al., 2001; Tamburini et al., 2002; Tanaka and Ras-
soulzadegan, 2002; Weinbauer et al., 2003). In addition,
Tanaka and Rassoulzadegan (2004) showed that bacteria at
500 m were controlled by both bottom-up (substrate) and top-
down (predation) controls. In this paper, we analyzed carbon
flow in the mesopelagic microbial loop-zooplankton, using
the published data combined with a simple steady-state food
chain model. Results indicated that bacterial mortality by
viruses is similar to or 1.5 times greater than that by HNF,
and that HNF transfer little of bacterial production to higher
trophic levels.

2 Study site

The data used in this study were obtained at the
French-JGOFS time-series station DYFAMED (43◦25.2′ N,
07◦51.8′ E; 2350 m max depth) in the northwestern Mediter-
ranean, and have been published in Tanaka and Rassoulzade-
gan (2002, 2004, see also for detailed description of mate-
rials and methods). This site is likely independent of an-
thropogenic and natural dust inputs (Marty et al., 1994; Ri-
dame and Guieu, 2002) and receives very weak lateral flows
(Béthoux et al., 1988; Andersen and Prieur, 2000). Water
temperature is always ca. 13◦C below seasonal thermocline
down to 2000 m during the stratified period and in whole wa-
ter column during the mixing period, and no permanent pyc-
nocline exists (Marty, 2003). This site shows contrasted sea-
sonal patterns of water column structure and biological pro-
duction in the upper layer (Marty and Chiavérini, 2002), with
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Fig. 1. Distributions of bacteria, heterotrophic nanoflagellates
(HNF) and ciliates. Measurements were monthly done at 13 depths
between 5 and 2000 m from May 1999 to March 2000 at the DY-
FAMED site (Redrawn from Tanaka and Rassoulzadegan, 2002).
Circles, triangles and squares denote bacteria, HNF and ciliates, re-
spectively.

the consequence that sinking POC fluxes are higher from
January to June and smaller from July to December (Miquel
et al., 1993, 1994) and that DOC is accumulated in the sur-
face mixed layer during the stratified period and exported
during the winter mixing period (Copin-Montégut and Avril,
1993; Avril, 2002). Annual fluxes of sinking POC between
100 and 1000 m are estimated to be 0.4 mol-C m−2 yr−1

(Miquel et al., 1994). The depth of the winter vertical mixing
(<1000 m) and relatively stable DOC concentrations in the
deeper layer (1000–2000 m) suggest that most of the DOC
exported from the euphotic layer (1-1.5 mol-C m−2 yr−1) is
consumed in the upper 1000 m (Copin-Montégut and Avril,
1993; Avril, 2002). These fluxes between 100 and 1000 m
correspond to 75% of sinking POC and∼100% of exported
DOC from the euphotic layer. It is reported that sinking POC
was consumed by detritivorous zooplankton (Carroll et al.,
1998) and particle-attached bacteria (Turley and Stutt, 2000)
during the sinking process at the same site.

3 Background of the aphotic microbial heterotrophs at
the study site

Tanaka and Rassoulzadegan (2002) demonstrated that bacte-
ria, HNF and ciliates were always detected throughout the
water column during an annual study, with one, two and
three orders of magnitude of depth-dependent decrease (5–
2000 m), respectively, at the DYFAMED site (Fig. 1). Re-
gardless of greater seasonal variations in abundance in up-
per layer, the log-log linear regression analysis for abundance
vs. depth showed that the regression slope values (the index
of magnitude of depth-dependent decrease) were relatively
constant for each group, and that the depth-dependent de-
creases of abundance were significantly smaller for bacteria
than protozoa, by which the biomass contribution of bacte-
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Fig. 2. Flow structure of the model used for analyzing carbon flow
in the mesopelagic layer of the northwestern Mediterranean. The
model consists of viruses, bacteria, heterotrophic nanoflagellates
(HNF), ciliates, and zooplankton.

ria to total microbial heterotrophs increased from 60 to 95%
with depth (Tanaka and Rassoulzadegan, 2002). Under the
assumption that the food web was close to steady state, this
suggests that rate processes (i.e. growth and loss rates) are
less variable for bacteria than for protozoa over the depth,
and that the density-dependent predator-prey relationship be-
comes less coupled between the three microbial heterotrophs
with increasing depth down to 2000 m.

A following study at the same site showed that while bac-
terial biomass and production showed depth-dependent de-
creases over the 110–1000 m layer, both parameters were
seasonally variable down to 300 m and 500 m, respectively
(Tanaka and Rassoulzadegan, 2004). The comparison in
changing rate of bacterial abundance in different treatments
(whole water from 500 m, predator-free water from 500 m,
predator-free water from 500 m diluted by particle-free wa-
ter from 500 m, and predator-free water from 500 m diluted
by particle-free water from 110 m) suggested that bacteria at
500 m were controlled by both bottom-up (substrate) and top-
down (predation) controls, and that the availability of dis-
solved organic matter was seasonally variable down to 500 m
(Tanaka and Rassoulzadegan, 2004). In the 1000–2000 m,
bacterial production showed seasonal variations but did not
decrease with depth (Tamburini et al., 2002).

4 Model

Our knowledge of the structure and function of the micro-
bial loop is quite limited for the aphotic layer due to the
scarcity of direct measurements of biomass and rate pro-
cess. If one assumes a food-web structure for carbon flow,
and combines this with the assumption of an approximate
steady state over the depths (e.g. Thingstad, 2000), the data
on biomass of microbial heterotrophs and bacterial produc-
tion can be used to estimate carbon flows between micro-
bial heterotrophs and zooplankton over the mesopelagic layer
(hereafter 110–1000 m). We assumed a simple food chain of
viruses, bacteria, HNF, ciliates and zooplankton, in which
only bacteria have two loss processes (viruses and HNF)
(Fig. 2). An expression for the observed level of bacterial
biomass can be obtained by using the steady state require-
ment for HNF at biomassH (nmol-C L−1), eating bacteria at
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Table 1. Estimated parameter values in Eqs. (4) and (5) based on a linear regression model I.

Variables (x, y) Model Slope (±SE) Slope significance Y-int. (±SE) Y-int. significance n r2

H∗, BP /B∗ y=αH x+δBV 0.0007±0.0001 P<0.0001 0.0069±0.002 P=0.0015 29 0.467
10B∗, C∗ y=YH x 0.0112±0.0015 P<0.01 5 0.949

biomassB (nmol-C L−1) with a specific clearance rate ofαH

(L nmol-C−1 d−1) and a yield ofYH (no dimension), and that
for viruses with a specific loss rateδBV (d−1). The specific
loss rate of bacteria by viruses is adapted in order to compro-
mise with limited data on viruses. The number of bacterial
prey caught per unit time per unit predator is assumed to be
proportional to prey abundance (αH B), the total loss due to
predation is thenαH B H . Total loss of bacteria by viruses
can be given byδBV B. At steady state, production of new
bacterial biomass (BP : nmol-C L−1 d−1) balances the total
loss, that is:

BP = αH B∗H ∗
+ δBV B∗, (1)

where the asterisk denotes steady state biomass of predator
and prey. Likewise, the observed level of HNF biomass can
be obtained by using the steady state requirement for ciliates
at biomassC (nmol-C L−1), eating HNF at biomassH with
a specific clearance rate ofαC (L nmol-C−1 d−1) and a yield
of YC (no dimension). Then, the production of new HNF
biomassYH αH B H balances the loss to ciliatesαCH C, that
is:

YH αH B∗H ∗
= αC H ∗C∗. (2)

If we introduce a specific loss rate of ciliates by zooplankton
asδCZ (d−1) due to limited data on zooplankton, the produc-
tion of new ciliates biomassYCαCH C balances the loss to
zooplanktonδCZC, that is:

YCαCH ∗C∗
= δCZ C∗. (3)

Arranging Eq. (1) gives:

BP/B∗
= αH H ∗

+ δBV . (4)

Linear regression of Eq. (4) with the data ofH ∗ and
BP/B∗ allows direct estimates ofαH andδBV . Growth yield
is considered variable with environmental conditions, and
no data are available for the mesopelagic HNF and ciliates.
Clearance rate is considered to be a function of prey density,
which is assumed to be valid in the aphotic layer. Increase
in cell size of the mesopelagic bacteria was not recognized
under microscopic observation (Tanaka, personal observa-
tion). It is reported that specific clearance rate of bacteriv-
orous HNF was∼10 times greater than that of ciliates prey-
ing on small particles in the euphotic layer (Fenchel, 1987).
Under the assumption ofαC=0.1αH , Eq. (2) is arranged as:

C∗
= YH (10B∗). (5)

Linear regression of Eq. (5) with the data ofB∗ multiplied
by 10 andC∗ allows direct estimate ofYH . YC was arbitrar-
ily assumed equal toYH . Because the biomass of HNF and
ciliates was not measured simultaneously with bacterial pro-
duction (see Tanaka and Rassoulzadegan, 2002, 2004), we
used annual mean values in biomass of bacteria, HNF and
ciliates obtained in 1999–2000, but the depths correspond to
those of bacterial production.

Using the estimated parameters combined with the annual
mean of integrated biomass of bacteria, HNF and ciliates,
carbon flows between the microbial heterotrophs and zoo-
plankton were estimated over the mesopelagic layer:δBV B∗

from bacteria to viruses,αH B∗H ∗ from bacteria to HNF,
αCH ∗C∗ from HNF to ciliates, andYC αCH ∗C∗ from cil-
iates to zooplankton. Error estimates in the carbon flow were
evaluated by taking into account standard errors (SE) of the
regression slopes (αH andYH ) and of the regression inter-
cept (δBV ).

5 Results and discussion

Significant linear regressions were obtained in both Eqs. (4)
and (5), while the coefficient of regression was not
high for Eq. (4) (Table 1; Fig. 3). Specific clear-
ance rate (±SE) of HNF for bacteria was estimated to
be 0.0007±0.0001 L nmol-C−1 d−1 over the 110–1000 m.
Based on measurement of uptake rates of fluorescently la-
beled bacteria by HNF, Cho et al. (2000) reported that HNF
clearance rates ranged from 1 to 11 nL HNF−1 h−1 in the up-
per 500 m of the East Sea. By using the mean cell volume
of 20µm3 HNF−1 in the mesopelagic layer of our study site
(Tanaka and Rassoulzadegan, 2002) and a carbon to volume
conversion factor of 183 fg Cµm−3 (Caron et al., 1995), the
above range of clearance rates is transformed to the carbon-
based specific clearance rate as 0.00008 to 0.0009 L nmol-
C−1 d−1. Our estimate is in the upper part of this range.
HNF growth efficiency on bacteria was estimated to be 1.12
(±0.15)%. This estimate is sensitive to the assumption of
the ratio of ciliates to HNF specific clearance rate in our
model. Instead of the original assumption made, if we as-
sume that specific clearance rate is as high for ciliates as
HNF, or as low for HNF as ciliates (i.e.αC=αH ), HNF
growth efficiency is estimated to be 11.2 (±1.5)%. Ranges
of growth efficiency measured under variable experimental
conditions (e.g. temperature and prey concentration) were
from 4 to 49% for flagellates and from 2 to 82% for ciliates

www.biogeosciences.net/bg/2/9/ Biogeosciences, 2, 9–13, 2005



12 T. Tanaka et al.: Analyzing the trophic link between the mesopelagic microbial loop and zooplankton

Table 2. Carbon flow estimates for the mesopelagic layer (110–1000 m), which are based on the estimated parameters (±SE) of αH

(0.0007±0.0001),YH (0.0112±0.0015),δBV (0.0069±0.002). Data on annual mean biomass are from Tanaka and Rassoulzadegan (2002).

Mean biomass (mmol-C m−2) Carbon flow (±SE) (mmol-C m−2 yr−1)

Bacteria 130 327 (±95) (to viruses) 249 (±36) (to HNF)
HNF 6.7 2.2 (±0.32) (to ciliates)

Ciliates 11.7 0.025 (±0.007) (to zooplankton)
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Fig. 3. Rate estimations by fitting the model-derived equations.(a)
Relationship betweenBP /B∗ and H∗, (b) Relationship between
C∗ and 10B∗ in the 110–1000 m.BP , B, H andC denote bac-
terial production, biomass of bacteria, heterotrophic nanoflagellates
and ciliates, respectively. The asterisk denotes steady state biomass.
Data on biomass and bacterial production are from Tanaka and Ras-
soulzadegan (2002) and Tanaka and Rassoulzadegan (2004), re-
spectively. The lines were calculated with a linear regression model
I (Table 1).

(reviewed by Caron and Goldman, 1990). A barophilic flag-
ellate isolated from 4500 m depth sediments showed 17–25%
of growth efficiency under the condition of bacterial preys on
the order of 1010 cells L−1 enriched with sterilized phytode-
tritus (Turley et al., 1988). Our estimates are in the lower end
of or smaller than the reported ranges. Under the assumption
that the study site is in an approximate steady-state over mul-
tiyear in terms of OC stock and that most of OC remineral-
ization can be attributed to bacteria in the mesopelagic layer,
bacterial growth efficiency has been estimated to be 19–39%
on an annual scale, by replacing a total amount of OC assim-
ilated by bacteria with the OC flux between 110 and 1000 m
(Tanaka and Rassoulzadegan, 2004). This may suggest that
the bacterial ingestion by HNF functions as remineralization
rather than energy transfer to higher trophic levels. It has
been demonstrated that HNF can release a significant frac-
tion of ingested prey as dissolved organic matter (reviewed
by Nagata, 2000). Although no data on HNF respiration and
egestion are available for the mesopelagic layer, the OC eges-
tion by HNF seems to be less significant in the OC-limited
condition.

A back-calculation, using the estimated parameters and
the annual mean of integrated biomass, suggests that 40–

48% of bacterial mortality is due to HNF predation and
the rest due to viruses over the mesopelagic layer (Ta-
ble 2). This however may be contrary to a recent sugges-
tion that virus-induced mortality of bacteria is low (3–6%)
in the mesopelagic and bathypelagic layers at the same site
(Weinbauer et al., 2003). Because the empirical model to
estimate virus-induced mortality of bacteria is not derived
from mesopelagic and bathypelagic layers and data on virus-
induced mortality of bacteria in the ocean aphotic layer have
been limited to this study site (Weinbauer et al., 2003), it
may be difficult to validate these estimates at present. Of
total bacterial production that is equivalent to bacterial mor-
tality by viruses and HNF, 0.36–0.43% and 0.0039–0.0046%
are transferred to ciliates and zooplankton, respectively. An-
other assumption (αC=αH ) results in slightly higher transfer
of bacterial production to ciliates (3.6–4.3%) and zooplank-
ton (0.39–0.46%). This suggests a distance of the trophic
link between “viruses, bacteria and HNF” and “ciliates and
zooplankton”. Conceptually, specialized zooplankton (e.g.
appendicularians and salps) that can consume particles as
small as bacteria may reduce this distance by making a short-
cut between the microbial loop and zooplankton. The obser-
vation of pellet fluxes at 500 m at the study site suggested
the presence of mesopelagic appendicularians (Carroll et al.,
1998), which were dominant in the macrozooplankton com-
munity around 400 m near the study site (Laval et al., 1989).
Due to the paucity of data on zooplankton distribution and
feeding, effect of such specialized zooplankton on our model
remains to be open. Precision in our estimates of carbon
flow may have suffered from the relatively low precision in
microscope-based biomass estimates.

Increase in number of trophic levels generally results in
less efficient material transfer from lower to higher trophic
levels or more efficient remineralization in the food web,
which has been addressed as a function of the microbial
loop in the euphotic layer (Azam et al., 1983). This con-
text may be reflected in the mesopelagic layer, where all mi-
crobial heterotrophs and zooplankton exist and constitute the
mesopelagic food chain. Our model analysis suggests that
the mesopelagic bacterial production is similarly allocated to
“DOC-bacteria-viruses” circuit and “DOC-microbial loop”
circuit, or 1.5 times greater to the former than the latter,
and that HNF are potentially important remineralizers of the
mesopelagic bacterial production.
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