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Abstract 

Complex systems like aircrafts, space shuttles, nuclear power stations, and some complicated process industries operate 
under high reliability and safety requirements due to the complicated technology involved and hazardous consequences to the 
larger community in case of failures.  The maintenance regime of complex systems most often consists of a variety of 
maintenance strategies, like preventive maintenance, corrective maintenance, condition-based maintenance and so on. 
Opportunistic or opportunity-based maintenance (OM) gives the maintenance staff an opportunity to replace or repair those 
items, which are found to be defective or need replacement in the immediate future, during the maintenance of a machine or 
component. This work presents an intelligent method of how to decide whether a particular item requires opportunistic 
maintenance or not, and if so how cost effective this opportunity-based maintenance will be when compared to a probable 
future grounding. This maintenance strategy is considered important when dealing with complex systems that contain 
expensive items with hard lives with condition-based maintenance (CBM) strategies. Genetic algorithms (GA) are employed 
to decide whether opportunistic maintenance is cost effective or not. An example of applying opportunistic maintenance 
strategy in process industry is used to describe the methodology for genetic algorithms. 
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1. Introduction      *        

       Modern engineering systems, like process and   
energy systems,   transport systems, offshore structures, 
bridges, pipelines are designed to ensure successful 
operation throughout the anticipated service life, in 
compliance with given safety requirements related to the 
risk posed to the personnel, the public and the 
environment.                    Unfortunately, the threat of 
deteriorating processes is always present, so that it is 
necessary to install proper maintenance measures to 
control the development of deterioration and ensure the 
performance of the system throughout its service life. This 
requires decisions on what to inspect and maintain, how to 
inspect and maintain, and when to inspect and maintain. 
These decisions are to be taken so as to achieve the 
maximum benefit from the control of the degradation 
process while minimizing the impact on the operation of 
the system and other economical and safety consequences.                                                      

Engineers are always on the look out for ways of 
reducing system down time and increasing availability, 
without compromising on required level of system 
reliability. The ultimate objective of any maintenance 
regime is to maintain the system functionality to the 
maximum extent possible with optimum tradeoffs between 
the down times and cost of maintenance, avoiding any 
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hazardous failures. Opportunistic maintenance works out 
to be the perfect remedy, which utilizes the opportunity of 
system shutdown or module dismantle to perform any 
maintenance required in the immediate future and saves a 
substantial amount of system down-time. 

In [1], the use of a genetic algorithm program for 
analyzing the optimal opportunity-based maintenance 
problem for real-sized systems, was investigated. They 
analyzed the performance of the genetic operators with a 
generation replacement genetic algorithm, using a 
hypothetical system consisting of 50 maintenance-
significant parts, and they paid special attention to the 
sensitivity of solutions to the maximum number of 
maintenance groups considered by the genetic algorithm. 
They also found that better solutions were identified for 
larger numbers of groups but increasing complexity costs 
more in terms of the computer time required. 

 
A simulation model for opportunistic maintenance 

strategies was presented in [2]. They proved that this 
automated model has a considerable improvement on the 
performance of the opportunistic maintenance strategies. 
In [3], a new approach to reliability-centered maintenance 
(RCM) using the concepts of soft life and hard life to 
optimize the total maintenance cost, was proposed. The 
proposed model was applied to find the optimal 
maintenance policies in the case of military aero-engines 
using Monte Carlo simulation. This case study showed a 
potential benefit from setting soft lives on relatively cheap 
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components that can cause expensive, unplanned engine 
rejections. 

An opportunistic maintenance policy for a 
continuously-monitored multi-unit series system with 
integrating imperfect effect into maintenance activities was 
developed in [4]. The simulation results implied that the 
proposed policy was better than the policy to maintain the 
system units separately. In [5], an opportunistic 
maintenance policy for a multi-component damage shock 
model with stochastically dependent components, was 
proposed. They utilized the coupling method to obtain 
stochastic maintenance comparisons on failure occurrences 
under different model parameters. In [6], An opportunistic 
preventive maintenance (PM) scheduling algorithm for the 
multi-unit series system based on dynamic programming, 
was introduced.   

Opportunistic maintenance is a systematic method of 
collecting, investigating, preplanning, and publishing a set 
of proposed maintenance tasks and acting on them when 
there is an unscheduled failure or repair “opportunity”. In 
this strategy, preventive maintenance activities are 
combined with corrective ones as soon as a certain 
technical and economical conditions are satisfied. 
Opportunity-based maintenance strategy involves several 
nonlinear variables which affect the total cost of 
maintenance that should be optimized to result in a cost-
effective decision on maintenance actions. Genetic 
algorithms (GA) are particularly well-suited to solving 
problems where the space of all potential solutions is truly 
huge and too vast to search exhaustively in any reasonable 
amount of time. A genetic algorithm is a search technique 
used in computing to find exact or approximate solutions 
to optimization and search problem. It is categorized as a 
global search heuristics. It is a particular class of 
evolutionary algorithms that use techniques inspired by 
evolutionary biology, such as inheritance, mutation, 
selection, and crossover. 

This work is based on a real problem of improper 
maintenance strategy of a process industry (potash 
production). Actually the exploitation of the equipment 
maintenance records is often a weak point within an 
operations management organization. Inexistence of 
proper computerized maintenance system, lack of 
competences to properly handle maintenance data, or 
reduced knowledge in advanced maintenance processing 
techniques, are common problems to solve in order to 
benefit from the historical record of failures and 
maintenance operations carried out at certain equipment. 
In this work, the maintenance records analysis is used to 
provide critical information from past experience to 
improve current maintenance process in this Potash 
processing industry. Genetic algorithms techniques of time 
and cost analysis are used to build an intelligent 
maintenance system to predict whether the opportunity-
based maintenance strategy is cost effective or not. GA-
based opportunistic maintenance technique was applied on 
one of the critical production units which is the dryer.  

This paper is organized as follows: section II will 
define the main concept of opportunity-based maintenance 

strategy. Genetic algorithms (GA) technique will be 
described in section III. The problem formulation of GA-
based opportunity maintenance strategy will be presented 
in section IV. A hypothetical example on GA-based 
opportunistic maintenance system will be given in section 
V, and the last section is to conclude.      

2. Opportunistic Maintenance (OM) Strategy 

Opportunistic maintenance can be defined as a 
systematic method of collecting, investigating, 
preplanning, and publishing a set of proposed maintenance 
tasks and acting on them when there is an unscheduled 
failure or repair "opportunity" [1].  Opportunistic 
maintenance can be thought of as a modification of the 
run-to-fail maintenance management philosophy. An 
opportunistic maintenance strategy is proposed   to 
maintain a production line consisting of k non identical 
processors and without intermediary stocks.  Operational 
characteristics of processors are degraded with usage. In 
this strategy, preventive maintenance activities are 
combined with corrective ones as soon as a certain 
technical and economical conditions are satisfied.  

Generally, there are two main purposes for applying 
opportunistic maintenance: 1. to extend equipment lifetime 
or at least the mean time to the next failure whose repair 
may be costly. It is expected that this maintenance policy 
can reduce the frequency of service interruption and the 
many undesirable consequences of such interruption, and 
2. to take advantage of the resources, efforts and time 
already dedicated to the maintenance of other parts in the 
system in order to cut cost. 

Opportunistic maintenance consists of opportunistic 
replacement policies and opportunistic build policies. 
Replacement policies specify which parts to remove when 
an opportunity arises. Build policies specify which parts 
should be taken from the spares inventory to replace the 
parts removed according to the opportunistic replacement 
policies. Both policies should be used to reduce future 
maintenance requirements [3]. The opportunistic 
maintenance may be divided into two categories: 1. Age 
related, and 2. Non-age related. Fig. 1 shows the main 
categories of opportunistic maintenance.  
• Non–age related opportunistic maintenance:  the 

maintenance of those items, which failed before, but 
went undetected until the module’s strip. These are the 
items, which are inaccessible unless the modules 
containing them are completely dismantled and whose 
failures do not cause system failure.                                                                

• Age–related opportunistic maintenance: this category 
contains three sub-categories as follows: 1. Hard life,  
2. Soft life, and  3. Degradation. 

1. Hard life: is defined as the age of the component, at or 
by which the component has to be replaced.                                                    

2.  Soft life: is the age of the component after which it 
will be rejected the next time one of the modules 
containing it is recovered.  
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Figure 1. Categories of opportunistic maintenance strategy.                                                                              

Crossover is the process of combining information 
from two parents of strings, such that two children strings 
have a resemblance to each parent.  

3. Degradation: failure mechanisms are monitored 
through condition monitoring devices and components 
are repaired or replaced once the condition deteriorates 
to a critical level.                                                                                                                                     

Mutation operator plays a secondary role in the simple 
GA. The frequency of mutation to obtain good results in 
empirical GA studies is on the order of one mutation per 
thousand position transfer. In the simple GA, mutation is 
the occasional random alteration of the value of a string 
position. Fig. 2 shows the flow diagram of the GA process. In opportunity-based maintenance of a certain 

component, three important variables need to be collected 
and analyzed as follows:                                                                                                                   
• The remaining life of component or sub-module under 

consideration.                                         
• The cost of down time that will occur if one decides to 

wait until the component has exhausted its useful life.                                                                                 
• The cost of risk involved or the probability of failure.                                                   

 In such cases, an optimization model that carries out a 
comparative analysis of cost of remaining useful life and 
cost of down time for a group of components that will 
reach their hard lives within a small period of time will 
result in a list of components that should be replaced or 
repaired through opportunistic maintenance. Genetic 
algorithms (GA) are well-suited to carry out such an 
optimization task.  

3. Genetic Algorithms (GA) Technique 

Genetic algorithms are search algorithms based on the 
mechanics of natural selection and natural genetics. They 
combine survival of the fittest among string structures with 
a structured yet randomized information exchange to form 
a search algorithm with some of the innovative flair of 
human search [7]. GA are considered one of the most 
powerful searches and optimization algorithms because 
GA are conducted from a population of points rather than a 
single point, thus increasing the exploratory capability of 
GA. In addition, GA lend themselves naturally to 
implementation in parallel processing environments 
leading to the ability to exploit newer technologies in this 
domain, thus achieving faster computational times. 
Moreover, GA work with a direct coding of the parameter 
set rather than the parameters themselves, so, it is suitable 
for discontinuous, high dimensional and multi-nodal 

problems. The mechanics of a simple genetic algorithm are 
surprisingly simple, involving nothing more complex than 
copying strings and swapping partial strings. A simple GA 
that yields good results in many practical problems is 
composed of three operators: 1. Reproduction, 2. Cross- 
over, and 3. Mutation. 

The reproduction operator may be implemented in 
algorithmic form in a number of ways. Perhaps the easiest 
is to create a biased roulette wheel, where each current 
string in the population has a roulette wheel slot sized in 
proportion to its fitness.  

 

Figure 2. Genetic algorithms (GA) flowchart. 
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4. GA-based Opportunistic Maintenance: (Problem 
Formulation) 

Using opportunistic maintenance where complex 
systems require periodic replacements of expensive parts 
is beneficial and considerably important. But, there are 
numerous factors to be considered while deciding on 
whether a particular component should be replaced or 
repaired when an opportunity arises. Genetic algorithms 
are used, as an optimization tool to compare the cost of 
premature replacement with the cost of downtime if 
grounded for the sole purpose of replacement.  

The main factors or variables that may affect the final 
decision about the application of opportunistic 
maintenance could be described as follows: 
• Remaining life cost (RLC): For an item, it is the 

product of number of hours or cycles remaining (RL) 
and the cost of item (CI) per hour/cycle as given in (1). 

)).(                                      (1)   ( CIRLRLC =
• Down time cost (DTC): This is a very tricky 

component and completely depends on the complexity 
of the system, whether the downtime is planned or 
unplanned, and a lot of other similar factors which are 
specific to the environment under consideration. 

• Unplanned down time cost (UDTC): It is the cost due 
to unplanned failure and it includes the direct and the 
indirect costs. 

• Risk cost (RC): This is the risk involved in letting the 
components function until their complete useful life is 
utilized. The risk cost is given in (2), where (HF) is the 
hazard function, and (SDC) is the secondary damage 
cost. 

)                      (2) .( SDCUDTCHFRC +=
• Hazard function (HF): this is known as the failure rate, 

hazard rate, or force of mortality. Hazard function h(x) 
is the ratio of the probability function p(x) to the 
survival function s(x). Hazard function (HF) is given in 
(3). 

)(

)(

xs

xp
HF =  (3) 

• Secondary damage cost due to failure (SDC): the cost 
which can be obtained with the help of failure modes 
and critical analysis. 

• Unit price: It is the price per finished product unit or 
service unit. 
       In this study, the genetic algorithms (GA) toolbox 

of Matlab 7.0 was used in order to take the right decision 
whether to repair or replace the components under study. 
A scattered crossover function and a uniform mutation was 
adopted A fitness function (i.e., objective function) was 
formulated in order to quantify the optimality of a solution 
(i.e., chromosome in genetic algorithms) so that a 
particular chromosome may be ranked against all the other 
chromosomes. Optimal chromosomes, or at least 
chromosomes which are more optimal, are allowed to 
breed and mix their datasets by any of several 
techniques, producing a new generation that will 
(hopefully) be even better. Also, the fitness function 
is a way to describe the dynamics of gene 
frequencies in populations of reproducing 

individuals. The fitness function measures the 
potential for reproductive success of any individual 
in a given environment. The objective function was 
formulated for this problem and given in (4), where 
(CLR) is cost of lost revenue, (DT) is the downtime 
in hours, (RC) is the risk cost, (RLC) is the 
remaining life cost, and (Z) is the fitness value (i.e., 
total cost of maintenance in Dollars). 

)()()).(( RLCRCDTCLRZ −+=  (4) 

The value of Z in (4) gives an indication of the 
decision; whether to perform the opportunistic 
maintenance on the studied components or not. In this 
work, if the fitness function (Z) yields a positive value, it 
will be represented by number one and the decision will be 
"perform opportunistic maintenance on the component", 
otherwise if the value of Z is negative, it will be 
represented by number zero, and the decision will be "do 
not perform opportunistic maintenance on the component". 

Since the final decisions; whether to do opportunistic 
maintenance or not; depend on the value of Z, it was 
computed by first evaluating the total losses if the 
component continues running until failure occur (i.e., 
(CLR).(DT)+(RC) as in (4)). Then, the remaining life cost 
(RLC) was subtracted from the total losses in order to 
compare which is bigger, the total losses or the cost of 
remaining life. If the losses were bigger than the (RLC), 
then Z is positive and the decision is to perform 
opportunistic maintenance, because having positive value 
for Z means that repairing or replacing the component 
during the scheduled maintenance for the other 
components is better than replacing or repairing it when it 
fails .Otherwise, if the losses were smaller than the (RLC), 
then Z will give a negative value, and the decision is not to 
perform opportunistic maintenance. 

One may notice that the down time (DT) and (RLC) for 
all items or components in the same group (as shown in 
section V), are the same. Therefore, the only independent 
variables in (4) are the (CLR) and (RC). These two 
variables will be the main GA fitness function variables, 
and will be denoted as follows:  X1: Cost of lost revenue 
(CLR), and X2: Risk cost (RC). Therefore, the final GA 
fitness function will be as shown in (5). 

)(21).( RLCXXDTZ −+=  (5) 

5. GA-Based Opportunistic Maintenance System: (A 
Hypothetical Example) 

The final fitness function (i.e., objective function) as 
formulated in (5) contains two constants (i.e., DT and 
RLC). These two parameters remain constant for all 
components in the same group. In (5), X1 and X2 are the 
variables which will enter the GA computational loop, as 
shown in Fig. (2), in order to optimize the total cost of 
maintenance (i.e., fitness value Z).  

In this work, the final formulated GA-based system 
was applied to an example from process industry (i.e., 
potash production plants). The data which was collected 
from the potash plant is given in Table I, and contains 
values for the following variables: i) the down time (DT) 
in hours, ii) production loss in tons (as an indicator of the 
cost of revenue lost), and iii) the remaining life cost (RLC) 

http://en.wikipedia.org/wiki/Genetic_algorithm
http://en.wikipedia.org/wiki/Crossover_%28genetic_algorithm%29
http://www.iscid.org/encyclopedia/Measure
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in dollars, for 17 components of a rotary dryer machine, 
for years 2004, 2005, and 2006. Fig. 3 shows an inside 
view of a normal rotary dryer, whereas Fig.4 shows an 
inside view of a faulty rotary dryer.   

Table I shows the ungrouped data for years 2004 – 
2006. These data points were then grouped into seven 
different groups depending on the downtime (DT) and 
remaining life cost (RLC) which both remain constant for 
all components in the same group. The final grouped data 
for years 2004 to 2006 is shown in Table II. 

Figure 3. The inside view of a normal rotary dryer. 

Figure 4.The inside view of  a faulty rotary dryer. 

Table1. Ungrouped Data for Years (2004 – 2006). 

Year 
Downtime 

(DT) 
(Hours) 

Production 
Loss 

(tons) 

Remaining 
life Cost 

(RLC) ($) 
2004 6 988.2 592920 
2004 16 2635.2 4216320 
2004 18 2964.6 5336280 
2004 18 2964.6 5336280 
2004 12 1976.4 2371680 
2004 24 3952.8 9486720 
2004 50 8235 4117500 
2005 6 988.2 592920 
2005 8 1317.6 1054080 
2005 8 1317.6 1054080 
2005 24 3952.8 9486720 
2005 50 8235 4117500 
2006 6 988.2 592920 
2006 8 1317.6 1054080 
2006 16 2635.2 4216320 
2006 24 3952.8 9486720 
2006 24 3952.8 9486720 

 

 

 

Table 2. Grouped Data Based on Downtime (DT). 

Group 
Number 

Downtime 
(DT) 

(Hours) 

Production 
Loss 

(tons) 

Remaining 
life Cost 

(RLC) ($) 
6 988.2 592920 
6 988.2 592920 1 
6 988.2 592920 
8 1317.6 1054080 
8 1317.6 1054080 2 
8 1317.6 1054080 

3 12 1976.4 2371680 
16 2635.2 4216320 

4 
16 2635.2 4216320 
18 2964.6 5336280 

5 
18 2964.6 5336280 
24 3952.8 9486720 
24 3952.8 9486720 
24 3952.8 9486720 6 

24 3952.8 9486720 
50 8235 4117500 
50 8235 4117500 7 
50 8235 4117500 

The grouped data of Table II was then fed into the 
genetic algorithms (GA) process in order to identify the 
desired outputs of this model which are represented by the 
fitness values (Z). As described earlier, the equation of the 
fitness function differs from group to group. For example, 
the fitness function for (group 1) is given in (6). 

592920216 −+= XXZ  (6) 

Different groups have different fitness functions 
depending on their downtimes (DT). Each fitness function 
(Z) was then given to the GA operators with initial 
population of 130, and terminates at 100 generations with 
a uniform crossover technique. The final outputs from the 
GA process are the best fitness values for each group, 
which could be negative or positive values. If the best (Z) 
from GA is negative, the decision is (zero) or not to 
perform opportunistic maintenance for this group of 
components. Otherwise, the decision is (one) and 
opportunistic maintenance strategy should be applied. Fig. 
5 and Fig 6 are samples of the GA outputs for groups 4 
and 7, respectively. As shown in Fig. 5 and Fig. 6, the 
points at the bottom of the plot denote the best fitness 
values, while the points above them denote the averages of 
the fitness values in each generation.  

In Fig. 5, the best fitness value (Z) is (-4.2167 X 106), 
which indicates a negative total cost of opportunistic 
maintenance, and the decision is "not to perform 
opportunistic maintenance. As noticed in Fig. 5 and Fig. 6, 
the first generation's fitness value was very low, and while 
the number of generation increases, the fitness value 
improves, which means that when the generation 
increases, the fitness value converges into the optimal 
value. The best fitness value improves more slowly in later 
generations whose populations are closer to the optimal 
point.  

The final fitness values and decisions generated by the 
GA are given in Table III. As indicated by Table III, the 
components of groups 1 and 2 are the only components 
which have positive best fitness values, therefore; the 
decision is "to perform opportunistic maintenance" on 
group 1 and 2, but "not to perform opportunistic 
maintenance" on group 3, 4, 5, 6, and 7.  
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order to decide if opportunistic maintenance is favorable or 
not. The main conclusions of this work could be 
summarized as follow: 
• based approach to opportunistic maintenance is a 

necessary procedure before deciding on whether to 
perform opportunistic maintenance strategy or not. This 
approach optimized the total cost of maintenance and 
gave an accurate indication about the economic of 
repairing or replacing a certain component under 
opportunistic maintenance strategy. 

• Genetic algorithms for opportunistic maintenance are a 
novel application. GA technique is very suitable for the 
problem of opportunistic maintenance where the 
variables interactions complicate the problem. The final 
decision on whether to perform opportunistic 
maintenance or not depending on a minimum total cost 
gives the maintenance department an opportunity for 
considerable savings on the total maintenance 
expenses. 

 

Figure 5.The best and average fitness values Vs. GA generation 
for group 4. 

• The success of genetic algorithms in optimizing the 
cost of opportunistic maintenance suggests the use of 
this intelligent technique in many other industrial 
fields, particularly in maintenance and safety.  

• It is recommended to improve the accuracy of the GA 
fitness function by considering more maintenance 
variables like the direct and indirect costs of 
maintenance tasks. This will guarantee GA 
convergence into better optimal solution.    Figure 6.The best and average fitness values Vs. GA generation 

for group 7. 
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