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Abstract. The varved sedimentary AD 1917–2004 record
from the depositional center of the Santa Barbara Basin
(SBB, California) was analyzed with monthly to triannual
resolution to yield relative abundances of six coccolithophore
species representing at least 96% of the coccolithophore as-
semblage. Seasonal/annual relative abundances respond to
climatic and surface hydrographic conditions in the SBB,
whereby (i) the three speciesG. oceanica, H. carteri and
F. profundaare characteristic of the strength of the north-
ward flowing warm California Counter Current, (ii) the two
speciesG. ericsonii and G. muelleraeare associated with
the cold equatorward flowing California Current, (iii) and
E. huxleyiappears to be endemic to the SBB. Spectral anal-
yses on relative abundances of these species show that all
are influenced by the El Niño Southern Oscillation (ENSO)
and/or by the Pacific Decadal Oscillation (PDO). Increased
relative abundances ofG. oceanicaand H. carteri are as-
sociated with warm ENSO events,G. muelleraeresponds
to warm PDO events and the abundance ofG. ericsonii in-
creases during cold PDO events. Morphometric parameters
measured onE. huxleyi, G. muelleraeandG. oceanicain-
dicate increasing coccolithophore shell carbonate mass from
∼1917 until 2004 concomitant with risingpCO2 and sea sur-
face temperature in the region of the SBB.

1 Introduction

Coccolithophores are unicellular pelagic algae that represent
a large part of the world ocean’s nannophytoplankton and
play a significant role in the carbon cycle as major produc-
ers of biogenic calcium carbonate. Coccolithophore assem-
blages are diagnostic for physical and chemical conditions
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in the photic zone, and therefore fossil coccolithophores in
sediments can be used to reconstruct paleoecological and pa-
leoceanographic conditions (Andruleit and Baumann, 1998;
Beaufort et al., 1997; Giraudeau et al., 1993; Kinkel et
al., 2000; McIntyre and Be, 1967; Nederbragt et al., 2008;
Okada and McIntyre, 1979). The inorganic fossil remains of
coccolithophores consist of<20µm calcareous plates called
coccoliths. Their small size and large abundance make it pos-
sible to sample marine sediment cores at mm to sub-mm in-
tervals with ultra-high resolution (Grelaud et al., 2009).

This study analyzed coccolithophore assemblages in dated
sediment cores from the deep center of the Santa Barbara
Basin (SBB) on the North American Pacific margin in the
interval from AD 1917 to 2004. The SBB region is hy-
drographically dominated by the California Current System
(CCS), which in turn is modulated by Pacific climate condi-
tions, especially by the El Niño Southern Oscillation (ENSO)
and the Pacific Decadal oscillation (PDO). ENSO originates
in the tropical Pacific and its warm/cold phases oscillate with
a pseudo-frequency of 2 to 7–8 years, whereas warm/cold
PDO transitions originate in the north Pacific at∼20◦ N and
occur only every 20–30 years. The PDO is commonly de-
scribed as a long-lived El Niño-like pattern affecting the
north Pacific, since both ENSO and PDO exhibit some sim-
ilar characteristics (Latif and Barnett, 1994; Mantua et al.,
1997; Zhang et al., 1997).

Reconstructions of ENSO and PDO prior to the twentieth
century are difficult because they require well-dated high res-
olution proxy records of sufficient length. Nevertheless, sev-
eral centuries-long reconstructions of ENSO and PDO have
been reported. Paleo-ENSO records are based on the oxygen
isotopic (δ18O) composition of coral aragonite (Tudhope et
al., 2001, 1995) or on the carbon isotopic (δ13C) composi-
tion of stalagmite calcite (Frappier et al., 2002), as well as
on tree ring data (D’Arrigo et al., 2005; Stahle et al., 1998).
These records share a significant common variance and sug-
gest that El Nĩno events of past centuries share a relatively
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Fig. 1. Sampling location of multicore 1MC-3 during cruise BASIN
2004 (34◦13.41′ N, 12◦01.53′W; water depth: 588 m). Arrows
denote flow directions of California Current (blue) and Califor-
nia Counter Current (red). Counterclockwise circulation inside the
Santa Barbara Basin is indicated by black arrows.

consistent history (Jones and Mann, 2004). However, suit-
able coral cores and tree ring sequences are rare, relevant
analytical methodologies are costly, and techniques require
substantial amounts of sample material and effort.

Surveys and studies on nannophytoplankton responses to
the El Niño events of 1991–1992 and 1997–1998 in the
Southern California Bight and in the SBB indicate that coc-
colithophores are influenced by El Niño (De Bernardi et al.,
2005; Ziveri et al., 1995). Fossil coccolith assemblages can
thus serve as a promising paleoceanographic proxy to high-
light past El Nĩno variability, especially in laminated sedi-
ments with high resolution.

This study uses relative abundances of sedimentary coc-
coliths as proxies of climatic and surface hydrographic set-
tings in the SBB from∼1917 until 2004. Indices of ENSO
(Kaplan et al., 1998; Reynolds et al., 2002) and PDO (Man-
tua et al., 1997; Zhang et al., 1997) have been reconstructed
back to the beginning of the 20th century based on instru-
mental and historic data. We compared our dated, high res-
olution SBB coccolith record against indices of ENSO and
PDO to calibrate coccolith proxies for reconstructions of
paleo-El Nĩno and paleo-PDO conditions in the SBB. More-
over, in the context of modern global warming and ocean
acidification due to anthropogenic CO2 release, we investi-
gated the morphometry (size, weight) of selected species of
the order Isochrysidales (i.e.,E. huxleyi, G. muelleraeand
G. oceanica) to understand how coccolithophores’ carbonate
mass is influenced by recent oceanographic global changes.

2 Materials and methods

2.1 Sampling

Multicore 1MC-3 from the deep center of the SBB
(34◦13.41′ N, 120◦01.53′ W, water depth: 588 m) was re-
trieved in June 2004 during cruise BASIN 2004 (Fig. 1).
Two parallel cylindrical cores A and B were retrieved from
the multicore. Core A was sectioned in layers with approx-
imately annual to triannual resolution in 2004. The sedi-
ment obtained from each sampling interval was freeze-dried
and stored (Schimmelmann et al., 1990). Core B was sam-
pled in 2007 after the sediment had lost some water. Sedi-
ment of core B was first extruded from its acrylic tube core
liner into another core liner featuring a narrow cutout sam-
pling window. After removing the outermost smeared sed-
iment layer, samples were scraped from the window every
millimeter with a stainless steel spatula, thus achieving the
highest resolution possible. It was not feasible to strictly fol-
low varve boundaries because color and textural differences
among varves were often indistinct.

2.2 Coccolith census

Smear slides were prepared for all samples of the two cores.
40 view fields from a light microscope (Leica DMRBE) with
a 50× immersion oil objective were captured from each slide
by a digital camera (“Spot insight”). Automatic image analy-
sis of each frame resulted in recognition of coccolith species
using SYRACO software (Beaufort and Dollfus, 2004; Doll-
fus and Beaufort, 1999). SYRACO is able to identify more
than 96% of the coccolith assemblages, including the follow-
ing six species that were enumerated in this study:Emilia-
nia huxleyi, Florisphaera profunda, Gephyrocapsa ericsonii,
Gephyrocapsa muellerae, Gephyrocapsa oceanica,andHe-
licosphaera carteri. A total of more than 600 individuals of
these six species were typically counted in each sample. We
applied a correction to the count of each species to compen-
sate for SYRACO’s inclusion of non-coccolith specimens in
the raw data. The final data and the influence of the correc-
tion are reproducible (Beaufort and Dollfus, 2004). We pre-
fer relative abundances rather than concentrations or fluxes
of coccoliths, since relative abundances are less influenced
by dissolution and conditions of sedimentation. It has been
shown that relative abundance and flux of coccoliths corre-
late well (Beaufort and Heussner, 1999; Silva et al., 2008).

2.3 Age model

We used the age model of core A (Huguet et al., 2007) to es-
tablish that of core B which was subsequently sub-sampled
with higher resolution. Because of core compaction during
storage, core B was shorter (26.5 cm) than core A (32 cm).
It was not possible to correlate samples of the same depth
between the two cores. The age model of core B was devel-
oped in several steps. Briefly, we first measured the coccolith
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Fig. 2. Development of age model for core B from multicore 1MC-3, cruise BASIN 2004.(a) Correspondence between relative abundance
records ofG. oceanicain high-resolution core B (red, depth scale) and in low-resolution core A (dotted blue line, age scale). Error bars
associated with core A denote the age uncertainty (1 yr after 1980 and 2 yr before 1980; Schimmelmann et al., 2006).(b) Relative abundances
of G. oceanicaalong core B (red) are adjusted to age model of core A (dotted blue line).(c) Relative abundance ofG. oceanicain core
B adjusted to extended NINO3 index (black) (Kaplan et al., 1998; Reynolds et al., 2002) (data available athttp://iridl.ldeo.columbia.edu/
SOURCES/.Indices/.nino/.EXTENDED/.NINO3/). (d) Relative abundances ofG. oceanicain core A (blue) and in core B (red, using the
final age model).

abundances in leftover sub-sectioned and freeze-dried sedi-
ment aliquots from core A that had been used by Huguet et
al. (2007). The dating uncertainty for core A is∼2 years be-
low 1980 AD and∼1 year for younger sediment. We then
measured coccolith abundances in samples extracted from
core B. The two coccolith data series from cores A (lower
resolution) and B (higher resolution) were then correlated to
each other.

Secondly, we correlated the relative abundance patterns
of the tropical coccolithophore speciesG. oceanicabetween
cores A and B because they are best recognized by SYRACO
(Fig. 2a). A total of 72 tie-points were used between the
two cores to perform the correlation. Relative abundances of
G. oceanicamatched cores A and B well between AD 1938
to 2004 (Fig. 2b; 59 tie-points, R2=0.595), but less satisfac-
torily prior to AD 1938 (Fig. 2b; 13 tie-points, R2=0.193).
This correlation provided an approximate, preliminary age
model for core B.

Thirdly, we finetuned the chronological relative abundance
of G. oceanicaof core B to the extended NINO3 index (Ka-
plan et al., 1998; Reynolds et al., 2002) (Fig. 2c), since (i)
earlier studies have shown that high abundances ofG. ocean-

ica were found during the El Niño event of 1997–1998, while
the pre-El Nĩno period (i.e. 1996) was characterized by very
low G. oceanicaabundances (De Bernardi et al., 2005); (ii)
it has been shown that during El Niño years, the tropical con-
vection center moves to the central and eastern equatorial Pa-
cific, leading to a weakening of the North Pacific High and
inducing the warming of the California Borderlands through
the intensification of the southern California Countercurrent
(CCC) (Bograd and Lynn, 2001); and (iii) it was confirmed
that the increasedG. oceanicacoccolith flux in SBB provides
evidence for the poleward transport of El Niño’s conditions
to higher latitudes (De Bernardi et al., 2008).

Finally, the chronology of the high-resolution data se-
ries from core B was further adjusted by linking peaks of
relative abundance ofF. profundato instrumental monthly
sea surface temperatures in the SBB. This species prefers
strongly stratified waters (De Bernardi et al., 2005, 2008). De
Bernardi et al. (2005) showed thatF. profundaproduces high
coccosphere fluxes in fall when the water column is strati-
fied with a deep thermocline. This period corresponds to the
warmest sea surface temperature (SST) recorded in the SBB.
We therefore improved the age model by tuning each year’s
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Fig. 3. (a) Relative abundances of six selected coccolithophore species in core B from multicore 1MC-3, cruise BASIN 2004.(b) PDO
index (Mantua et al., 1997; Zhang et al., 1997) (data available athttp://jisao.washington.edu/pdo/PDO.latest) and extended NINO3 index
(Kaplan et al., 1998; Reynolds et al., 2002).(c) Reconstructed seasonality for the six selected coccolithophores species determined from the
ultra-high resolution record of core B.

highest relative abundance ofF. profundato the warmest SST
recorded by instrumental data of that year. These periods of
high SST correspond roughly to mid summer and early fall.
Results on the SBB abundance ofF. profundaobtained by
Haidar and Thierstein (2001) seem to corroborate our results.
The final age model for core B remains in agreement with
the age model of core A (Fig. 2d). This final age model pro-
vides a mean varve thickness of 2.9 mm (standard deviation:
1.3 mm) and allows us to describe time-series of coccoliths’
relative abundances with high resolution from 1917 to 2004
(Fig. 3a), with a subannual mean resolution.

2.4 Coccolith weight estimate

It is possible to estimate the amount of coccolith calcite in
a sample by weighing the<27µm fraction (Broerse, 2000),
but this semi-quantitative method relies on the assumption
that the entire<27µm fraction consists of coccolith calcite.
This study uses images produced by SYRACO to estimate
the individual weight of coccoliths (Beaufort, 2005) belong-
ing to the order Isochrysidales (i.e.,E. huxleyi, G. ericsonii,
G. muellerae, andG. oceanica). The method relies on the
brightness of calcitic grains when viewed in cross-polarized
light. Brightness and color of an object in crosspolarized
light depend on (i) the object’s thickness in a range of 0 to
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Fig. 4. Spectral analyses of the extended NINO3 index(a), PDO index(b) and %G. oceanicain core A (c) (light grey lines denote 80%
confidence intervals; dark grey line denote 90% confidence intervals).(d) From top to bottom: Spectral analysis of %E. huxleyi(light grey
line denotes 80% confidence interval; dark grey line denotes 90% confidence interval); cross-spectral analysis between %E. huxleyiand
extended NINO3 index (coherency between spectra is denoted by black line; phase is indicated by black rectangles); cross-spectral analysis
between % ofE. huxleyiand PDO index (coherency between spectra is denoted by black line; phase is indicated by black rectangles). Here
the coherency is significant at 90% over 0.672 (dashed line). Red bars represent significant frequencies in ENSO band common to % of
E. huxleyiand extended NINO3 index. Blue bars represent significant frequencies in PDO band common to % ofE. huxleyiand PDO. The
same comments and settings apply to other panels pertaining to other species:(e)F. profunda; (f) G. oceanica; (g) H. carteri; (h) G. ericsonii;
(i) G. muellerae.

1.5µm, (ii) its orientation, and (iii) its birefringence index,
therefore making it common practice for nannopaleontolo-
gists to associate coccolith thickness with brightness. We
converted the brightness of individual coccoliths into a num-
ber of pixels that was fed into a calibrated transfer function
to indicate the amount of calcite (Beaufort, 2005).

2.5 Spectral analyses

We performed spectral analyses on the extended NINO3 in-
dex (Kaplan et al., 1998; Reynolds et al., 2002) (Fig. 4a),
on the PDO index (Mantua et al., 1997; Zhang et al., 1997)
(Fig. 4b), on the relative abundances ofG. oceanicaof core
A (Fig. 4c) and on the relative abundances of six species
(Fig. 4d–i). Redfit software (Schulz and Mudelsee, 2002)
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generated power spectra and associated 80% and 90% confi-
dence intervals from our unevenly spaced data (Fig. 4). The
resulting spectral coccolith data were then compared to those
of the extended NINO3 and PDO indices by performing
cross-spectral analyses. We used cross-spectral Blackman-
Tukey methods in the Analyserie package (Paillard et al.,
1996). The resulting coherency between cross-spectra is sig-
nificant within a 90% confidence interval over a value of
0.672 (Fig. 4d–i).

3 Results

3.1 Relative abundances of coccolith species

At least 96% of the SBB sedimentary coccolith assem-
blage is composed ofE. huxleyi, F. profunda, G. ericsonii,
G. muellerae, G. oceanica, and H. carteri. Other species
present in SBB sediments, such asCalcidiscus leptoporus,
Coccolithus pelagicusand Umbilicosphaera sibogae(De
Bernardi et al., 2005) express insufficient relative abundances
for the purpose of this study.Emiliania huxleyi, G. ericsonii
andF. profundadominate the SBB coccolithophore assem-
blages and jointly account for almost 85–90% of all coccol-
iths (Fig. 3a), whereasG. muellerae, G. oceanicaandH. car-
teri jointly represent only 8–10% of the assemblages (the six
species are listed in decreasing order of relative abundance;
Fig. 3a).

Counts ofE. huxleyimay include small placoliths of the
genusReticulofenestraand Gephyrocapsathat are not dis-
tinguished by automatic image analysis. However, compar-
ative scanning electron microscopy (SEM) counts indicate
that the resulting error is limited to a few % (Grelaud et al.,
2009). Emiliania huxleyi’srelative abundance of∼40% is
dominating for the entire period covered in this study, with
the exception of short episodes in 1966, 1970, 1980–1982,
2000, and 2004 whenF. profundabecomes most abundant
(Fig. 3a). Gephyrocapsa ericsoniirepresents∼27% of the
assemblages and is the second most abundant species in SBB
sediment (Fig. 3a), being present at a relatively stable level
throughout the record, with a slightly decreasing trend to-
ward 2004.Florisphaera profundais the third most abundant
species representing 21% of the assemblages (Fig. 3a). Its
relative abundance is stable from 1917 to∼1965, but exhibits
occasional large peaks between∼1965 and 2004. Only 3.5%
of the assemblages are contributed byG. muellerae, with an
overall increasing trend from∼1917 to 2004. The relative
abundances ofG. oceanicaare highly variable and account
for 0.25 to 10.5% with a mean of 3% (Fig. 3a). Out of the
six species counted, the lowest relative abundances from 0.4
to 3.9% are contributed byH. carteri, with a mean value
of 1.6%. The abundances of these two last species are en-
hanced during strong El Niño events such as in 1982–1983
and 1997–1998 (Fig. 3a).

3.2 Seasonality of coccolithophores inferred from
varved SBB sediment

We evaluated the seasonality of the six selected coccol-
ithophore species in core B by averaging each species’ rel-
ative abundances for each season of each year during the pe-
riod 1917–2004. The calculated decimals of the age model
for each year are then used to evaluate the season. For
example, 1917–1917.25 corresponds to winter 1917 (Jan-
uary to March), 1917.25–1917.5 corresponds to spring (April
to June), 1917.5–1917.75 corresponds to summer (July to
September) and 1917.75–1918 corresponds to fall (October
to December). According to this definition, the four species
F. profunda, G. ericsonii, G. oceanica, andH. carteri prefer-
entially thrive during summer and fall (Fig. 3c), whileE. hux-
leyi andG. muelleraebloom preferentially during winter and
spring (Fig. 3c).

3.3 Spectral analyses

Spectral analyses of the extended NINO3 and PDO indices
(Fig. 4a–b) were compared to those of the relative abun-
dances of the six selected species using cross-spectral analy-
ses (Fig. 4d–i). The three important ranges of frequencies are
(i) the 2–7 yr pseudo-frequency of ENSO, (ii) the 20–30 yr
PDO band, and (iii) the 50–70 yr very low frequency of the
pentadecadal band (Minobe, 2000). Frequencies commensu-
rate with ENSO were expressed by the six species (Fig. 4d–
i), PDO frequencies were found forG. muelleraeandG. eric-
sonii (Fig. 4h–i), and spectral evidence for the pentadecadal
band was found forE. huxleyi, F. profunda, G. oceanica, and
H. carteri (Fig. 4d–g).

It seems natural that we observed frequencies in the El
Niño band since we used the NINO3 index to construct the
age model of core B. We assume that this correlation had no
major influence on the spectral analyses results since (i) the
age model of core B is subject to the same uncertainty of the
age model of core A (Fig. 2d) and (ii) the spectral analysis of
the relative abundance ofG. oceanicain core A exhibits sig-
nificant frequencies in the El Niño band (Fig. 4c), suggesting
that the signal had been present before the correlation be-
tween cores.

3.4 Coccolith morphometry

Our automatic image analysis system used a calibrated algo-
rithm to estimate the size (µm) and the weight in picogram
(pg) of each recognized coccolith of the order Isochrysi-
dales. Size corresponds to a coccolith’s largest diameter.
For each sample we determined mean values of size and
weight for the three speciesE. huxleyi, G. muellerae, and
G. oceanica(Fig. 5a). The observed mean sizes and standard
deviations fluctuate around 2.74±0.04µm, 3.33±0.12µm,
and 3.96±0.13µm, respectively, and are in agreement with
observed sizes of coccolithophores (Young et al., 2003).
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Fig. 5. (a)Annual mean coccolith size inµm (left part) and weight in pg (right part) ofG. muellerae, E. huxleyiandG. oceanica(from top
to bottom). (b) Mean weight of individual Isochrysidale coccoliths in pg and annual mean sea surface temperature of Santa Barbara Basin
according to the reconstruction of global SST (Smith and Reynolds, 2003), and derived from the version of COADS release 2 (Woodruff
et al., 1998), based on combined satellite and in situ instrumental data (Reynolds et al., 2002). SST data are extracted from the IRI/LDEO
Climate Data Library (http://iridl.ldeo.columbia.edu/). Red line represents the mean value of each series; thick black line corresponds to
linear regression and indicates the general tendency of each parameter from AD∼1917 to 2004, black dashed lines correspond to the interval
of confidence at 95%. Red arrows and associated numbers correspond to the % increase of each parameter between∼1917 and 2004.

Mean weights fluctuate around 3.41±0.6 pg, 7.96±1.9 pg,
and 24.04±5.9 pg, respectively. Average contributions to
Isochrysidales-produced calcite amount to 45% fromE. hux-
leyi, ∼22% fromG. oceanica, and 17.5% fromG. muellerae.
Size and weight of coccoliths tend to increase between
∼1917 and 2004 by (i) 0.5% and 1.9% forG. muellerae, (ii)
2.2% and 10.3% forE. huxleyi, and (iii) 2.7% and 22.1%
for G. oceanica, respectively (Fig. 5a). Increases seem to

have accelerated from the 1970s to 2004 forE. huxleyiand
G. oceanica(Fig. 5a). The mean weight of calcite of a coc-
colith belonging to the order Isochrysidales (i.e., the three
species combined) increased from∼1917 until 2004 by more
than 33% (Fig. 5b).
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4 Discussion

4.1 Coccolith ecology in SBB inferred from the sedi-
ment record

The SBB is hydrologically dominated by the California Cur-
rent (CC) and the California Counter Current (CCC) (Hen-
dershott and Winant, 1996). The equatorward cold CC en-
ters the SBB from the west and supplies nutrients via injec-
tion of upwelled waters from off Point Arguello and Point
Conception (Fig. 1). Seasonal differences in wind along
the coast off Point Arguello limit strong upwelling mostly
to summer and make upwelling more variable during win-
ter (Dorman and Winant, 1995). The CC triggers a counter-
clockwise circulation inside the SBB (Fig. 1) with maximum
strength between spring and fall (Hendershott and Winant,
1996). During winter, the CC carries colder and nutrient-
depleted waters into the SBB, which are favorable for coc-
colithophore species likeG. muelleraethat prefers cold and
moderately productive waters (Bollmann, 1997; Flores et al.,
1997; Knappertsbusch et al., 1997). We observed high abun-
dances ofG. muelleraefrom November to April (Fig. 3c)
prior summer strong upwelling and when SST is coldest in
the SBB. The dynamics of the CC may also influence the
abundance ofG. ericsoniithat thrives in high nutrient envi-
ronments (Takahashi and Okada, 2000) between 13 and 22◦C
(Okada and McIntyre, 1979). We observed highest abun-
dances ofG. ericsoniiduring summer when upwelling off
Point Arguello and Point Conception is active. During this
period, the SST ranges from 14.5 to 17.5◦C (mean SST val-
ues for the last century, calculated from the IRI/LDEO Cli-
mate Data Library;http://iridl.ldeo.columbia.edu) (Fig. 3c).

The CCC originates from further south, enters the SBB
from the east, and continues flowing northward (McLain and
Thomas, 1983). The relatively warm and salty waters of
the CCC influence the SBB mostly from spring to fall and
seem to be reduced during winter (Hendershott and Winant,
1996). The subtropical origin of the CCC favors warm coc-
colithophore species likeG. oceanicaandH. carteri. Gephy-
rocapsa oceanicais found largely in tropical and subtropi-
cal seas (Andruleit et al., 2003, 2000; McIntyre et al., 1970)
and prefers high nutrient environments such as upwelling
areas or continental shelves (Giraudeau, 1992; Houghton
and Guptha, 1991; Mitchellinnes and Winter, 1987; Young,
1994). SST is the most important oceanographic parame-
ter controlling the distribution ofG. oceanicain the SBB
(De Bernardi et al., 2005) triggering high abundances dur-
ing the second half of spring, when SST rises during summer
(Fig. 3c) and SBB surface waters are warm and rich in nutri-
ents. The same pattern is observed forH. carteri (Fig. 3c),
which thrives in warm waters (Brand, 1994; McIntyre and
Be, 1967) and shares ecological similarities withG. oceanica
(Giraudeau, 1992). The CCC may also influenceF. profunda
which lives below the deep chlorophyll maximum in the
lower photic zone in tropical to subtropical regions (Okada

and Honjo, 1973).Florisphaera profunda’spreference for
stratified waters is well suited for the SBB during summer
(De Bernardi et al., 2005) when its highest abundance is ob-
served (Fig. 3c) and when the SBB is well stratified (Kincaid
et al., 2000).

Emiliania huxleyi is the most abundant and ubiquitous
coccolithophore in modern oceans. Its strains tolerate large
ranges of salinity and temperature and allow it to inhabit both
the Red Sea (high salinity) and the Black Sea (low salinity).
Its ability to grow in eutrophic and oligotrophic waters tes-
tifies to this species’ adaptation to a wide range of nutrient
levels (Winter et al., 1994). The SBB sediment record indi-
cates thatE. huxleyiis still abundant during winter and early
spring (Fig. 3c) when upwelling is absent or weak. Such be-
havior makesE. huxleyian opportunistic species that is able
to live in cold and well mixed waters with low levels of nu-
trients. The collective observations of this and earlier stud-
ies form the basis for dividing the six quantified species into
three categories. (i) The CCC-controlled summer influence
is best reflected by the response ofF. profunda, G. ocean-
ica, andH. carteri. (ii) The CC-controlled winter influence
is witnessed byG. muellerae, and the CC-controlled summer
influence is expressed byG. ericsonii. (iii) Emiliania huxleyi
appears to be opportunistic and endemic to the SBB.

4.2 Influence of ENSO and PDO on SBB coccol-
ithophores

The CC and the CCC are parts of the California Current
system extending 1000 km from offshore Oregon to Baja
California (Miller et al., 1999). The CC system is modu-
lated across various time scales by (i) ENSO with a pseudo-
frequency of∼2 to 7–8 yr, (ii) the PDO with a bidecadal-
tridecadal frequency of∼20 to 30 yr, and (iii) by pen-
tadecadal variability of∼50 to 75 years (Lluch-Belda et al.,
2003; Minobe, 2000). Interannual temperature variability of
SBB surface waters can be reduced to two opposite states
that are expressed as warm and cold episodes. A warm phase
is associated with a reduced CC and an intensification of the
CCC. Warm phases tend to cause a northward migration of
southern fauna (Lluch-Belda et al., 2003) and flora (e.g., di-
atoms; Thunell, 1998), including coccolithophores. The op-
posite occurs during a cold phase when the CC is strength-
ened while the CCC weakens. The driving forces behind this
variability of the CC system have geographically different
origins. The PDO and the pentadecadal oscillation modulate
the CC system through the intensity and east-west position
of the Aleutian Low (Miller and Schneider, 2000), whereas
ENSO modulates the CC system through the intensity of the
North Pacific High (Bograd and Lynn, 2001).

We performed spectral and cross-spectral analyses of our
microfossil time-series from six species in combination with
the extended NINO3 and PDO indices to evaluate the hy-
drographic variability on different time scales and to explore
the impact on SBB’s coccolithophore community (Fig. 4).
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All examined time-series exhibit frequencies in the 2 to 7–
8 yr ENSO band (Fig. 4d–i). The ENSO band can be di-
vided into a sub-band of 2.5 to 3–4 yr that is generally as-
sociated with the duration of El Niño events and the alter-
nation to La Nĩna conditions, whereas the sub-band of 3–
4 to 7–8 yr relates more to the spacing between successive
large El Nĩno events (Graham and White, 1988; Zebiak and
Cane, 1987). The six coccolithophore time-series exhibit sig-
nificant periodicities around 2.5 and 3–4 yr. Although this
suggests that all species are influenced by ENSO, the rela-
tionship of each species with ENSO depends mostly on its
ecology. Thus, high abundances of warm speciesG. ocean-
ica andH. carteri occur simultaneously with El Niño events
as suggested by cross-spectral phases (Figs. 3a, 4f–g). This
agrees with the observation that the CCC is enhanced dur-
ing a warm event (Bograd and Lynn, 2001), allowing an ex-
tended northward advection of tropical species (Lluch-Belda
et al., 2003) likeG. oceanicaandH. carteri. The same holds
true forF. profunda(Figs. 3a, 4e) although high abundances
of this species may be slightly lagging behind El Niño oc-
currences. To the contrary, the abundances ofG. ericsonii
andG. muellerae, which are associated with a strong CC, are
negatively correlated with warm events (Figs. 3a, 4h–i) when
the CC in the SBB is temporarily weakened (Lluch-Belda et
al., 2003). The same is true for the dominant speciesE. hux-
leyi (Figs. 3a, 4d), suggesting that this species prefers CC
rather than CCC water.

Spectral results fromE. huxleyiandF. profundaindicate
no significant response to strong El Niño events in the low-
frequency ENSO sub-band of 3–4 to 7–8 yr (Fig. 4d–e).
However, all four other species exhibit significant periodici-
ties between 3 and 7 years (Fig. 4f–i), reflecting an enhance-
ment of their response patterns described above for normal
El Niño/La Niña cycles. Cross-spectral phases confirm that
G. oceanicaandH. carteri are associated with warm water
events, whereasG. ericsonii and G. muelleraeprefer cold
waters.

Cross-spectral analyses of the PDO index and the six
microfossil time-series show that only the CC-associated
speciesG. ericsonii and G. muelleraeexhibit 20 to 30 yr
periodicities corresponding to the PDO (Fig. 4h–i). Cross-
spectral phases associate the PDO’s cool phase with high
abundances ofG. ericsonii, and the PDO’s warm phase with
high abundances ofG. muellerae. This pattern agrees with
ecological observations of these two species in the Cali-
fornia Borderland (Chavez et al., 2003) where low nutrient
availability during warm phases favorsG. muelleraewhich
is associated to moderately productive waters. During cool
phases, the region is characterized by higher nutrient avail-
ability favoringG. ericsonii. It seems that only species grow-
ing under the influence of the CC are affected by the PDO,
suggesting an ‘equatorward’ expression of PDO variability
in the SBB.

The spectral patterns of time-series from the four other
species witness responses to a 50–58 yr component of pen-

tadecadal variability (Fig. 4f–i). The same component is ob-
served in the power spectra of the PDO (Fig. 4b). However,
our 87 yr long record from AD∼1917 until 2004 does not
cover two successive cycles and is thus too short to lend sta-
tistical weight to this observation.

4.3 20th century warming and increasing mass of coc-
coliths

Many studies have shown that 20th century warming af-
fected the food chain at all trophic levels in the northeastern
Pacific and particularly in the CC system, extending from
marine algae (Tegner et al., 1996) to zooplankton (Brinton
and Townsend, 2003; Roemmich and McGowan, 1995) and
fish (Mantua et al., 1997). Since the 1950s mean SSTs in
some places off Southern California have increased by al-
most 1.5◦C and caused an 80% reduction of macrozooplank-
tic biomass (Roemmich and McGowan, 1995). Regional
abundances of tropical foraminifera species increased at the
expense of temperate species (Field et al., 2006). However,
we did not identify any increase of the relative abundances
of tropical coccolithophore species in SBB between∼1917
and 2004, especially during the last 30 years (Fig. 3a). The
reverse is true for the cold speciesG. muelleraewhich did
not exhibit a decrease of its relative abundances during the
same period (Fig. 3a).

Coccolith assemblages are largely influenced by season-
ality and El Nĩno. SST exhibits amplitude of∼4◦C dur-
ing a normal year (mean SST amplitude throughout the year
for the last century, calculated from the IRI/LDEO Climate
Data Library; http://iridl.ldeo.columbia.edu) and a positive
SST anomaly of∼3◦C during an El Nĩno peak in winter
(IRI/LDEO Climate Data Library;http://iridl.ldeo.columbia.
edu). The regional warming since the 1950s is maximally
1.5◦C (Roemmich and McGowan, 1995). This long term
SST increase is small in comparison to seasonal or El Niño-
induced SST amplitudes and therefore is not clearly recorded
in the relative abundance patterns of coccoliths. Even if
relative abundances of some coccolithophores are sensitive
enough to capture seasonal to decadal SBB regional oceano-
graphic variability and trends, the approach may fail for mon-
itoring global marine changes such as long term variability
of nutrient availability, SST warming or ocean acidification
linked to anthropogenic CO2 release.

In order to address long term oceanographic changes,
which are not recorded by relative abundances of coc-
coliths, we investigated morphometric parameters of the
CC-associated speciesG. muellerae, the CCC-associated
G. oceanica, and the SBB endemic speciesE. huxleyi. The
average weight and size of each of the three species increased
during the last century, although the rates of increase differed
among the three species (Fig. 5). Increases in weight and size
are largest forG. oceanicaand E. huxleyiand smaller for
G. muellerae(Fig. 5a), suggesting that SBB coccolithophore
carbonate mass experienced enhancement in waters of the
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CCC between∼1917 and 2004, whereas carbonate mass
changed little in waters deriving from the CC. After merg-
ing the data of the three species, a>33% increase in mean
coccolith weight was determined for the order Isochrysidales
over 87 years from∼1917 until 2004 (Fig. 5b).

A possible explanation for this increase is that older cal-
careous fossils in the deeper part of the core could have un-
dergone slow dissolution. Increases in weight and size over
time would thus be an artifact linked to better preservation
of younger coccoliths. However, Beaufort et al. (2007) dis-
solved 80% of coccoliths during experimental acid leaching
and observed that, the weight of remaining coccoliths had
not changed significantly. The authors concluded that the
weight of sedimentary coccoliths is roughly corresponding to
the weight of the original coccoliths because the dissolution
breaks coccoliths into unrecognizable fragments rather than
decreasing progressively their volume. Hence, the coccoliths
remaining after dissolution keep their primary mass. More-
over, scanning electron microscopic (SEM) examination of
samples from the top and the bottom of core B indicates an
absence of coccolith dissolution. The observed increase in
size and weight of coccoliths in the SBB corresponds to a pri-
mary signal and potentially reflects the regional emergence
of heavier calcified coccolithophores.

Alternate explanations are based on long term changes in
the availability of nutrients such as dissolved iron and phos-
phate. It has been suggested that coccolithophores secrete
highly calcified coccoliths in environments with higher nu-
trient abundances such as in upwelling areas (Beaufort et al.,
2008, 2007) or fertilizing experiment in mesocosm (Engel et
al., 2005). The 20th century increase in coccolithophores’
carbonate mass would then reflect an increase in nutrient
availability in the SBB. However, the California Current Sys-
tem (CCS) has experienced a spin-down since the begin-
ning of the 20th century implying a deeper thermocline and
upwelling of warm, nutrient-poor waters (Weinheimer and
Cayan, 1997). This could be responsible for the observed
marked decrease in zooplankton biomass in the California
bight since the 1950s (Roemmich and McGowan, 1995) and
would suggest reduced primary production. This scenario
argues against a connection of increased carbonate mass of
coccolithophores with nutrient availability in the SBB.

The availability of iron exerts the ultimate control over
the size of the phytoplankton community in the Northeast-
ern Pacific (Boyd et al., 1996). This is particularly true for
the CCS since an abundant iron is known to enhance produc-
tivity (Bruland et al., 2001; Hutchins et al., 1998). It appears
that iron limitation leads to a decrease of coccolithophores’
cell growth rate and presumably to a limitation of calcite for-
mation (Schulz et al., 2007). An increase in dissolved iron
concentration in the CCS may thus lead to an increase in cal-
cite precipitation by coccolithophores. However, the primary
source of iron in the CCS derives from resuspended sedi-
mentary particles in the benthic boundary layer, followed by
upwelling of this iron-rich water, rather than by direct river-

ine input (Johnson et al., 1999; Bruland et al., 2001). As 20th
century spin-down deepened the thermocline and limited up-
welling, we suppose that the concentration of dissolved iron
decreased during the same period and prevented an increase
in coccolithophore populations and coccolith mass.

The growth of coccolithophores is also influenced by the
availability of phosphorus. Low to moderate phosphate con-
centrations may produce large blooms ofE. huxleyi (re-
viewed by Zondervan, 2007), but the effect of phosphorus on
the calcite production byE. huxleyicontinues to be debated.
For example, culturing experiments in seawater enclosures
indicate that low to moderate phosphate concentrations can
produce intensive blooms ofE. huxleyi, albeit with compara-
tively low rates of particulate inorganic carbon precipitation
by E. huxleyicells. In contrast, higher phosphate concentra-
tions produce limited blooms with relatively higher rates of
particulate inorganic carbon precipitation byE. huxleyi(van
Bleijswijk et al., 1994). In other words, there is a decoupling
between the rate of production ofE. huxleyicells and the rate
of precipitation of particulate inorganic carbon by these cells
at certain phosphate concentrations. Low to moderate phos-
phate concentrations can produce extensive blooms with thin
coccoliths, whereas high phosphate concentrations produce
limited blooms with heavier coccoliths.

On the other hand, the opposite situations have been ob-
served with enhanced calcite production byE. huxleyi at
low phosphate concentrations and reduced calcite production
at high phosphate concentrations (e.g. Müller et al., 2008;
Paasche, 1998). Low concentrations of phosphorus let cells
grow normally during the G1 assimilation phase (Müller et
al., 2008), which precedes DNA replication (S phase) and
cell division (G2 phase; Paasche, 2002). Calcification pre-
sumably occurs during the G1 phase (Van Emburg, 1989)
and will likely be enhanced with increasing duration of G1.
At higher phosphorus concentrations, faster cell growth lim-
its calcification during a shortened G1 phase and prematurely
triggers S and G2 phases independently of the degree of cal-
cification (Müller et al., 2008), thus explaining why coccol-
iths are less calcified when phosphorus availability is high.

Along the North American Pacific margin, the oxygen-
depleted bottom waters enhance phosphate regeneration
from sediments and provide a positive feedback on produc-
tivity (Ingall and Jahnke, 1994). Similar to the case outlined
above for iron, a spin-down of the CCS would lead to de-
creased phosphate availability. In this case, the production of
E. huxleyi, and presumably also the production of the over-
all coccolithophore assemblages, could have been enhanced
during slightly lowered phosphate availability (Zondervan,
2007). It is difficult to unambiguously demonstrate that phos-
phorus is responsible for the observed Isochrysidales coccol-
iths’ mass increase during the 20th century. Nevertheless,
Müller et al.’s (2008) evidence for the role of phosphorus in
the cell growth cycle ofE. huxleyisupports our hypothesis
that phosphate availability partly explains the observed in-
crease of coccolith mass.
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In addition to CCS spin-down and reduced productivity,
the SBB has experienced a mean regional SST warming of
∼0.7◦C concomitant with the increase in size and weight
of Isochrysidales coccoliths (Fig. 5b). These results are in
agreement with those obtained in the Bay of Biscay, where
heavily calcified coccoliths occurred during summer when
SST is highest (Beaufort and Heussner, 2001). Moreover,
latitudinal variations in SST are responsible for the distribu-
tion of different morphological groups of the genusGephy-
rocapsa in the Holocene world ocean (Bollmann, 1997),
whereby the largest coccoliths of genusGephyrocapsaare
found in warm equatorial oceans, while smaller specimens
are found at higher latitudes in cooler waters. Similar ob-
servations were reached by Beaufort et al. (2008): although
temperature was one among several other covarying param-
eters, they demonstrated that size and weight of coccol-
ithophore speciesE. huxleyiandG. oceanicawere larger in
warmer surface waters from the southeastern Pacific Ocean
in the Marquesas archipelago, and became smaller in the
cooler surface waters of the Peru-Chile upwelling region.
The observation of increasing calcite mass ofE. huxleyiand
G. oceanicacould be interpreted as a result of a warming
of the SBB. Between the 1940s and the 1970s, carbonate
weights ofE. huxleyiandG. oceanicadecreased (Fig. 5a).
This period corresponds to the cool phase of the PDO, which
implies cooler SST along the North American Pacific margin.
This aspect supports our hypothesis that warm SST enhances
Isochrysidales’ carbonate mass. It may be possible that high
frequency variability in carbonate weight ofE. huxleyiand
G. oceanicaduring the 20th century is linked to El Niño
variability, with an increase in carbonate mass during warm
episodes. Those temperature changes are also concomitant to
change in the strength of North American margin upwelling
(Feely et al., 2008) which carries high CO2, low carbonated
waters into the SBB. We also have to take into account the
possibility that a change in carbonate chemistry would affect
the calcite mass of coccolithophores.

The last century has witnessed an increasing net influx of
atmospheric carbon dioxide into the world’s oceans, a ris-
ing pCO2 of surface waters, and under-saturation with re-
spect to aragonite, especially along the North American Pa-
cific margin (Feely et al., 2008). Even if this area is clearly
a source of CO2, it continues to accumulate more anthro-
pogenic CO2. The ability of SBB’s coccolithophores to pro-
duce calcitic shells may be affected by acidification of sur-
face waters overlying the Pacific North American continental
shelf. Such conditions are expected to result in reduced coc-
colithophore carbonate mass and a concomitant decrease in
size and weight of coccoliths, as previously suggested in lab-
oratory studies on coccolithophore calcification rate (i.e. the
mass of CaCO3 precipitated per time unit) (Riebesell et al.,
2000; Sciandra et al., 2003; Zondervan et al., 2001) and un-
der conditions of artificially increasedpCO2 in ocean waters
(Delille et al., 2005).

These studies controlledpCO2 by adjusting pH (Riebe-
sell et al., 2000; Zondervan et al., 2001) or by purging
with CO2-free, ambient, or CO2-enriched air (Delille et al.,
2005; Sciandra et al., 2003) and jointly arrived at the con-
clusion that coccolithophore calcification is reduced under
elevatedpCO2 conditions in seawater. In contrast, Iglesias-
Rodriguez et al. (2008) culturedE. huxleyiunder conditions
of increasingpCO2 by bubbling CO2 in batch incubation ex-
periments and demonstrated that increasingpCO2 in seawa-
ter was compatible with an increase in coccolith weight. A
controlled decrease in pH by adding acid changed the bal-
ance of individual dissolved inorganic carbon (DIC) chem-
ical species but did not change the total DIC concentration.
In contrast, the lowering of pH by CO2 injection (Riebesell
et al., 2000; Zondervan et al., 2001) enhances the production
of bicarbonate HCO−3 , which is the chemical DIC species
used for the production of calcite in coccolithophores (An-
ning et al., 1996; Buitenhuis et al., 1999). The results from
the laboratory culture experiments of Iglesias-Rodriguez et
al. (2008) are corroborated by observations of a 40% in-
crease in average coccolith weight across the last 220 years,
as recorded in a box core from the subpolar North Atlantic
(Iglesias-Rodriguez et al., 2008). The increases also com-
pare well with our observed increase of>33% in mean
weight of SBB Isochrysidales coccoliths. A continued fu-
ture increase inpCO2 of surface waters in the SBB, and
by extension along the entire North American Pacific mar-
gin, would potentially increase the weight and size of micro-
fossils fromE. huxleyiandG. oceanica, but would exclude
G. muelleraewhich seems to be unable to take advantage
of increasedpCO2. It may be possible that the contrast-
ing response ofG. muellerae’s carbonate mass to increased
pCO2 is based on physiological or biochemical differences,
and thatG. muelleraeshares characteristics with the subpolar
speciesCoccolithus pelagicus, which has shown a negligible
response to increasedpCO2 (Langer et al., 2006).

The available evidence is still insufficient to unambigu-
ously differentiate the influence of SST on coccolithophore
carbonate mass from that of other sea surface water chemi-
cal properties such aspCO2, [HCO−

3 ], or alkalinity. In any
case, our data suggest a link between modern oceanographic
changes in SBB surface water properties and increased mass
of coccoliths.

5 Conclusions

1) Automatic image analysis via SYRACO software quan-
tified relative abundances of coccoliths along two sedi-
ment cores from a Santa Barbara Basin 2004 multicore
and yielded reproducible and robust micropaleontologi-
cal AD ∼1917–2004 time-series from six selected coc-
colithophore species.

2) Core B allowed ultra-high sampling resolution and the
reconstruction of seasonality of six coccolithophore
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species. Reconstructed seasonalities are in agreement
with known climatic and surface hydrographic prefer-
ences of species in the modern Santa Barbara Basin.

3) Warm species thrive in summer when the northerly
flowing California Counter Current warms the basin.
The cold speciesGephyrocapsa muelleraeis preferen-
tially found during winter when sea surface waters are
coldest and low in nutrients.Gephyrocapsa ericsonii
depends on high concentrations of nutrients and is found
in summer when upwelling occurs off Point Concep-
tion. Emiliania huxleyiis opportunistic, ubiquitous, and
able to live in cold and well mixed, nutrient-poor waters,
primarily during winter.

4) The abundances of warm water species are enhanced
during strong El Nĩno events, such as in 1982–1983 or
1997–1998.

5) Spectral analyses show that four out of six species re-
spond to ENSO and PDO. High abundances of warm
species Gephyrocapsa oceanicaand Helicosphaera
carteri are associated with El Niño. Gephyrocapsa
muelleraeandGephyrocapsa ericsoniirespond well to
La Niña. Only two warm species are spectrally linked
to the low frequency band of ENSO characterizing the
time between successive strong El Niño events, e.g. be-
tween the events of 1982–1983, 1986–1987, 1991–1992
and 1997–1998. Relative abundances ofGephyrocapsa
oceanicaandHelicosphaera carterican serve as paleo-
El Niño indicators in Santa Barbara Basin.

6) Only two species respond spectrally to the PDO, namely
Gephyrocapsa ericsoniibeing associated with the PDO
cold phase (high nutrient availability) andGephyro-
capsa muelleraewith the PDO warm phase (low nutri-
ent availability). Relative abundances ofGephyrocapsa
muelleraeandGephyrocapsa ericsoniiare useful paleo-
PDO indicators in Santa Barbara Basin.

7) Emiliania huxleyiandFlorisphaera profundaare appar-
ently unaffected by PDO but seem to respond to the
classical El Nĩno/La Niña alternation.

8) Examination of the morphometry of three species
showed that the carbonate mass of coccoliths in the
Santa Barbara Basin increased from AD∼1917 until
2004. This increase of coccoliths’ calcite mass occurred
in the context of decreasing iron and phosphate nutri-
ent availability and increasing SST andpCO2 of sur-
face waters linked to anthropogenic release of CO2. It is
difficult to discern which parameter mainly controls the
observed increase of coccoliths’ mass. The fact that iron
was not responsible for coccoliths’ mass increase in-
creases the likelihood that phosphate availability,pCO2
and SST were key controls on coccolithophores’ calcite
precipitation. Further studies are needed to elucidate

whether calcareous phytoplankton is able to take advan-
tage of increasing CO2 greenhouse gas concentrations
and associated SST warming.
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