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Abstract 

The aim of this paper is to consider formulation of Economic Lot size Scheduling Problem (ELSP) in fuzzy environment with 
fuzzy inventory costs and objective goal. A Genetic Algorithm (GA) is used to solve the problem in the sense that it is 
computationally simple, yet powerful in its search for improvement. This approach is defined as Fuzzy Genetic Approach 
(FGA). The ELSP is a problem of scheduling the production of several different items over the same facility on a repetitive 
manner. The facility is such that only one item can be produced at a time. The ELSP formulation in-turn is considered under 
the Basic Period (BP) approach with the cycle time, Ti, of each item modified and expressed as a real multiple ki of a 
fundamental cycle T.  As the typical inventory analysis in the real world situations is sensitive to reasonable errors in the 
measurement of relevant inventory costs, the inventory costs are assumed to be vague and imprecise in this paper.  The 
objective of minimizing the total inventory cost is also imprecise in nature. The impreciseness in these variables has been 
represented by fuzzy linear membership functions. The bench mark problem of Bomberger’s ELSP has been worked out to 
highlight the method, and the results are compared with those of corresponding crisp model results. The results indicate that 
the FGA gives good results and works better even for higher utilization levels of the ELSP.  
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1. Introduction* 

The Economic Lot Size Scheduling Problem (ELSP) is 
practically important; and is a problem of scheduling 
production of multiple items over the same facility or 
machine on a repetitive basis.  Examples of ELSP 
situations include producing several different colors of 
paint on the same equipment and producing several types 
of stamped metal parts with the same stamping press.  
Since items must all be made on the same facility, 
production of an item will be in lots or batches.  The 
production cycle time Ti of the ith item, therefore, is the 
elapsed time between productions of consecutive lots of 
the same item.  The facility is such that only one item can 
be produced at a time, there is a setup cost and setup time 
associated with each item. The demand rate for each item 
is known and constant, no shortages are allowed, and for 
each item the total variable cost is the sum of its setup cost 
and a time and quantity dependent inventory holding cost. 

As the ELSP is NP hard, due to the difficulty of 
checking the feasibility of schedule, some researchers 
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developed approaches in which additional constraints that 
guarantee feasibility are added to the problem.  Such 
approaches include the common cycle (CC) approach 
attributed to Hanssmann [1], and the BP approach 
attributed to Bomberger [2].  Jones and Inman [3]  have 
provided a detailed analysis of conditions under which the 
CC approach provides optimal or near – optimal solutions.  
Doll and Whybark [4] used heuristic approaches which 
have been effective in approaching the optimal solution to 
the benchmark problem of Bomberger than analytical 
approaches.  However, they lack a systematic way to test 
for feasibility and efficient procedures to escape from 
infeasibility.   

The Basic period (BP) approach guarantees feasibility 
by making the cycle time of each product an integer 
multiple of a basic cycle time known as the fundamental 
cycle.  Thus the BP approach results in a problem that has 
one continuous decision variable (the fundamental cycle) 
and a number of integer decision variables (the integer 
multipliers) equal to the number of products. Bomberger 
[2] formulated the problem as a Dynamic Programming 
(DP) problem, and solved the ELSP under the BP 
approach.   

An excellent review of the literature on the ELSP up to 
1976 is given by Elmaghraby [5].  Since then, many new 
approaches to the problem have been proposed. Khouja et 
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al. [6] investigated the use of GAs for solving the ELSP.  
The problem is formulated using the BP approach and 
solved by using a binary coded GA.  The GA is tested on 
Bomberger’s classical problem. Ben-Daya and Hariga [7] 
modeled the effect of imperfect production processes on 
the ELSP by taking into account the imperfect quality and 
process restoration. Torabi et al. [8] addressed the common 
cycle multi-product lot-scheduling problem in 
deterministic flexible job shops where the planning 
horizon is finite and fixed by management.  To solve the 
problem, a mixed integer nonlinear program is developed 
which simultaneously determines machine allocation, 
sequencing, lot-sizing, and scheduling decisions.   

Yao and Huang [9] solved the ELSP with deteriorating 
items using the extended basic period approach under 
Power-of-Two (PoT) policy. Teunter et al. [10] studied the 
ELSP with two sources of production: manufacturing of 
new items and remanufacturing of returned items.  For 
both cases, a mixed integer programming formulation is 
presented for a fixed cycle time, and simple heuristics are 
proposed.  Jenabi et al. [11] addressed ELSP in flexible 
flow lines with unrelated parallel machines over a finite 
planning horizon. A mixed zero-one nonlinear 
mathematical programming method has been developed 
for solving the problem. 

Chatfield [12] developed a Genetic Lot Scheduling 
(GLS) procedure which combines an extended solution 
structure with a new item scheduling approach, allowing a 
greater number of potential schedules to be considered.  It 
maintains solution feasibility determination by employing 
simple but effective sequencing rules that create nested 
schedules.   He created a binary representation of 
formulation and utilized a GA to search for low cost ELSP 
solutions. Yao et al. [13] solved the economic lot 
scheduling problem with fuzzy demands in order to cope 
with the uncertainty in demand of items. Chang et al. [14] 
presented fuzzy extension of ELSP for fuzzy demands via 
the extended basic period approach and power-of-two 
policy. 

In this paper the ELSP, under the BP approach with 
cycle time Ti of each item modified and expressed as a real 
multiple ki of a fundamental cycle T, is formulated in both 
crisp and fuzzy environments. The fuzzy concept is 
considered for ordering costs, carrying costs, and the 
limitation on total cost.  The impreciseness in these 
variables is represented by linear membership functions.  
A real coded GA (RGA) is used in search for the near – 
optimal solution to both the crisp and fuzzy ELSPs.  The 
methodology is illustrated with a bench mark ELSP of 
Bomberger [2], and the fuzzy results (by FGA) are 
compared with those obtained by crisp analysis. 
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2. Problem Formulation 

The following assumptions apply to the ELSP under 
consideration: 

1. Only one item can be produced at a time on the machine. 
2. Production rates are deterministic and constant.  
3. Product demand rates are deterministic and constant. 
 
 
 
 

4. No shortages are allowed. 
5. Product setup costs and times are independent of 

production sequence. 
6. Inventory costs are directly proportional to inventory 

levels. 
7. The total variable cost consists of the sum of setup costs 

and inventory holding costs of all products. 
 

The notations followed are given by: 
i = a product or item index. 
n = Number of products or items. 
Zi = Annual demand for item-i (units / unit time) 
Pi = Annual production rate for item-i (units / unit time) 
cci = Holding cost for item-i-per unit per unit time 
cri = Setup cost of item-i per setup. 
ti = Setup time per setup for item-i. 
Ti = cycle time of ith item. 

2.1. Crisp Formulation 

Under the BP approach, the cycle time Ti for every 
item is an integer multiple ki of a fundamental cycle T.  
Thus, the cycle time Ti for item – i is Ti = kiT.  In this 
paper, each Ti is considered as a real multiple ki of 
fundamental cycle time T.  Then the crisp formulation of 
ELSP is given by: 
Minimize: Total cost,   
 

         (1) 
 

 
Subject to :                         rrrrrrrrrrrrrrrrrrrrrrrr(2)        
 
And ki > 0  ;  T > 0 
 

The ELSP thus becomes a problem with ki and T as 
decision variables.  The constraint (eq.2) ensures that the 
fundamental cycle time is long enough to accommodate 
the production of all items even though not every item has 
to be produced during every fundamental cycle.  This 
formulation is ideally suited for using real coded GA as all 
kis are expressed as real variables.   The bounds of each ki 
are set by using the procedure outlined below: 
Step-1:  Determine Ti

* for each product by independent 
solution (IS) method.  Ti

* is obtained by substituting 
Ti=kiT in eq.(1), and then differentiating and equating it to 
zero. 

Step-2: Select the smallest Ti
* as the initial estimate of the 

fundamental cycle time. 
i.e., T = Min.[Ti

*] 
Step-3: Determine the possible integer bounds of each ki 
defined by: 

Where ki
(l) , ki

(u) are lower and upper bounds of ki. 
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2.2.  Linear Membership Function 

A membership function μAi(x), assumed to be linearly 
increasing over the tolerance interval pi can be expressed 
according to Zimmermann [15] as: 

 
 

    
 
            (3)   

 
 
 
 
where di and (di + pi) are the tolerance limits for x. 
Introducing a new variable, α, which corresponds 
essentially to μAi(x), the corresponding fuzzy variable ′x′ 
at the defined aspiration level ′α′ is given by: 

     
                                             (4)   

 
Similarly a membership function μBj(x), assumed to be 

linearly decreasing over the tolerance interval pj can be 
expressed as: 
                      
 

 
           (5) 
 

 
 
    
Hence,  
 
2.3. Fuzzy Formulation 

The fuzzy set concepts are adopted for ordering costs, 
holding costs, and limitation on total cost.  The 
impreciseness in these variables has been expressed by 
linear membership functions.  Considering the nature of 
the variables, the membership functions are assumed to be 
non-decreasing for fuzzy inventory costs, and non-
increasing for fuzzy total cost.  On applying fuzzy non-
linear programming approach to the crisp model, the 
formulation is: 
Maximize:     α 
 Subject to: 

 
i.e., 
 

 
   and  
           
                       0 ≤ α ≤ 1                       

3. Genetic Algorithm 

A GA performs a multi directional search by 
maintaining a population of potential solutions and 
encourages information formation and exchange between 
these directions.  The population undergoes a simulated 
evolution: at each generation the relatively “good” 
solutions reproduce, while the relatively “bad” solutions 
die.  To distinguish between different solutions, we use an 
objective (evaluation) function which plays the role of an 
environment. 

The initial population of solutions is created by random 
selection of a set of chromosomes (solutions).  Once a 
chromosome is created, it is necessary to evaluate the 
solution, particularly in the context of the underlying 
objective and constraint functions.  The evaluation of a 
solution means calculating the objective function value 
and constraint violations.  After assigning a relative merit 
to the solutions (called the fitness), the population of 
solutions is modified to create hopefully a better 
population.  In this process the three main operators, viz., 
reproduction, crossover, and mutation are used.  This 
completes the generation of the GA.  Then a new 
population of solutions is created and the above procedure 
is repeated until the required conditions are satisfied.   

The binary representation of decision variables used in 
genetic algorithms has some drawbacks when applied to 
multi-dimensional, high precision numerical problems.  
Real coded or floating – point representation, on the other 
hand, has a rising usage because of the empirical findings 
that real codings have worked well in a number of 
practical problems.  The procedure of proposed GA is 
shown in figure 1.  The Components of the developed 
system is discussed in the following sections.  

( ) ( )

( )⎪
⎪
⎩

⎪
⎪
⎨

⎧

+>

+≤≤
−

−

<

=

ii

iii
i

i

i

Ai

pdxif

pdxdif
p

dx
dxif

x

0

1

1

μ

( ) ( ) iiAi pd ααμ −+=− 11

( ) ( )

( )⎪
⎪

⎩

⎪
⎪

⎨

3.1. Representation and Initialization of Population of 
Solutions 

As a real parameter GA is used, the variables are 
represented by floating point numbers over whatever range 
is deemed appropriate.   That is, the process of finding an 
optimal solution to a problem starts by defining a 
chromosome (solution) as an array of variable values to be 
optimized.  If the chromosome has n variables (an n-
dimensional optimization problem) given by k1, k2,  . . . . . 
.k10, T,α, a chromosome is written as an array with    1 × n 
elements so that  
Chromosome = [k1, k2,  . . . . . .k10, T, α]                       (8) 

 
 
                 
 

 
                 (6)                          

 
 

                                                                                       (7) 
                                                                                      
 
 
 
 
 

⎧

−<

≤≤−
−

−

>

=

jj

jjj
j

j

j

Bj

pdxif

dxpdif
p

xd

dxif

x

0

1

1

μ

( ) ( ) jjBj pd ααμ −−=− 11

( ) ( ) ( )∑
=

−−
−

≤−⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

n

i
fbp

i

i
cci

ii

i

cri

P
ZTkZ

Tk1

11
1

01
2

αμαμ
αμ

( )( ) ( )( ) ( )( )∑
=

≤−+−⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−+

−−n

i
fbp

i

i
ccici

ii

i

criri pfbp
P
ZpcTkZ

Tk
pc

1
0111

2
1 ααα

∑
=

≤⎥
⎦

⎤
⎢
⎣

⎡
+

n

i i

ii
i T

P
TkZ

t
1



 © 2009 Jordan Journal of Mechanical and Industrial Engineering. All rights reserved - Volume 3, Number 1  (ISSN 1995-6665) 12 

 
Procedure Genetic Algorithm 
Begin 
 t ← 0 
 initialize population (t) 
 evaluate population (t) 
 while (not terminate – condition) do 
 begin 
  t ← t + 1 
  reproduction 
  crossover 
  mutation 
  evaluate population (t + 1) 
 end 
end 
Figure  1:  Procedure of GA 

All variables are normalized to have values between 0 
and 1, the range of a uniform random number generator.  
Then the values of a variable are “un-normalized” in the 
fitness function.  If the range of values of an ith variable is 
between ki

l and ki
u, then the un-normalized value is given 

by:                   
 
where ki

norm = Normalized value of variable,  0 ≤ ki
norm ≤ 1 

Now to begin the GA, a population of sp chromosomes 
is defined by a matrix with each row in the matrix being 1 
× 12 array of continuous values.  

3.2. Evaluation of Solutions 

Once a chromosome (or a solution) is created, it is 
necessary to evaluate the solution, particularly in the 
context of the underlying objective and constraint 
functions.  The evaluation function is called the fitness 
function.  In most of the constrained optimization 
problems, the fitness function is obtained by adding a 
penalty proportional to the constraints’ violations to the 
objective function value.  The penalty term with respect to 
a constraint violation is nothing but a user defined penalty 
parameter multiplied by some function of the constraint.  
However, this method has two difficulties – fixing a 
penalty parameter, convergence of fitness function to an 
artificial local optimum. A modified version of this 
method, which does not need any penalty parameter, is 
followed in the present paper for the evaluation of fitness 
function.  The method is based on feasible over infeasible 
solutions.  

The method of feasible over infeasible solutions [16] 
employs a tournament selection operator in which two 
solutions are compared at a time, and the following 
scenarios are always assured: 
1. Any feasible solution is preferred to any infeasible 

solution. 
2. Among two feasible solutions, the one having smaller 

constraint violation is preferred. 
3. Among two infeasible solutions, the one having a 

smaller constraint violation is preferred. 
Motivated by these arguments, the following fitness 

function (Fi) is used for any ith solution of the population. 
 
 

 
             (10) 

 
where fbpi is the objective function  value of ith 

solution.  The parameter fbpmax is the objective function 
value of the worst feasible solution in the population.  The 
gj is jth constraint of greater than or equal to type, and the 
bracket operator < > denotes the absolute value of the 
operand, if the operand is negative.  Otherwise, if the 
operand is non negative, it returns a value of zero.  It is to 
be noted that the objective function value is not computed 
for any infeasible solution.  Since all feasible solutions 
have zero constraint violation and all infeasible solutions 
are evaluated according to their constraint violations only, 
both the objective function value and constraint violation  
are not combined in any solution in the population.  Thus, 
there is no need to have any penalty parameter for this 
approach.  

After all, the solutions in the population are evaluated 
in terms of their fitness value. They are ranked in the order 
of best to worst solutions, and the termination condition is 
checked.  The termination criterion is maximum number of 
generations to be used.  If the termination criterion is not 
satisfied, then the three genetic operators are applied to 
improve the population of solutions. 

3.3. Genetic Operators 

The three genetic operators to be applied to improve 
the population of solutions are selection, crossover, and 
mutation operators. 

3.3.1. Selection Operator 

The primary objective of the selection or reproduction 
operator is to make duplicates of good solutions and 
eliminate bad solutions in a population, while keeping the 
population size constant.  A tournament selection scheme 
is used where two solutions at a time are compared, and 
the best in terms of objective function value is selected 
[17].  That is, the scheme works in such a way that it picks 
randomly 2 individual solutions from the population and 
copies the best individual (in terms of fitness value) into 
the intermediate population; called the mating pool.  This 
process is repeated population number of times.  The 
mating pool, being comprised of tournament winners, has 
a higher average fitness than the average population 
fitness.  This fitness difference provides the selection 
pressure, which drives the GA to improve the fitness of 
each succeeding generation. 

3.3.2. Crossover Operator 

Crossover using SBX operator is performed [18].  The 
procedure of computing offspring solutions y(1)and y(2) 
from two parent solutions x(1), x(2) are as follows: 
1. Create a random number between 0 and 1. 
2. Find a parameter ⎯β using a polynomial probability 

distribution as given by: 
 
 

                                           (11) 
 

 
 
 
where  p = Distribution index for SBX (non-negative). 
α = 2 - β-(p+1) 
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and    xl, xu = lower & upper bounds of variable. 
It is assumed that x(1) < x(2) .  This procedure allows a 

zero probability of creating any offspring solution outside 
the prescribed range [xl, xu ].  A small value of p allows 
solutions for away from parents to be created as offspring 
solutions and a large value restricts only near– parent 
solutions to be created, as offspring solutions.  The SBX 
operator is applied variable by variable and in all 
simulation results, p = 2 has been used. 
3. The offspring solutions are then calculated as follows: 
y(1) = 0.5[(x(1)+ x(2)) - ⎯β | x(2) - x(1)|],                             (12)  
y(2) = 0.5[(x(1)+ x(2)) + ⎯β | x(2) - x(1)|]                     (13) 
3.3.3. Mutation Operator  

A polynomial probability distribution is used to create a 
solution y in the vicinity of parent solution x [19].  The 
following procedure is used where lower and upper bounds 
(xl and xu) are specified. 
1. Create a random number u between 0 and 1. 
2. Calculate the parameter ⎯δ as follows: 
 
 

 
          (14) 

 
 
 
Where q = Distribution index for mutation (non negative). 
δ = min [(x – xl), (xu – x)]/ (xu – xl)  
This ensures that no solution would be created out side the 
range [(xl, xu).  
3. Calculate the mutated child as follows: 

y = x + ⎯δ δmax.                                                               (15) 

Where δmax = maximum perturbance allowed in the parent 
solution = xu – xl. 
In all simulation results, q = 100 has been used. 

3.4. GA Parameters 

Selecting GA parameters like population size (sp), 
crossover probability (pc), mutation probability (pm), and 
number of generations (ng) is very difficult due to many 
possible variations in the algorithm and objective function.  
A real parameter GA relies on random number generators 
for creating the population, crossover and mutation.  A 
different random number seed produces different results. 

As far as population size is considered, traditionally 
large numbers of population of solutions have been used to 
thoroughly explore complicated objective surfaces.  The 
number of generations is something like termination 
criteria, which indicates how many times the trials 
(iterations) are to be made. 

Crossover probability is used to find the probable 
number of solutions (sp, pc) to be crossed over to produce 
an equal number of offspring solutions.  In order to 
preserve some good solutions selected during reproduction 
operator, ((1-pc). sp) number of solutions are simply copied 
to the new population.  This process helps in exploiting 

promising regions of objective space by combining 
information from promising solutions. 

Mutation  probability  is  used  in  finding  the  
probable number  of  variables  to  be  mutated (pm x sp×n).  
This process helps in exploring different areas of the 
objective space by randomly introducing changes, or 
mutations, in some of the variables. 
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Table 1: Data of Bomberger’s metal stamping problem 

Part 
No.,i 

Demand, Zi 
(Units/year) 

Production 
rate, Pi 

(units/day)

Setup cost, 
cri ($/setup) 

Setup time, 
ti (hours) 

Holding cost, 
cci ($/unityear)

1 24,000 30,000 15 1 0.00065 
2 24,000 8,000 20 1 0.01775 
3 48,000 9,500 30 2 0.01275 
4 96,000 7,500 10 1 0.01000 
5 4,800 2,000 110 4 0.27850 
6 4,800 6,000 50 2 0.02675 
7 1,440 2,400 310 8 0.15000 
8 20,400 1,300 130 4 0.59000 
9 20,400 2,000 200 6 0.09000 

10 24,000 15,000 5 1 0.00400 
The production was on a one shift (8 hour day) basis.  
Daily costs were based on a 240 day year. 

4. Computational Results 

To illustrate the proposed methodology, the practical 
example originally given by Bomberger [2] is considered.  
The basic data for this problem were developed from metal 
stamping data. Table  1 shows the Bomberger’s problem 
with machine utilization (Σ Zi / Pi) equal to 0.22 (22%).  It 
is to be noted that in the real world, the decision makers 
should be faced with the uncertainty and fluctuation 
problems in estimating the inventory costs and in setting 
limit on total cost of inventory.  Therefore, a decision 
maker may employ the concept of fuzzy demands with the 
membership functions to cope with variations in inventory 
costs and total cost before planning the production 
strategies (i.e., solving the ELSP).   Besides 22% machine 
utilization, the levels of utilization of 44%, 50%, 60%, 
66%, 70%, 80%, 88%, 92%, and 95% are also solved by 
the present formulations.  The different machine 
utilizations are obtained in such a way that Zi = a times Zi 
given in table 1, where a = possible positive constant (2, 
2.266, 2.719, 3, 3.173, 3.626, 4, 4.1703, 4.306).  In all the 
problems with respect to different machine utilizations, the 
following maximum acceptable violations of cri and cci are 
assumed: 

( )( )[ ]
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δ

pcri = 5, 5, 7.5, 2.5, 25, 12.5, 100, 25, 50, 1 
pcci = 0.0002, 0.004, 0.003, 0.0025, 0.07, 0.006, 0.03, 0.15, 
0.02, 0.001. 

Also, the values of fbp and their corresponding maximum 
acceptable violations with respect to different machine utilizations 
are assumed to be as given in table  3. Table 2 shows the 
comparison of results by the proposed fuzzy and crisp models of 
ELSP for different cases of Bomberger’s problem with different 
machine utilizations.  The total cost of the crisp solution increases 
as the utilization increases. The total cost of the corresponding 
fuzzy model solution also increases with respect to increase in 
utilization.  It is to be noted that, the difference between the total 
cost of crisp and fuzzy models is as low as $14 for 88% utilization 
problem.  This is owing to the fuzzy costs that the constraints 
could actually be more binding.  The difference between total cost 
of crisp and fuzzy models is as high as $55.42 for 60% utilization 
problem. 



 © 2009 Jordan Journal of Mechanical and Industrial Engineering. All rights reserved - Volume 3, Number 1  (ISSN 1995-6665) 
 
 14 

 
Table  2: Comparison of crisp and fuzzy ELSP results  

fbp ($/year) T(days) k1 k2 k3 k4 k5 k6 k7 k8 k9 k10%Utili-
zation Cri Fuz Cri Fuz Cri Fuz Cri Fuz Cri Fuz Cri Fuz Cri Fuz Cri Fuz Cri Fuz Cri Fuz Cri Fuz Cri Fuz

α of 
fuzzy 

models
22.06 4073.56 4025.43 47.29 43.16 7.04 8.14 1.56 1.74 1.60 1.74 0.75 0.83 2.06 2.23 4.48 5.01 8.60 9.41 0.77 0.84 2.42 2.66 1.64 1.81 0.9491

44.12 5633.65 5612.80 33.08 35.75 7.13 7.29 1.59 1.48 1.64 1.51 0.78 0.74 2.10 1.94 4.54 4.22 8.71 7.95 0.80 0.74 2.50 2.32 1.66 1.58 0.9839

50.00 5983.67 5935.04 32.21 32.89 7.00 9.99 1.53 1.50 1.58 1.82 0.76 0.91 2.03 2.12 4.38 5.16 8.40 9.58 0.78 0.71 2.43 2.38 1.06 1.55 0.9610

60.00 6493.50 6438.08 32.41 36.43 7.00 7.97 1.39 1.83 1.44 1.39 0.70 0.71 1.84 1.63 3.97 4.31 7.63 7.43 0.72 0.65 2.22 1.97 1.00 2.27 0.9619

66.18 6740.27 6698.85 34.47 36.48 7.00 8.01 1.24 1.31 1.29 1.40 0.63 0.66 1.65 1.58 3.54 4.49 7.00 7.21 0.65 0.59 2.00 1.72 1.30 2.16 0.9511

70.00 6951.11 6902.56 33.53 35.05 7.00 7.59 1.24 1.20 1.28 1.24 0.62 0.60 1.64 1.59 3.51 3.53 7.00 7.06 0.66 0.62 1.99 1.95 1.00 1.35 0.9974

80.00 7378.37 7336.75 35.79 39.10 7.00 8.86 1.04 1.46 1.08 1.14 0.51 0.48 1.43 1.25 3.00 3.21 7.00 7.13 0.58 0.49 1.72 1.49 1.00 1.89 0.9632

88.24 7628.41 7614.41 38.46 38.98 7.00 7.06 1.00 1.00 1.00 1.03 0.44 0.44 1.27 1.24 3.00 3.17 7.00 7.01 0.52 0.50 1.50 1.46 1.00 1.03 0.9855

92.00 7774.18 7733.20 39.49 43.37 7.00 7.49 1.00 1.45 1.00 1.13 0.40 0.27 1.20 1.27 3.00 3.21 7.00 7.17 0.50 0.48 1.39 1.21 1.00 1.46 0.8889

95.00 7891.07 7839.65 40.56 41.05 7.00 7.06 1.00 1.01 1.00 1.00 0.37 0.36 1.14 1.16 3.00 3.00 7.00 7.00 0.48 0.46 1.33 1.32 1.00 1.01 0.9669

Cri: Crisp result;      Fuz: Fuzzy result by FGA 
 
Table 3: Values of fbp & pfbp for different machine utilizations 

ΣZi / Pi 22% 44% 50% 60% 66% 70% 80% 88% 92% 95%
fbp($) 4000 5600 5900 6400 6650 6900 7300 7600 7600 7800
pfbp($) 500 800 900 1000 1000 1000 1000 1000 1200 1200

Table  4: GA Parameters used in crisp and Fuzzy models 
% 

utilization 
Crossover 
probability 

(pc) 

Mutation 
probability 

(pm) 

Population 
size (sp) 

Number of 
generations 

(ng) 

Best 
generation 
and Run 

No. 
22.06 0.92 0.045 100 150 148,16 
50.00 0.955 0.025 20 250 231,8 
60.00 0.98 0.045 20 250 249,7 
66.18 0.96 0.05 20 250 239,27 
75.00 0.945 0.065 20 250 246,22 
80.00 0.96 0.075 20 220 220,5 
88.24 0.905 0.05 110 250 244,20 
92.00 0.93 0.05 20 250 245,12 
95.00 0.89 0.05 110 240 233,24 

Table 5 : Fuzzy ELSP solution costs at increasing utilization 
levels and comparison with other approaches. 

 88% 92% 95% 
Independent solution: IS $7589 $7714 $7812 
Khouja et.al [6]: BGA $8782 $9746 $12018 
Chatfield [12]: GLS $7697 $7974 $9140 
Crisp solution: RGA $7628 $7774 $7891 
Fuzzy Genetic Approach: FGA $7614 $7733 $7839 
FGA distance from IS: (FGA–
IS) / IS 

0.3294% 0.7907% 0.3456%

Table 5 shows the comparison of ELSP solution costs 
of Bomberger’s stamping problem at higher utilization 
levels (88%, 92%, and 95%) with those of corresponding 
fuzzy models.  For all these levels of utilization, the total 
costs by FGA on the average are 0.4885% above that of 
independent solution (IS).   It definitely indicates that the 
perturbations of inventory costs and total cost should be 
taken into account for the ELSPs in making the decision 
more proper and optimal.  The present formulation reveals 
its usefulness. 

The real parameter GA was coded in C-language and a 
parametric study of GA is carried out in solving each of 
the crisp models.  The study is carried out by varying 
different GA parameters, viz., crossover probability (pc), 
mutation probability (pm), population size (sp), and number 
of generations (ng).  By this study, the best set of GA  

 
 

parameters which gives the minimum value of the 
objective function can be found.  The same sets of GA  
parameters are used in solving the corresponding fuzzy 
models.   

Now for the crisp problem with the % utilization of 
88.24%, initially one parameter, viz., crossover probability 
is varied from 0.89 to 0.99, Keeping the other parameters 
fixed to the values of pm = 0.01, sp = 20 , and ng =20.   
Then all the objective function values are compared, and 
the crossover probability corresponding to minimum value  
of objective function value is selected as the best pc.  It 
was found to be 0.905.  The above study is then repeated 
for different values of mutation probability from 0.005 to 
0.11 in steps of 0.005, keeping the other parameters fixed 
to the values of pc = 0.905,  sp = 20,  ng = 20.  Then the 
best mutation probability corresponding to minimum value 
of objective function was found to be 0.05.  By keeping 
the parameters pc = 0.905,   pm =0.05, ng =20, the 
population size is varied from 20 to 220 in steps of 10.  
The best population size was found to be 110. Finally the 
number of generations are varied from 20 to 250 in steps 
of 10, keeping the other parameters constant at pc = 0.905, 
pm = 0.05, sp = 110.   The best number of generations was 
found to be 250.  Thus the best GA parameters after the 
study are: pc =0.905, pm = 0.05, sp =110, ng =250.  The 
results of parametric study, i.e., best GA parameters for 
different % utilizations are furnished in table   4. 

5. Conclusions 

This paper has addressed a useful formulation of ELSP 
under fuzzy environment.  The ELSP in-turn was 
formulated via the BP approach with the cycle time Ti of 
each item modified and expressed as a real multiple ki of a 
fundamental cycle T.  This modified formulation along 
with the fuzzification of inventory costs and total cost is 
ideally suited for using real coded GA.  It is noticed that 
the FGA produced good results as compared to the 
corresponding crisp results of all cases of the Bomberger’s 
stamping problem. The total cost of crisp and fuzzy 
models is as low as $14 for 88% utilization problem and as 
high as $55.42 for 60% utilization problem (Table-2). Also 
FGA has given better results at higher utilization levels of 
the problem (88%, 92%, and 95%). For all these levels of 
utilization, the total costs by FGA on the average are 
0.4885% above that of independent solution (Table-5). It 
showed that the perturbation of inventory costs and total 
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cost should be taken into account in the ELSP by the use 
of proposed model.  Future research may consider the 
fuzzification of other parameters, viz., demand and 
fundamental cycle time.  The GA may also explore the 
solutions for other approaches of ELSP.  Also in this 
paper, linear membership functions are only considered to 
represent the nature of variations of fuzzy variables.  The 
membership functions like parabolic, exponential, 
hyperbolic, etc. can also be considered. 
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