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Abstract

This paper describes a differential fault analysis (DFA)
on AES with 192 and 256-bit keys. We show a new attack
in which both 192 and 256-bit keys are retrieved within a
feasible computational time. In order to verify the proposed
attack and estimate the calculation time, we implement the
proposed attack using C code on a PC. As a result, we suc-
cessfully recover the original 192-bit key using 3 pairs of
correct and faulty ciphertexts within 5 minutes, and 256-
bit key using 2 pairs of correct and faulty ciphertexts and 2
pairs of correct and faulty plaintexts within 10 minutes.1

1 Introduction

A side-channel attack is considered to be serious because
the secret keys embedded in a secure computing device such
as a smart card and RFID tag can be recovered within a
feasible computational time. Fault analysis is one type of
side-channel attack that deduces the secret key by deliber-
ately inducing faults into the secure device during its cryp-
tographic computation. Differential fault analysis (DFA)
proposed by Bihamet al. [1] is the most well known in fault
analysis. In their attack, the secret key of DES can be recov-
ered by comparing the correct and faulty output results after
injecting faults into the secure device. Until now, DFA at-
tacks against some symmetrical ciphers have been proposed
and have had success in recovering secret keys [1, 2, 3].

There are many papers that propose a DFA attack against
AES where the secret keys are recovered by inducing faults
into the data part [4, 5, 6, 7, 8] or key expansion part
[9, 10, 11]. They improve the attack conditions such as the
fault model and requiring pairs of correct and faulty cipher-
texts needed to recover the secret key. However, all previous
attacks can only be applied to AES with a 128-bit key and

1This paper is the English version of the publication in the Japanese
domestic symposium, Symposium on Cryptography and Information Se-
curity, SCIS 2010, which will be held on Jan. 19-22, 2010.

in15in11in7in3

in14in10in6in2

in13in9in5in1

in12in8in4in0

s3,0 s3,1 s3,2 s3,3

s2,0 s2,1 s2,2 s2,3

s1,0 s1,1 s1,2 s1,3

s0,0 s0,1 s0,2 s0,3

input bytes State array

Figure 1. AES State.

the attack against 192 or 256-bit key has not been proposed
in the published paper.

In this paper, we propose the attack against AES with
192 and 256-bit key. Our attack uses the characteristic
structure of the key expansion routines for 192 and 256-bit
keys and we can retrieve the original key within a practical
time. In order to verify the proposed attack and evaluate
the total calculation time needed to obtain the original key,
we implement the proposed attack using C code on a PC.
The simulation results show that we can retrieve the 192-bit
key using 3 pairs of correct and faulty ciphertexts within 5
minutes, and we can retrieve the 256-bit key using 2 pairs
of correct and faulty ciphertexts and 2 pairs of correct and
faulty plaintexts within 10 minutes.

The reminder of this paper is organized as follows. No-
tations are defined in Section 2. In Section 3, we describe
the previous work. We describe the idea of the proposed
attack in Section 4. We describe the attack assumptions in
Sections 5 and the attack procedures in Section 6 and 7.
The simulation results are shown in Section 8. Finally, we
conclude the paper in Section 9.

2 Notations

We define some of the parameters used in this paper.
The AES algorithm operations are performed on a two-



dimensional array of bytes called the State in Fig.1(See [12]
for more details). At the start of the Cipher and Inverse
Cipher, the input – the array of bytesin0, in1, . . . in15 – is
copied into the State array as illustrated in Fig.1.The Cipher
or Inverse Cipher operations are then conducted on the State
array.

We use the parameters as follows.

a(n) : n denotes the bit length ofa
a ⊕ b : Bitwise exclusive-OR operation
a · b : Finite field multiplication
Kn : n-th round key that consists of 16 bytes,

4 by 4 matrix
Kn

i,j : (i, j) byte ofKn (i, j = 0 . . . 3),
wherei andj are the row and column numbers

3 Previous Work

In this section, we briefly introduce well-known previous
attacks against AES with a 128-bit key [6, 7] and we show
the difficulty in applying these attacks to 192 and 256-bit
keys.

The previous works use the fact that the state difference
between the states calculated from correct and faulty cipher-
texts is related to another state difference in the same col-
umn because one byte fault injected into the state is propa-
gated to four bytes due to the MixCoumns transformation.
We obtain the last round keyK10 by solving the simulta-
neous equations related to the state differences by 4 bytes
using correct and faulty ciphertexts2. Once we obtainK10,
we also obtain the original 128-bit key.

We verify we can extend the above attack method to the
case of 192/256-bit key. In order to obtain the 192-bit key
(256-bit key), we need to obtain the last round keyKr and
the right half ofKr−1 (wholeKr−1). We obtainKr as the
attack for 128-bit key. We can not obtainKr−1 by sim-
ply applying the above attack, because we have to deduce
Kr−1 by 16 bytes (not 4 bytes) due to the influence of the
MixColumns transformation of ther − 1 round. Therefore,
the simultaneous equations related toKr−1 are more com-
plicated, and we can not solve these equations in a practical
time.

4 Idea of Proposed Attack

In this section, we describe the idea of the proposed at-
tack.

2In fact, we obtainK10 by 4 bytes using three kinds of simultaneous
equations.

In the case of 192-bit key We find that a part of the 10th
round output difference between correct and faulty calcu-
lations are known because we obtain the left-half ofK11

usingK12 by the characteristics of the key expansion rou-
tine. Further, we find that the known output difference has
a relation to the output difference calculated from the un-
known right-half ofK11. Therefore, we can solve the si-
multaneous equations of the 10th round output difference
by 4 bytes, and we can obtain the right-half ofK11 within
a practical time. Therefore, we obtain the original 192-bit
key using the right-half ofK11 andK12.

In the case of 256-bit key In the case of 256-bit key, we
can not obtain even 1 byte ofK13 usingK14 by its struc-
ture of the key expansion routine. Then, we have to solve
the simultaneous equations by 16 bytes, and it is difficult to
deduce the original key within a practical time. Here, we
find that the first round keyK0 can be uniquely determined
when we assume the value of one column (4 bytes) ofK13.
by the characteristics of the key expansion routine. We ver-
ify whether the assumed one column (4 bytes) ofK13 is
correct or not by determiningK0 using the fault injections
into the decryption. Using this method, we reduce the key
candidate space ofK13. Therefore, we obtain the original
256-bit key usingK13 andK14.

In the next section, we propose the attack using the above
idea.

5 Attack Assumptions

In this section, the attack assumptions are described.

• Correct and faulty ciphertexts calculated from the
same plaintext are known.

• One pair of correct plaintext and ciphertext is known.

• Any one column (total 4 bytes) of therth round output
is randomly corrupted.

– In the case of 192-bit key:r = 9, 10

– In the case of 256-bit key:r = 12 (encryption
and decryption)

To satisfy the above conditions, fault injection area can
be chosen as follows.

– Any 1 byte of the (r − 1)th round output.

– Any one column (total 4 bytes) of therth round
output.

• (For the attack against 256-bit key) Correct and faulty
plaintexts calculated from the same ciphertext are
known.



6 Attack Procedure for 192-Bit Key

In this section, we describe the attack procedure for 192-
bit key. In order to obtain the original 192-bit key, we need
to deduce the right-half ofK11, (K11

0,i, K11
1,i, K11

2,i, K11
3,i)

(i = 2, 3) andK12. Using the proposed attack, we reduce
the key candidate space of these values to28. Finally we
obtain the original 192-bit key by the exhaustive search.

6.1 Deduce K12

We obtainK12 using the method described in [13].
In order to obtainK12, we obtain two kinds of faulty ci-

phertexts by injecting the faults into 1 byte of the 9th round
output. The left figure of Fig.2 shows the fault propagation
when 1 byte fault is injected into the 9th round outputs0,0.
We can deduceK12 by solving the simultaneous equations
of K12 within 1 minute using 2 pairs of correct and faulty
ciphertexts on a PC.

6.2 Obtain faulty ciphertext

We obtain the faulty ciphertext by fault injection into 1
byte of the 8th round output (or one column (total 4 bytes)
of the 9th round output). As an example, we explain the
case when the fault is injected into 1 byte of the 8th round
outputs0,0 in the following paper.

6.3 Deduce the left-half of K11

As we knowK12, we can deduce 8 bytes of the left-half
of K11, (K11

0,i, K11
1,i, K11

2,i, K11
3,i) (i = 0, 1) by the charac-

teristics of the key expansion routine (Fig. 3).

6.4 Deduce the right-half of K11

We deduce 8 bytes of the right-half ofK11, (K11
0,i, K11

1,i,
K11

2,i, K11
3,i) (i = 2, 3). Figure 4 shows the last part of the

encryption for 192-bit key. The bytes shown in gray color
are known values because we calculate them fromK12 de-
duced in Section 6.1, the left-half ofK11 deduced in Sec-
tion 6.3, and the known ciphertext. Using these values, we
deduce the 10th round output differences between correct
and faulty encryption shown in gray color in Fig.4.

Moreover, the 10th round output differences between
correct and faulty encryption shown in the box with the
hatched line can be uniquely determined when we assume
the 4 byte values ofK11, (K11

0,3, K11
1,3, K11

2,3, K11
3,3) shown

in the box with the hatched line in Fig.4.
Here, due to the linearity of the MixColumns transforma-

tion, the input and output differences of the MixColumns
transformation are held. Then, the differences of the byte
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Figure 2. （Left）Fault propagation when the
fault is injected into 1 byte of output in the
9th round. （Right）Fault propagation when
the fault is injected into 1 byte of output in
the 8th round.
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between correct and faulty encryption have a relation to an-
other byte in the same column, because the one byte fault
is propagated to four bytes due to the influence of the Mix-
Columns transformation. As an example, the most left col-
umn of the 10th round output satisfy the following equa-
tions.

M0,0 ⊕ M̃0,0 = {02} · F (1)

M1,0 ⊕ M̃1,0 = F (2)

M3,0 ⊕ M̃3,0 = {03} · F (3)

In the above,F is the fault value. The notationMi,j (M̃i,j)
is the correct (faulty) 10th round output. Further, the fol-
lowing simultaneous equations are satisfied.

M0,0 ⊕ M̃0,0 = {02} · (M1,0 ⊕ M̃1,0) (4)

M3,0 ⊕ M̃3,0 = {03} · (M1,0 ⊕ M̃1,0) (5)

Here,M1,0 can be calculated from the above equations be-
cause the left parts of eq.(4) and (5) are known values. The
byte M1,0 is calculated from the guessed values of(K11

0,3,
K11

1,3, K11
2,3, K11

3,3). Then, we can reduce the space of the
key candidates of(K11

0,3, K11
1,3, K11

2,3, K11
3,3) by eliminating

the guessed values which does not satisfy eq.(4) and (5).
The above method can be applied from the second column
to fourth column of 10th round output. Then, the stateM2,1,
M3,2, M0,3 are also calculated from the above guessed val-
ues(K11

0,3, K11
1,3, K11

2,3, K11
3,3). We also reduce the space of

the key candidates by eliminating the key candidates which
does not satisfy the equations ofM2,1, M3,2, M0,3.

In the same way, we reduce the space of the key candi-
dates(K11

0,2, K11
1,2, K11

2,2, K11
3,2). Therefore, we deduce the

key candidates of the right-half ofK11 using 1 pair of cor-
rect and faulty ciphertext.
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Figure 4. Data part for 192-bit key

6.5 Deduce the original 192-bit key

UsingK12 deduced in Section 6.1 and the key candidates
K11 deduced in Section 6.4, we calculate the key candidates
of the original 192-bit keyk(192) by applying the inverse
calculation of the key expansion routine. If the candidates
of the ciphertext calculated fromk(192) is equal to the cor-
rect ciphertext, the key candidates of the original 192-bit
key is correct and equal to the original keyK(192).

7 Attack procedure for 256-bit key

In this section, we describe the attack procedure for 256-
bit key. In order to obtain the original 256-bit key, we need
to deduceK13 andK14. Using our attack, we reduce the
key candidate space of these values to213. Finally, we ob-
tain the original 256-bit key by the exhaustive search.

7.1 Deduce K14

As Section 6.1, we deduceK14. The last round keyK14

is uniquely determined using 2 pairs of correct and faulty
ciphertexts.



7.2 Deduce K0

In order to obtainK0, we obtain two kinds of faulty
plaintexts by injecting the faults into 1 byte of the 11th
round output. As Section 6.1, the first round keyK0 is
uniquely determined using 2 pairs of correct and faulty
plaintexts.

7.3 Deduce K13

As we knowK14, we also know bytes indicated by the
gray color in Fig.5 by calculating the inverse of the key ex-
pansion routine.

Here, we guess 4 bytes of(K13
0,0, K13

0,1, K13
0,2, K13

0,3) in-
dicated by the box with the hatched line in Fig.5. Then, we
can determine 4 bytes of(K0

3,0, K0
3,1, K0

3,2 K0
3,3), of K0

by calculating the inverse of the key expansion routine. If
the guessed 4 bytes are equal to 4 bytes ofK0 deduced in
Section 7.2, we store the guessed values(K13

0,0, K13
0,1, K13

0,2,
K13

0,3). Therefore, we can reduce the space of the key candi-
dates of(K13

0,0, K13
0,1, K13

0,2, K13
0,3), by calculating232 times

the inverse of the key expansion routine.
In the same way, we reduce the the space of the key can-

didates of(K13
i,0, K13

i,1, K13
i,2, K13

i,3) (i = 1 . . . 3).

7.4 Deduce the original 256-bit key

UsingK14 deduced in Section 7.1 and the key candidates
K13 deduced in Section 7.3, we calculate the key candidates
of the original 256-bit keyk(256) by applying the inverse
calculation of the key expansion routine. If the candidates
of the ciphertext calculated fromk(256) is equal to the cor-
rect ciphertext, the key candidates of the original 256-bit
key is correct and equal to the original keyK(256).

8 Simulation Result

In order to verify the proposed attack and estimate the
calculation time, we implement the attacks for 192-bit and
256-bit keys using the C code and execute it on a Xeon 3.0
GHz PC3.

In the case of 192-bit key Using proposed attack method,
the key candidate space of the right-half ofK11 is reduced
to 28 from 264. Therefore, an amount of calculationT
needed to obtain the original key is calculated as follows.

T = 2 × 0.5 × 232 × (1R inverse calc.) + 28 × (encryption)

= 232 × (1R inverse calc.) + 28 × (encryption)

∼ 232 × (1R inverse calc.) (6)
3This simulation was done with a single thread processing. Therefore,

one core of the multi-core CPU is only used.

The notation R indicates the round. In the above calcula-
tion, the coefficient2 of the first term means two kinds of
calculation which is correct and faulty calculations. The co-
efficient0.5 means that we calculate the half-state (8 bytes)
by applying the 1 round inverse function.

In the result, we can obtain the original 192-bit key
within 5 minutes.

In the case of 256-bit key Using proposed attack method,
the space of the key candidates of(K13

0,0, K13
0,1, K13

0,2, K13
0,3)

is reduced to24 from 232. Moreover, the space of the key
candidates of(K13

i,0, K13
i,1, K13

i,2, K13
i,3) (i = 1 . . . 3) is re-

duced to23. Therefore, we need213(= 24 × 23 × 23 × 23)
times encryption to determine the original 256-bit key.

Therefore, an amount of calculationT needed to obtain
the original key is calculated as follows.

T = 232 × (key expansion) + 213 × (encryption)

∼ 232 × (key expansion) (7)

In the result, we can obtain the original 256-bit key
within 10 minutes.

9 Conclusions

We propose the differential fault analysis on AES with
192 and 256-bit keys. In the proposed attack, we can obtain
192-bit key using 3 pairs of correct and faulty ciphertexts
within 5 minutes. We can obtain 256-bit key using 2 pairs
of correct and faulty ciphertexts and 2 pairs of correct and
faulty plaintexts within 10 minutes. Both 192 and 256-bit
keys are retrieved within a practical time.
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Figure 5. AES key expansion routine for 256-
bit key.


