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基于吡咯烷与正丁烷类衍生物 CCR5拮抗剂的药效团模型构建

孔 韧异 徐雪梅异 陈慰祖 王存新鄢 胡利明鄢
(北京工业大学生命科学与生物工程学院,北京 100022)

摘要： 吡咯烷与正丁烷类 CCR5(化学趋化因子受体 5)拮抗剂可通过抑制人类免疫缺陷病毒(HIV鄄1)包膜蛋白
与 CCR5的相互作用而阻断病毒进入细胞.本文使用已知拮抗剂结构和活性信息构建了一个三维药效团模型.
按照Catalyst/HypoGen模块的要求,选择了 25个结构和活性均具备差异性的分子作为药效团产生的训练集.其
中训练集分子以 IC50值表示的生物活性值跨度为 0.06到 10000 nmol·L-1.最好的药效团模型(Hypo 1)由两个正
离子化特征以及三个疏水特征组成,训练集预测相关系数为 0.924,均方根偏差为 1.068.模型用于预测由 74个
分子组成的测试集化合物活性,结果表明模型可以提供较好的活性预测结果并用于新的拮抗剂的设计.
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Pharmacophore Model Generation Based on Pyrrolidine鄄 and
Butane鄄derived CCR5 Antagonists

KONG Ren异 XU Xue鄄Mei异 CHEN Wei鄄Zu WANG Cun鄄Xin鄢 HU Li鄄Ming鄢
(College of Life Sciences and Bioengineering, Beijing University of Technology, Beijing 100022, P. R. China)

Abstract： A three鄄dimensional pharmacophore model was developed for a considerable number of pyrrolidine鄄
based and butane鄄based chemokine (C鄄C motif) receptor 5(CCR5) antagonists, which can block the entry of human
immunodeficiency virus type 1 (HIV鄄1) by inhibiting the interaction of HIV鄄1 envelope protein and CCR5. The
pharmacophore model was generated using a training set consisting of 25 carefully selected antagonists with the
diverse molecular architecture and bioactivity, as required by the Catalyst/HypoGen program. The activity of the
training set molecules expressed in IC50 ( half 鄄 inhibitory concentration ) covered from 0 .06 to 10000 nmol·L - 1 .
The most predictive pharmacophore model (Hypo 1), consisting of two positive ionizable points and three hydrophobic
groups, had a correlation of 0.924 and a root mean square of 1.068, and a cost difference of 63.67 bits between the
null cost and the total cost. The model was applied in predicting the activity of 74 compounds as a test set. The results
indicated that the model was able to provide clear guidelines and accurate activity prediction for novel antagonist
design.
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Human immunodeficiency virus type 1 (HIV鄄1) infection,
which eventually leads to the acquired immunodeficiency syn-
drome (AIDS), was first discovered by Barre鄄Sinoussi and his
co鄄workers [1,2] in 1983. At present, AIDS remains to be a lethal
disease threatening human忆s health, especially affecting sub鄄Sa-

haran Africa and Southeast Asia. To inhibit the replication of
HIV鄄1 and slow the suppression of the immune system, current
therapies utilize a combination of protease and reverse transcrip-
tase inhibitors[3]. Although the therapy can sup- press viral repli-
cation and delay the progression of AIDS, the virus is not eradi-
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cated and the immune system eventually succumbs to infection[3].
Because of the long side effects of protease and reverse tran-
scriptase inhibitors and the increasing transmission of resistant
variants, it is urgent to develop novel classes of drugs, which are
able to suppress the replication of HIV鄄1 efficiently.

Chemokine receptor CCR5, a primary co鄄receptor essential
for the recognition of HIV and its entry into cell, has been iden-
tified as a potential novel target for the treatment of HIV鄄1 infec-
tion[4]. Because of the absence of any three鄄dimensional structure
of CCR5, rational design of inhibitors against the receptor by a
structure鄄based approach is not so feasible. Fortunately, many
chemically diverse small molecules as CCR5 antagonists have
been reported and some of them are in preclinical and clinical
development [5]. Researches on correlating the physicochemical
properties or structural features of the antagonists with their bio-
logical activities are believed to gain an insight into the interac-
tion mechanism of CCR5 receptor and antagonists as well as
providing useful clues for designing novel antiHIV鄄1 drugs.

The HypoGen module in Catalyst software is a predictive
pharmacophore method and attempt to derive structure鄄activity
relationship (SAR) model from a set of molecules with known
structures and activity. There are many applications of HypoGen
in drug discovery and toxicology research (for reference lists, see
http://www.accelrsy.com). Pharmacophore models were report-
ed by Debnath for piperidine鄄based and piperazine鄄based CCR5
antagonists developed by Schering鄄Plough research institute [6].
However, Merck Research Laboratories have reported several
kinds of high active pyrrolidine鄄based and butane鄄based com-
pounds as CCR5 antagonists in recent years. With abundant
structure and activity information, pharmacophore models based
on these compounds were developed using the Catalyst/Hy-
poGen module. The validation of the model was done on a large
test set. The aim of our work is to gain useful information in un-
derstanding the possible inhibitory mode of the CCR5 inhibitors
as well as to provide clear guidelines and accurate activity pre-
diction for novel antagonist design.

1 Materials and methods
1.1 Selection of training set

The biological activity data (CCR5 binding [125I]鄄MIP鄄1琢
assay [7]) of 99 compounds, represented as IC50 (nmol·L-1), were
collected from the literatures[8-27]. All the compounds were devel-
oped by the Merck Research Laboratories, which confirmed the
consistency of the biological assay. The compounds were divid-
ed into a training set and a test set. The training set consists of
25 compounds. The selection of the training set and the test set
was based on the following rules: (a) both the training and the
test sets should have structures from each class of compounds to
ensure structural diversity; (b) both the training and the test sets
should cover the molecular bioactivities (IC50) as wide as possible.
The IC50 value of the training set molecules covered a wide
range from 0.06 to 10000 nmol·L-1. The chemical structures of
the training set are listed in Fig.1. The activity values are classi-

fied as follows: IC50臆10 nmol·L -1 means the compounds are
highly active (represented as ++); 10 nmol·L-1＜ IC50臆1000
nmol·L -1 means the compounds are moderately active (repre-
sented as +); and IC50>1000 nmol·L-1 means the compounds are
inactive (represented as -). To validate our pharmacophore hy-
pothesis, 74 compounds with available IC50 values were used as
the test set.
1.2 Molecular modeling

Molecular modeling was performed on an IBM IntelliSta-
tion Z Pro workstation. The Catalyst 4.11 software (Accelrys
Inc., San Diego, CA) was used to generate the pharmacophore
models. All stereoisomeric centers in the molecules were as-
signed as shown in the original literatures. Conformation models
for all the molecules including the training set and the test set
were generated using the Catalyst/ConFirm module with the
“best quality”conformational search option. A maximum of 250

conformations were generated using the Poling algorithm [28] to
ensure coverage of the conformational space with an energy
constraint of 41.84 kJ·mol-1. As the R/S configuration directly
affects the activity of the compounds, we set the parameter of
the absolute stereochemistry to turn off the mirror image map-
ping. All the other parameters were set as defaults. An analysis
of the training set by the tools of “show function mapping”
showed that hydrogen bond acceptor (HA), hydrophobic (HY),
ring aromatic (RA), and positive ionizable (PI) features could ef-
fectively map all the critical chemical/structural features of the
molecules in the set. In the initial tests of pharmacophore gener-
ation, we found that HY, RA, and PI features dominated in the
most useful model. Therefore, these three features were used to
generate 10 pharmacophore hypotheses from the training set
with a default uncertainty value of three.

2 Results and discussion
2.1 Pharmacophore generation

A set of 10 hypotheses has been generated using the struc-
ture and the activity information from the training set. Table 1
lists the cost values, correlation coefficients (r), root mean square
deviations(RMSD), andpharmacophore featuresofthe10 hypothe-
ses. The first hypothesis (Hypo 1) is selected as the best pharma-
cophore hypothesis with the highest cost difference (63.66), the
lowest RMSD (1.068), and the best correlation coefficient (0.924).
Hypo 1 comprises of two PI features and three HY points (Fig.
2).

The cost value analysis is important for evaluating the qual-
ity of the hypothesis model [29]. The cost value of a hypothesis
(namely total cost, represented in bits unit) is calculated by the
following equation:

cost=eE+wW+cC
where e, w, and c are the coefficients associated with the error
(E), weight (W), and configuration (C) components, respective-
ly. The other two important cost calculations are the“fixed
cost”and the“null cost”. The“fixed cost”represents the sim-
plest model that the estimation perfectly fits the actual data,
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whereas the null cost is the cost of a pharmacophore when the
activity data of every molecule in the training set is the average
value of all activities in the set and the pharmacophore has no
features. A meaningful pharmacophore hypothesis may result
when the difference between the two values (null cost鄄fixed cost)

is large. A value of 70 -100 bits suggests an excellent chance
(>90%) for a true correlation. At the same time, the total cost of
any pharmacophore hypothesis should be close to the fixed cost
to provide any useful models. As shown in Table 1, the differ-
ences between the null cost and the fixed cost and between the
null cost and the total cost of the best hypothesis are 79.96 and
63.66, respectively. The cost difference is large enough and the
total cost is close to the fixed cost, which implies that the corre-
lation of the generated model was not obtained by chance.

The estimated results of the training set molecules by Hypo
1 are listed in Table 2. On the basis of the activity scale assigned
and described in the materials and methods, only one highly ac-
tive (++) compound E was estimated to have moderate activity (+),
one inactive (-) compound X was overestimated as moderate ac-
tivity (+), and one moderate active compound Q (+) was under-
estimated as no activity (-). It suggests that Hypo 1 has a good
ability to predict the active values of the training set molecules.

Fig.3 shows the mapping of the most active compound
(compound A, actual IC50=0.06 nmol·L-1) and the most inactive
compound (compound Y, actual IC50=10000 nmol·L-1) from the
training set to Hypo 1. The“fast fit”option was used in the map-

Fig.1 Chemical structures of 25 compounds in the training set
All structures were drawn using ISIS Draw 2.5 (MDL Information Systems, Inc., San Leandro, CA); A-Y represent the compound numbers.

Table 1 Results of the pharmacophore model generation
with the training set dataa

anull cost=180.27; fix cost=100.31; configuration=15.10; All costs are in units of
bits; bHY: hydrophobic; RA: ring aromatic; PI: positive ionizable

Hypothesis No.
Total
cost

Error
cost

RMSD r Featuresb

1 116.61 98.33 1.068 0.924 HY, HY, HY, PI, PI
2 123.91 107.29 1.362 0.871 HY, HY, PI, PI
3 124.55 107.88 1.379 0.868 HY, HY, PI, PI
4 125.01 107.14 1.358 0.873 HY, HY, PI, PI, RA
5 125.06 108.20 1.389 0.866 HY, HY, PI, PI, RA
6 125.06 108.20 1.389 0.866 HY, HY, PI, PI, RA
7 125.42 107.11 1.357 0.874 HY, HY, PI, PI, RA
8 125.45 108.97 1.411 0.861 HY, HY, PI, PI, RA
9 125.45 108.97 1.411 0.861 HY, HY, PI, PI, RA

10 128.75 112.52 1.508 0.839 HY, HY, PI, PI, RA
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ping. Compound A mapped onto all the features of the model
very well and the estimated activity was 0.15 nmol·L-1, whereas
compound Y missed a PI feature and a HY point feature with a
1200 nmol·L -1 predicted activity. It suggests that the positive
ionizable nitrogen group and the HY group play key roles in the
binding of CCR5 antagonists with the receptor.

2.2 Validation of pharmacophores
2.2.1 Fisher test

The CatScramble module was applied to perform the Fish-
er忆s randomization test for assessing the quality of the pharma-
cophore. The activity data among the training set was random-
ized and then the same features and the parameters were used to

Table 3 Results from cross鄄validation run using
CatScramble module

Validation Total
cost

Fixed
cost

Error
cost

RMSD r Configuration
cost

Results for unscrambled
116.61 100.31 98.33 1.068 0.924 15.10

Results for scrambled
trial_1 132.85 99.18 114.74 1.566 0.829 13.96
trial_2 157.05 97.78 139.13 2.098 0.668 12.56
trial_3 143.41 99.66 126.22 1.836 0.752 14.45
trial_4 141.77 100.60 120.85 1.715 0.793 15.39
trial_5 165.19 98.03 149.78 2.292 0.568 12.81
trial_6 133.08 97.01 119.59 1.685 0.794 11.80
trial_7 140.66 100.26 119.61 1.686 0.802 15.05
trial_8 151.19 100.35 134.53 2.009 0.690 15.14
trial_9 148.12 100.58 130.71 1.931 0.719 15.37
trial_10 144.58 98.21 129.47 1.905 0.728 13.00
trial_11 160.18 100.48 143.79 2.185 0.616 15.27
trial_12 154.20 96.55 136.69 2.051 0.690 11.33
trial_13 160.45 100.01 143.99 2.189 0.615 14.80
trial_14 157.74 96.81 143.43 2.178 0.623 11.59
trial_15 136.20 100.88 111.56 1.482 0.859 15.66
trial_16 138.87 97.92 124.70 1.802 0.760 12.70
trial_17 159.14 99.59 137.06 2.059 0.697 14.38
trial_18 121.38 98.53 104.59 1.281 0.889 13.32
trial_19 137.40 101.24 117.98 1.646 0.807 16.02

Fig.2 The best hypothesis model Hypo 1 produced by the
HypoGen module of Catalyst 4.10

Pharmacophore features are color鄄coded with light鄄blue for the
HY groups and red for the PI groups.

Table 2 The experiment biological data (IC50) and the
estimated activity (IC50) of the training set molecules

based on the top rank hypothesis (Hypo 1)

a Fit value indicates how well the features in the pharmacophore overlap the
chemical features in the molecule; b The activity scale is the same as that defined

in the materials and methods session; c + indicates that the estimated IC50 is higher
than the actual IC50, error=estimated IC50 /actual IC50; - indicates that the estimated

IC50 is lower than the actual IC50, error=actual IC50 /estimated IC50.

Compound Fit
valuea

IC50 (nmol·L-1)b Activity scaleb

Errorc

actual estimated actual estimated
A 8.94 0.06 0.15 ++ ++ +2.5
B 8.44 0.2 0.16 ++ ++ -1.2
C 6.58 0.75 6.9 ++ ++ +9.2
D 7.83 1 0.77 ++ ++ -1.3
E 6.62 1.5 12 ++ + +7.9
F 6.79 4 4.7 ++ ++ +1.2
G 6.03 12 11 + + -1.1
H 6.74 24 15 + + -1.6
I 5.43 45 170 + + +3.8
J 6.48 65 93 + + +1.4
K 6.61 110 44 + + -2.5
L 6.49 120 160 + + +1.3
M 5.47 170 650 + + +3.8
N 6.77 200 15 + + -13
O 6.03 250 180 + + -1.4
P 5.01 270 590 + + +2.2
Q 6.14 300 1400 + - +4.7
R 5.19 400 260 + + -1.5
S 5.46 570 760 + + +1.3
T 4.97 700 540 + + -1.3
U 4.53 850 560 + + -1.5
V 4.68 1000 530 + + -1.9
W 5.26 1000 550 + + -1.8
X 5.35 4000 680 - + -7.6
Y 4.53 10000 1200 - - -8.0

Fig.3 Mapping of the most active compound A and the most
inactive compound Y from the training set onto the selected

pharmacophore model (Hypo 1)
Pharmacophore features are color鄄coded with light鄄blue for the HY groups and

red for the PI groups.
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generate the pharmacophore hypothesis. In the generated phar-
macophores with random data, if there are similar or better cost
values, RMSD, and correlation with the original pharmacophore,
the original one can be considered as generated by chance.
Nineteen spreadsheets were developed to achieve a 95% confi-
dence level. These results are reported in Table 3, and it is found
that none of the generated hypotheses after randomization has a
better cost value compared with the Hypo 1. Of the 19 runs, only
one (trial_18) has a correlation close to 0.889, but the RMSD,
cost difference, and error cost value are not as good as the origi-
nal hypothesis. According to the software documentation and

the available literature, this result indicates that there is a 95%
chance for Hypo 1 to represent a true correlation in the training
set. The cross鄄validation experiments have convicted the phar-
macophore model we obtained.
2.2.2 Test set prediction

The purpose of the pharmacophore model is not just to pre-
dict the activity of the training set molecules accurately. On the
contract, the most important thing is its ability to predict the ac-
tivity of the test set molecules. So the best pharmacophore mod-
el (Hypo 1) was applied to predict the activity of a large test set
including 74 molecules (The chemical structures of the

Table 4 Experimental biological data (IC50) and estimated activity (IC50) of test set molecules based on
the top ranked hypothesis (Hypo 1)

aThe activity scale is the same as that defined in the Materials and Methods Section. bThe calculation of error is the same as in Table 2.

2 590 540 + +
3 80 91 + +
4 150 890 + +
5 40 540 + +
6 70 550 + +
7 120 560 + +
8 35 540 + +
9 10 530 ++ +

10 15 390 + +
11 200 180 + +
12 300 620 + +
13 15 320 + +
14 50 320 + +
15 5 870 ++ +
16 35 560 + +
17 30 540 + +
18 200 70 + +
19 2 36 ++ +
20 3 40 ++ +
21 60 440 + +
22 49 660 + +
23 7 0.1 ++ ++
24 100 1.1 + ++
25 5 0.084 ++ ++
26 2 0.1 ++ ++
27 0.4 0.078 ++ ++
28 0.5 0.24 ++ ++
29 4 0.19 ++ ++
30 2 16 ++ +
31 0.1 0.57 ++ ++
32 36 320 + +
33 0.2 0.12 ++ ++
34 6 21 ++ +
35 66 620 + +
36 3.9 20 ++ +
37 1.8 14 ++ +

1 60 420 + +

Compound
No.

Actual IC50

(nmol·L-1)
Estimated IC50

(nmol·L-1)
Activity

scalea

Estimated
activity scale

-1.1
1.1
5.9
13
7.8
4.7
16
53
26

-1.1
2.1
21
6.3

170
16
18

-2.9
18
13
7.3
13

-70
-89
-60
-19

-5.1
-2.1
-21
7.8
5.7
8.9

-1.6
3.6
9.4
5.1
8.0

7.0

Errorb Compound
No.

Actual IC50

(nmol·L-1)
Estimated IC50

(nmol·L-1)
Activity

scalea

Estimated
activity scale Errorb

38 1.7 12 ++ + 6.8
39 0.5 2.7 ++ ++ 5.4
40 0.1 0.22 ++ ++ 2.2
41 0.3 0.35 ++ ++ 1.2
42 0.9 12 ++ + 14
43 0.5 6.1 ++ ++ 12
44 4.8 0.52 ++ ++ -9.3
45 1.6 0.12 ++ ++ -14
46 5 16 ++ + 3.1
47 8 14 ++ + 1.8
48 27 2.3 + ++ -12
49 0.67 0.87 ++ ++ 1.3
50 0.29 0.48 ++ ++ 1.6
51 0.73 3.7 ++ ++ 5.1
52 1.6 4.7 ++ ++ 3.0
53 0.23 3.1 ++ ++ 13
54 0.6 4.6 ++ ++ 7.7
55 1 3.8 ++ ++ 3.8
56 2.5 0.39 ++ ++ -6.4
57 0.84 0.41 ++ ++ -2.1
58 2.8 22 ++ + 7.9
59 8.2 3500 ++ - 430
60 100 45 + + -2.2
61 1 6.8 ++ ++ 6.8
62 29 24 + + -1.2
63 0.5 0.19 ++ ++ -2.6
64 1.2 0.81 ++ ++ -1.5
65 1.2 10 ++ ++ 8.7
66 0.8 7.8 ++ ++ 9.8
67 0.6 6.3 ++ ++ 10
68 2.3 0.4 ++ ++ -5.7
69 4.2 1.1 ++ ++ -3.7
70 4.8 3.1 ++ ++ -1.5
71 0.8 2.2 ++ ++ 2.7
72 16 23 + + 1.5
73 41 0.67 + ++ -61
74 6.9 3.8 ++ ++ -1.8
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molecules are in the supporting material, which is available
freely from www.whxb.pku.edu.cn) and to investigate whether it
can identify active and inactive molecules correctly. The“fast
fit”option is used in all the cases. The detailed estimation values
are listed in Table 4.

In 48 highly active compounds, 35 compounds are accu-
rately classified as highly active and 13 compounds are classi-
fied as moderately active. Three of the 27 moderate molecules
are overestimated as highly active. One highly active molecule is
underestimated as inactive. The estimation of some compounds
such as 23, 24, and 25 is not so good. This kind of compounds
has a hydroxyl group on the piperidine cycle, which induced bad
effect to the activity. The pharmacophore model could only give
the principal features corresponding to the activity while the de-
tailed information like the steric clashes and poor electronic con-
tact cannot be considered by the model. It caused the limitation
of the model and future work is on the way to combine the phar-
macophore model and CoMFA together to give a more accurate
model. Despite the limitations, the selected hypothesis showed a
good ability to discriminate the active and the inactive com-
pounds, especially in the selection of highly active compounds
with a correlation coefficient (r) of 0.703 on the test set. It indi-
cates that the model is able to select unknown compounds with
the good active value and will be applied in the following design
of novel compounds.

3 Conclusions
The ligand鄄based computational approach, pharmacophore

model generation, was employed to identify molecular structure
requirements as effective CCR5 antagonists. The model was
generated based on a set of pyrrolidine鄄based and butane鄄based
CCR5 antagonists. Twenty鄄five compounds were carefully se-
lected as the training set. The final selected model is composed
of three HY points and two PI features. Mapping of the most ac-
tive and most inactive compounds suggests that the positive ion-
izable nitrogen groups and the HY groups play key roles in the
binding of CCR5 antagonists with the receptor. The application
of the pharmacophore model on the test set shows that it is able
to discriminate the activity scale of compounds. Our model
should be benefit in understanding the possible inhibitory mode
of the CCR5 inhibitors and provide clear guidelines and accurate
activity prediction for novel antagonist design.
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