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Gamma and Beta functions, growth of subharmonic functions in the unit ball.

We study subharmonic functions in the unit ball BfY, with either a Bloch—

type growth or a growth described through integral conditions involving some
involutions of the ball. Considering mappings— gu between sets of functions
with a prescribed growth, we study how the choice of these sets is related to the
growth of the functiory.
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1. Introduction

This paper is devoted to functionswhich are defined in the unit balby of RV
(relative to the Euclidean norir), whose growth is described by the above bound-
edness oBy of z — (1 — |z|*)* v(z) for some parameter. The functionv may
denote merely: or some integral involving and involutionsp,, (precise definitions
and notations will be detailed in Secti@h In the first (resp. second) caseis said

to belong to the set’ (resp.)). Given a functiory defined onBy, we try to obtain
links between the growth af and information on such mappings as

y— X,
U — gu.

This work is motivated by the situation known in the case of holomorphic functions
f in the unit diskD of C. Such a function is said to belong to the Bloch sp&gédf

[1£1lsy = 1 (O) +sup(l - |2 )M ()] < oo
It is said to belong to the spadeM/ OA,, if

1[04, = F(O)* + Slelg/D(l = [2P)* 2 (2)P(1 = lga(2) ) dA(2) < +o0
with dA(z) the normalized area measure elemenfobandy,(z) = —=.
Givenh a holomorphic function o, the operatot}, : f — I,,(f) defined by:

1)) = / WO FOdC VeeD

was studied for instance irY] where it was proved thaf, : BMOA, — B, is
bounded (with respect to the above norms) if and only i€ B,_,.: (assuming
L <p<A).

Since|f’|? is subharmonic in the unit ball dk?, the question naturally arose
whether some similar phenomena occur for subharmonic functiaig fior N > 2.

Multiplication of
Subharmonic Functions

R. Supper
vol. 9, iss. 4, art. 118, 2008

Title Page
Contents
44 44
< >
Page 3 of 40
Go Back
Full Screen

Close

journal of inequalities
in pure and applied
mathematics

issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:supper@math.u-strasbg.fr
http://jipam.vu.edu.au

2. Notations and Main Results

Let By = {z € RY : |z| < 1} with N € N, N > 2 and|| the Euclidean norm in
RY. Givena € By, let®, : By — By denote the involution defined by:

B, (1) a— P,(z) —\/1—|a]?Q.(x) Vi € By,

I <(L’, CL> Multiplication of
Where Subharmonic Functions
R. Supper
N vol. 9, iss. 4, art. 118, 2008
(x,a) :;xj aj, P,(z) = %a, Qq(x) =2 — Py(x)
. Title Page
forall z = (z1,2s,...,2x5) € RN anda = (ay,as,...,ay) € RY, with P,(z) =0
if a = 0. We refer to f, pp. 25-26] and, p. 115] for the main properties of the Contents
map®, (initially defined in the unit ball ofC"). For instance, we will make use of <« >
the relation: ) )
1-— 1-—
1—’q)a($)|22 ( 1|a| )( |2:L'| ) < 4
) ) ( N <:15, a>) _ Page 4 of 40
In the following,«, 3, v and\ are given real numbers, with> 0.
Go Back
Definition 2.1. Let X, denote the set of all functions: By — [—o0, +00] satisfy-
ing: Full Screen
M, (u) := sup (1= [2*)* u(z) < +oo. Close
TEDLbN
!_et V.5~ denote the set of all measurable functions By — [—o0, 400 satisfy- journal of inequalities
Ing: in pure and applied

mathematics
issn: 1443-575k

My, ,,(u) = sup (1 —[a|*)" /B (1— |2|)%u(z) (1 — |@a(x)|?)" dz < +oo.
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The subsetSX, (resp. SY,3,) gathers allu € &, (resp. u € Y, 3,) Which
moreover are subharmonic and non—negative. The sub&gt, 5, gathers allu €
SYa,3,~ Which moreover are radial.

Remarkl. When\ < 0 (resp. a + < —N or a < —7), the setSX’, (resp.
SVa,5,,) Merely reduces to the single functian= 0 (see Propositions.2, 6.3 and
6.4).

In Propositior3. 1and Corollary3.2, we will establishthatSY, 5, C SXaip1n
and that there exists a const@nt> 0 such that

My oipin (gu) < C Mx,(9) My, 4., ()

forallu € SY, 5, and allg € X, with My, (g) > 0. We will next study whether
some kind of a “converse” holds and obtain the following:

Theorem 2.2.Given\ € Randg : By — [0, +oo[ a subharmonic function satisfy-
ing:

IC" >0 My, son(gu) < C" My, , (u) Vu € SVa s,
theng € XH% in each of the six cases gathered in the following Tdble
Theorem 2.3.Given)\ € R andg a subharmonic function defined éty, satisfying:
aC” >0 My, .\ son(gu) < C" My, , (u) Vu € RSV 8.+,

theng € SX ~—1 provided thaty > 0, > — &+, 4 > AL

Mat S5+ T2
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[case ] 5 -
0 a=8H 18 B> N4l v > max(a, —1 — B)
® p> -5 > [1+ 6]
(iii) B>~y NH <y < H
(v) B8>0 v>1
v) a=1+0-7 B>-1 B <y < g4 NfB
(vi) B>—3 7>‘%‘

Table 1: Six situations where Theoren? shows thay belongs to the set’,

N—1.
+ 5
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3. Some Preliminaries

Notationl. Givena € By andR €]0,1[, let B(a, R,) = {x € By : |t —a| < R,}
with
1—|af?

1+ Rlal’
Proposition 3.1. There exists & > 0 depending only oWV, (3, -, such that:

MXa+B+N(u) < CMya,B,w<u> Yu € Syaﬂ’,y.

R,=R

Proof. Let someR €]0, 1] be fixed in the following. Since > 0, we obtain for any
a € BN:

My o ()2 (1= [Py [ (1= 1) u(e) (1= [@u(o)) da

> (1= oy [ o A B ) (0~ @) de

It follows from Lemma 1 of §] that
B(a,R,) C E(a,R) ={z € By : |®,(z)| < R},
hence:
@D My, (= Q=R A=l [ () () do
B(a,Ra)
asy > 0. From Lemmas 1 and 5 o8], it is known that
1-R _1—|zf
<
I1+R = 1—|a]?

<2 Vo € B(a, R,).
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LetCy = (—g) if 3> 0andCs = 2°if 3 < 0. Hence
My, , (u) > Cp(1 — B2 (1 — [af?)**" / [ )

The volume ofB(a, R,,) i (R“)N with oy = 22 the area of the unit sphere

I(N/2)
Sy in RY (see R, p. 29]) andR 1 — |a|*). The subharmonicity of. now
provides:

a—HR(

(Ra)™
N

(1= la])* 7 u(a).

My, , (u) > Cs(1 = R*)7 (1 — |a*)*"  u(a) oy
on RN(1— R)
> P e S A
> Cs N (1+R)N—

Corollary 3.2. Letg € X, with Mx, (g) > 0. Then:

MX>\+a+ﬂ+N (gu> <C MXx (9> Mya,ﬁ,'y (u)
where the constartt’ stems from Propositiof. 1.

Yu € Syaﬁ;y

Proof. Sinceu > 0, we have for anyt € By:
(1= [xHMP N g(z) u(z) < Ma, (9) (1 = [2*)* TN u(z)
S MXA (g) MXD(+B+N (U)
because of/x, (g) > 0. O
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Lemma 3.3.Givena € By andR €]0, 1], the following holds for any € B(a, R,,):

1 1 1—(zr,a) 1+ 2R|a| 1 1—{(x,a) 1+ R
=< < : <2 and - < —="<2——.
2 14 Rla] = 1—=1a> = 1+ R|q| 41—z 1-R
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Proof. Clearly (z, a) = (a + y,a) = |a|* + (y, a) with |y| < R,. From the Cauchy-

Schwarz inequality, it follows that R, |a| < (y,a) < R, |a|. Hence:

1 —al? 1 —al?
1—|a? - Rla| ——— <1-— <1—laf*+ Rla| ————.
af = Rlal {por S 1= (@@ 1= Jaf* + Rlal {7
The term on the left equals
R|al
1—1a?) (1 - —5— -
(1= la) ( 1+R|a|> (= laf )1+R|a|
andl + R|a| < 2. The term on the right equals
R|al
I—|a) 1+ —/—=—
(=) (14 ).
with 1f1|§|| ;< 1. Now
1—(z,a) 1—(z,a)1—|a]?
I—1|z2  1—|a]2 1—|zf?
and the last inequalities follow from Lemmas 1 and 55)f [ O

Lemma3.4.LetH = {(s,t) € R*:t>0,s*+t> < 1}andP > —1,Q > —1,
T > —1.Then

0 if P isodd;

P9 (1= =)l dsdt = o
//H ( ) al srg (7) ) if P iseven.

,.\,
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Proof. With polar coordinates = r cos#, t = r sin 6, this integral turns intd; I,
with

1 ™
L = / P (1 — )T rdr and I, = / (cos 0)F (sin 6)< db.
0 0

Keeping in mind the various expressions for the Beta function (3g®p| 67—-68]):

Blz,y) = /0 el (1 - e de

L) T(y)

w/2
=2 cos0)** 1 (sin®)? 1 df =
| tcost= sine) e

(with z > 0 andy > 0), the change of variable = r* leads to:

1 1
L :—/ W (1—w)ldw
0

2
(22 4+1) (T +1
:13(P+Q+1,T+1): ( 2P+ ) I+ )
2 2 2D (B2 + T +2)
WhenP is odd,l, = 0 becauseos(m — 0) = — cos(6). However, wherP is even:

w/2
I, = 2/ (cos )" (sin 6)< db
0

L p (PO T
) T rEEey
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Lemma 3.5. GivenA > 0 anda € By, letu and f, denote the functions defined ||\' M
on By byu(z) = e | T mx and falx) = m Vx € By. They are both subhar-
monic inBy. A

Remark?. v is radial, but notf,,.

Proof. For u, the result of Lemm&.5 has already been proved in Proposition 1 of

[5]. Foranyj € {1,2,..., N}, we now compute: Multiplication of
Subharmonic Functions
afa - —A—-1 anCL _ 2 —A-2 R. Supper
() = a; A(1—(z,q)) and —>(z) = (a;)" A(A+1)(1—(z,a))"" 7,
Oz ox - vol. 9, iss. 4, art. 118, 2008
so that: AP A(A )
a +
Af, = >0 v By. Title P
( f)(m) (1—<Q3,6L>)A+2 - x € N itle Page
0 Contents
Remark3. GivenA > 0, A’ > 0, the functionf, defined onBy by 4« "
1 | >
fa(l‘) = 7
(1 —(z,a))A(1 — |z[>)A Page 11 of 40
is subharmonic too. The computation
) Go Back
Alal 2A'|z|
(Afa)(@) = falz) <1 By g >0 Full Screen
is left to the reader. Close
Proposition 3.6.GivenN € N, N > 3, (s,t,b1,by) € R* suchthafs b+t bs| < 1 journal of inequalities
and P > 0, let in pure and applied
. mathematics
i (sin 9)N =3 d6 ,
I t,by,by) = ) issn: 1443-575k
p(s:t b1, b2) /0 (1 —sby —tby cosh)?
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Then

N 2k
5> — ['(j+2k+P) [ the
IP(87t7b1762) 2 ZZ N 1 (bl S)] —_—
keN jeN kL 'I‘ +k) 2
Proof. As
t by cosf t by
< <1 ultiplication o
I—s b1 N ‘ l—s bl 7 Subl':irlr;ZLictFunctfions
the following development is valid: R. Supper
T . 0 N-—3 d@ vol. 9, iss. 4, art. 118, 2008
Ip(s,t,b1,b2) = / (einf) P
0 (1— P <1 _ M)
( sb1) I—sb Title Page
I'(n+ P) thy \" [™ . N3 n
1= b1 5 ; AIT(P (1 . b1) /o (sin @)™~ (cos )" db. Contents
_ _ <4 »
The last integral vanishes whens odd. Whem: is even ¢ = 2k), then
< >
/2 N -2 1
2/ (sin6)"*(cos0)** df = B (T’ k + 5) Page 12 of 40
0
(N—Q) ( ;) Go Back
( 2 ) Full Screen
2
_ (T) ﬁ Close
T (=14 k) 2% Kl
) journal of inequalities
by [3, p. 40]. Hence: in pure and applied
r (%) VT I'(2k + P) (t by)?* mathematics
Ip(s,t,b1,b2) = (P) Z T (N=L 1 ) 22k k| (1 — by )2ktP" issn: 1L443-575k
keN (T + ) : ( § 1)
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The result follows from the expansion

I'(2k + P) _Zr(j+2k;+P)

o\ ) J
(1= sby)2+F 5! (brs)”

JeN

Title Page

Contents

Page 13 of 40
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Full Screen
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4. Proof of Theorem?2.2

The case$), (ii), (iii), (iv), (v) and(vi) of Theorem2.2 will be proved separately at
the end of this section.

Theorem 4.1.GivenA > 0, P > 0,7 > —1land N € N (N > 2) such that
1<A+P<N+1+2T,let

. a-lePy
Brrlod = [ i Ve B e By

andT a number satisfying both54 < < P and0 < 7 < 442, Then

K
IA,P,T(a,b) S (1 B |a|2)¥_7(1 B |b|2)7' Ya € BN,\V/b S BN

where the constank’ is independent af andb.

Exampled.1 If P > Aandr = 41£, then

K
Ispr(a,b) < W Va € By,Vb € By,

with

K =24tP1 25 r .
TP 2

Example4.2 If P < Aandr = 0, then

K
I pr(a,b) < W Ya € By,Vb € By,
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with

L wa D(T+1) (A—P
_ oA+P-1 N
K=2 s < 2 >

Proof. Up to a unitary transform, we assume- (|a|,0,0,...,0)andb = (b1, b2, 0, ..., 0).

Proof of Theorem!.1in the caseN > 3. Polar coordinates iiR"" provide the for-

mulas:xz; = r cos 6y with r = |z|, 25 = r sin 6 cos 6, (the formulas forzs, ..., xy Vultplication of
are available in9, p. 15]) wherefy, 6,,..., On_o €]0, [ andOy_; €]0,27[. The Subharmonic Functions
volume elementlz becomesN~! dr do™) wheredsc) denotes the area element R. Supper
on Sy, with vol. 9, iss. 4, art. 118, 2008
dO'(N) = (SiIl 91)N72(sin 62)N73d91 d@g dO'(N72)
(see P, p. 15] for full details). Her&), €]0, x| sinceN > 3. In the following, we Title Page
will write s = r cos#; andt = r sin 6, thus(a: by = sby +tby cos by and
Contents
VErN=(sin 01)N =2 Ip(s,t, by, b
@.1) Iyprlab)=oy_ 2/ / (sin61) " Ip(s, £, b1,b2) ) «“« NS
(1 —als)4
with 7p(s,t, by, be) defined in the previous proposition. Fro@ p. 29] we notice ¢ g
that Page 15 of 40
N -2 No1
UN2F<T> Vr=21"z% . Go Back
The expansion Full Screen
1 L(e+4)
— = cl
(Aol ~ 2= () 11
leads to: journal of inequalities
' . o in pure and applied
27 7 I'(j+2k+P)T(L+ A) v ’ mathematics
Lipr(ab) = o——— 3 , ) (=) al* T o
o 1T (N=L J issn: 1443-575k
['(P)T(A) ey Lt (5= + k) 2
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where

Jkﬂ—/ /sﬁgt% r) T N (sin 0)V 2 dr db,

_// S]-‘r@t?k—i-N 2(1 S )Tdet
H
with I as in Lemma3.4. Now J;, ;, = O unlessj + ¢ = 2h (h € N). Thus:

N-—1
T2

L(P)r(A4)

j+2k+P)F(2h—j+A)F(h+1)F(T+1) AT
x 2 Z A CEY R SR (_) .

Iapr(a,b) =

2
(k,h)eN? j=0

Taking [3, p. 40] into account:

N

73T T+1 5 ZQh'B]+2k+P2h j+ A)

(4.2) Iapr(ab)= 22042k L KL 51 (2R — 7)!

(k,h)eN2 j=0
P2k+P+2h+4) ;oo a?
Tk+h+¥4+T+1) 17 '

Let
2P+A71 F(T+ 1) %

L=TTer@

The duplication formula

VrT(22) = 2% 1T ()T (z + %)
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(see B, p. 49]) is applied witiz = 2k + P + 2h + A. Now

A+§+%§F(

N
T'(k+h+ k+h+5+T+£>

sincel increases offil, +oc[ and

A —|— P —I— 1 N Multiplication of
1 S k + h + T S k -+ h + ? + T + 1. SubharmZnic Functions
R. Supper
This leads to: vol. 9, iss. 4, art. 118, 2008
I4pr(a,b)
< wu39+ak+P2h—j+Aﬂwk+h+i§)wﬁkQMJ Title Page
Z Z hUEN 51 (2h — §)! 162l Contents
(k,h)eN? j=0
44 44
k+h+A“’2k% o
=L ) TN Z bJH IB(j+ 2k + P,2h — j + A). p >
(k,h)EN2

] Page 17 of 40
The last sum turns into:

Go Back
o (2h)16] o)
Z ASnk?/dd 8 hod B §j+2k+P_1 (1— f)Zh_j+A_1 dé Full Screen
1 (2h — 5)!

- 0

LN (2 (b € [(1 =€) |al) -

2h)! al|*"~ _ _
:/ <Z 1j' h— ) )€2k+P fa—-9Atde journal of inequalities
0 \j=0 ' ' in pure and applied

1 mathematics

N /0 01§ + |a] (1 — 5)]% §2k+P_1 (1- §>A_1 d§. issn: 1443-5750
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Hence the majorant dfy p1(a, b) becomes:

A+P
(Z b )[bls+|a|<1—5>?h) €71 (1)1 dg
keN heN ’
k+A+P><bgg>%< 1 ) Py vt
=1 — d
/ | “heraa-op) & Y&

according to the expansion

re) I'h+C) 4

(1-X)° 2 T

heN

with [X| < 1 whenC > 0 (see B, p. 53]). HereX = [b, £ + |a| (1 — €)]? belongs

to] — 1, 1[ sinceb; and|a| do and¢ € [0, 1]. The same expansion now applies with
A+ P (by €)?

C=—7%— ad X=gp i _er

since|X| < 1, as

0(€) = (b26)* + [br & + lal (1 = )P
= [b]* €% + [al* (1 = €)* + 26(1 — &) bu a]
< [p]? €% + [al* (1 = €)% + 26(1 = €)[b] |a]
= [£1b] +lal (1 = &))" < 1.
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Hence

Ispr(a,b)
' I (455) Pl (1— g1 de
=t e T (At (-0
> 2 2 — a — 2
(1 T Th s+|a\(1—£>}2> '
1 P— A— ultiplication of
— L . I‘ <A + P) / 5 ' <1 — f) ' df A+P Subl':lrr:]zmctFunctions
270 (1= [bi&+1al(1— 92— (026)2)
NOW vol. 9, iss. 4, art. 118, 2008
- . o 2
1= 6(6) = 1~ [¢]bl + Ja] (1~ &) e Page
= L= [£ ’b| i <1 N} f)]Q Contents
= (1 —[b))[2 = &(1 — |b])]
> &(1— b « >>
since < >
2 =61 —[b)] = (X +[0]) = (1 = &)(1 —[b]) > 0. Page 19 of 40
Similarly, S Bk
1—8(6) = (1—€)(1— |af?). -
Thus X , Full Screen
A+P < A+7P7T A Close
1= 81"~ [(1- (1 — [aP) (et — [bf2) | -
sincer > 0 and4£X — 7 > 0. Finally: :glngel gfn|cr;quu§ilg|§s
I. F A+P N mathematics
Iy pr(a,b) < / £P = 1 )AJFT*AL*1 dg. issn: 1443-575k
(1—laf? )*‘T 1 — [b]2)"
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This integral converges sindé— r > 0 and

A+P A-P
A+T1— —g =3 +7>0.

Now the result follows with

A+ P A-P A-P
K:L-F( ‘; )B(P—T, 5 +T>=LF(P—T)F( 5 +T).

Proof of Theorem.1in the caseV = 3. Here

)7 12 (sin 6 t,b1,b
Lapr(a,b) / / 1sm| 1|) ‘;P(S v 02) 4 o,
— |a

where

2 d92
J t,b1,b9) = =217 t,b1,b
p(s,t,01,b9) /0 (1— sby — thy cosba)P p(s,t,01,b9)

with Ip(s,t, b1, be) as in Propositiors.6, with N = 3. Hencel, pr(a,b) has the
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Full Screen
Proof of Theorem!.1in the caseN = 2. Now z; = s = r cosf andxy =t = Tlege
r sin6:
) v dr do journal of inequalities
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(¢ A ¢ tby)" T(n+ P s g
/ZN + )Zé;p(;)(l_(sz)nlp(l—s — )" dsdt

¢ J .
Z L+ A)lal” (b2)"T(j +n+ P)(by) / $E (1 — 57— )7 ds dt.
J)EN B

o OT(A)n!T(P) ;!

The last integral vanishes whenis odd or¢ + j odd. Otherwise{ = 2k and

¢+ j = 2h), itequals

D(h+ 2T (k+ 1) I(T+1)
F'k+h+T+2)

2/ s (1 — 82 — ) dsdt =
H

by Lemma3.4 and turns into

n! )7 T(T + 1)
2202k Pl I\ T (k+h + T + 2)

according to 8, p. 40]. Thusl4 pr(a,b) is again recognized as Formula @) now
with V = 2 and the proof ends as for the case> 3. O

We now present an example of a family of functions }., which is uniformly
bounded above i, s -:

Corollary 4.2. Giveng > —&H (N > 2) leta = &+ andy > max(a, —1-0).

For anya € By let f, denote the function defined byj;(z) = W, Vx € By.
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Proof. With the above choices for parametefsP, T', we actually haveP > A >
0,7 > —1and

A+P=20+2y=N+1+20+2y=N+1+2T > 1.

The condition®) < 7 < «a + v together withy — o < 7 < 27y reduce tory — a <
7 <a+1. Let

43) Sl =0~ !b\z)“/ (1= |2*)? fa(2) (1 = |Po(2)[*)" da.

BN
Now
1 — ‘x’2)ﬂ+7
Jo(fa) = (1 —|b|? 0‘”/ ( d
b(fa) = (1 —[0[%) o (1= (2, a))NH1420 (1 — (3, b))% X
SK V(IGBN,\V/bGBN
according to Theorenmt.1applied withr = a4+ v = #. O

4.1. Proof of Theorem2.2in the case(i)
Given R €]0, 1], the subharmonicity of provides for any: € By the majoration:

1
s <y [ g
a J B(a,Rq)

with V,, the volume ofB(a, R,). From Lemma3.3, it is clear that:

1+R 1—|z2\*
1<(2 B
_( 1-—R1—(x,a) vz € Bla, Ra)
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with A = 2a > 0. Now g(z) > 0, Vo € By. With f, as in Corollary4.2, this leads
to:

1+ R
ot < (2258 [ ) e gt e
1=R/ Jpnr)
Now N—+1 N -1
A=a+ 5 + T =a+ ﬁ + N — T’ Multiplication of
Subharmonic Functions
thus R. Supper
_ 2\ \+a+6+N vol. 9, iss. 4, art. 118, 2008
0 (22 R) (L= [P o) glo)
(a Ra) (1— |z "2
1 + R dx Title Page
O N 1
1-R B(a.Ra) (1 — |z[)M 72 Contents
from Corollary4.2. Lemmas 1 and 5 o8] provide 4« "
1 e\ ——
1= [a? > Cy v Va € B(a, R,), Page 23 of 40
with Cy, ~-1 defined in the same pattern &% in the proof of Propositiors. 1. Go Back
Finally: Full Screen
C'K 1+ R\* v,
Vaglo) < o (3125 = cose
Cryra I=R) (1—|a2)*72
thus journal of inequalities
O'K 1+ R 20 in pure and applied
My . (9) < (2 ) VR €]0,1]. mathematics
AL C)\+N;1 1-R issn: L443-575k
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The majorant is an increasing function with respecktd_etting R tend toward)*,
we get:

C'K
My wa(9) < 2%,

At C)\+N71
p)

4.2. Proof of Theorem2.2in the case(ii)

Here we work withf,, defined by:

1

fa(l’):m where A=a+ [+ N.

Theorem4.1 applies once again, with = N +1+23 > %1 > 0, P =2y > 0
andT = g+ v > —1 (becausey > —1 — ). ConditionA+ P = N +1+2T'is
fulfilled too. Moreoverr := a+v = 3+ + 1 satisfies botld <7 < 4+~ + %
(obviously0 < +~+ 1andl < &)andy — g — & < 7 < 24

T—’y+ﬁ+—N;1:2ﬁ+N+3>0 and 2y -—7=79-1-6>0.
With such a choice for we have
A+ P _N+1 N -—-1
A R T
thus
K

(44) [A,P,T<a7 b) g

o Va € By, Vb € By.
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In other words,

K
(4-6) Ma fa < ——5— Ya € By.
ren ) S oy '
This implies:
C'K
4.7) M)()‘+a+ﬁ+N(g fa) < W VYa € By.
“al2) 3

With R andV, as in the previous proof, we obtain here:

1+R\"* (L= )24 fo(@) g(2)
o < (2755) [,

1-R

___COK <21+R>A/ dx
T (1=la»)T \ 1R} Jpanr,) (1-]z*)?

and the last integral is majorized W with C, defined similarly toC}; in
the proof of Propositio3. 1. Finally:

/
MX L (g) S C_K 2N+1+2ﬂ.

At Ch

4.3. Proof of Theorem 2.2in the case(iii)
Here f, is defined by:

1
Jol®) = Tl A — )P

Vo € BN,
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whereA = N + 1 — 2y > 0. Theorem4.1is applied withP = 2+ > 0 and
T =0>—1. Thus

A+P=N+1=N+1+2T.
We have to choose satisfying both

N+1 N+1
O§T§T+ and 2v — + < T < 27.
Now
N+1 A+ P L
T = = =
2 2 7

fulfills the last condition since:

N+1 N+1 N+1
27—T=2<7—T+)>o and 7—27+T+:2(T+—7)>0.

Formula ¢.3) implies J,(f,) < K foralla € By andallb € By. ThusMy, , (f.) <
K,Va € By. As before,

1+ R A (1 B |$|2)A+ﬂ+w g(x) .
Vagla) < (2 1-R R) /Bm,Ra) 0w (= ey

Now

A+fB4+y=N+1—-v+p

N+1
N -1
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whence

1+ R\ (1 — |z]?)otP+N £ (z) g(x)
a <|2—— N d
V g(a) < (2 1— R) \/B(a7Ra) (1 _ |.T|2)T i

A
< C'K <2 ﬂ) / L
1=RJ Jp@nry (1= |a)*72
and the proof ends as in the c4ge Here

C'K
MX N-1 (g) <

AT C)\

oN+1-2y

N—-1
+OL

4.4. Proof of Theorem2.2in the case(iv)

Heref, is defined by:
1
o) = TG A = ey
whereA=N+1,T=~vandP =2y thusA+ P =N + 1 + 2T, allowing us
to use Theoremt.1, with 7 = o+ v = 1 + v (since0 < 7 < & + 5 and
v — & < 7 < 24). Hence Inequalities/(4), (4.5), (4.6) and ¢.7) follow. Now

Vo € BN,

A
68 Vi< (27g) [ 0 kB g i

SinceA + 3 = a+ ( + N, this turns into:

1+ R A/ My, (9fa)
Veogla) < |2 ——= rotprN dx
9”—( 1—R> sy (1~ [
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and the proof ends as in the cd8g, here with:

4.5. Proof of Theorem2.2in the case(v)

Here f, is defined by:

fula) = !

(1= (z, @)A1 = |=[?)7

N+3 N-1
A=N41420B-7)>N+1- ; == >0
With P = 2y > 0 andT = g3, the conditionA + P = N + 1 + 27T of Theorem4.1

is fulfilled. Moreoverr := « + v = 1 + (3 satisfies

Vx € BN7

where

N+1 N+1
0<r< + + 4 and 27—T+—ﬁ<7'<27
since:

N+1 N+3
2y—17=2y—(1+4) >0 and 7—27+T++ﬁ:—27+7++25>0.
Again

A+ P N+1 | N-1
> T 2 T2

and inequalities4.4) to (4.7) follow. Formula ¢.9) still holds with (1 — |z|?)4*”
instead of(1 — |z|?)4*4. Here

A+y=N+1+28—v=N+a+p
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and the conclusion follows as in the previous case. Finally:

My | (g) < C/_K QN+1+2(8—7)

ATy C)\

4.6. Proof of Theorem2.2in the case(vi)

Here f, is defined by: Multiplication of
1 Subharmonic Functions
falz) = Vx € B R. Supper
(@) (1= (x,a))*(1 — [z[*)~ a vol. 9, iss. 4, art. 118, 2008
with A = N+ 3> 821 50, P =2y>07T =21 4+~ > —1 (actually
T+1= 5“ + v > 0). The use of Theorer.1is allowed since Title Page
A+P=N+1+8—-1+2y=N+1+2T. Contents
Now 7 := a + v = 2L 1 v satisfies) < 7 < ¥ 1 (because ofy > —ZF1). <« >
Moreovery — M < 7 < 2vis fulfilled too smce p R
+
ﬁ2 <~v and f+1+(N+08)=14+N+23>0. Page 29 of 40
In addition, Go Back
A+ P N+p pB+1 N-1
—_— T = —_ = .
5 5 5 5 Full Screen
Again it induces Formula4(6). With (1 — |z|?)A*” replaced by(1 — |z|?)*+, Close
inequality ¢.6) remains valid. Sincel + a = N + a + (3, the conclusion is once . _ N
again obtained in a similar way as in the ca§esand(v), here with journal of inequalities
'K in pure and applied
My (9) < C'K = 9N+B mathematics
N-—1
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5. The Situation with Radial Subharmonic Functions

5.1. The example ofu : z + (1 — |z|?)~4 with A > 0

Proposition 5.1. GivenP > 1, T > —l and N € N (N > 2) such thatP <
N+ 1427, let

[P,T(b):/B %d:ﬂ Vb € By.

K/
]P,T(b) < W
(equality holds whe® = N + 1 + 2T") with
F(T + 1) y

5 T
r (54

Then
Vb € By,

K' =

Proof. Letting A — 07 in Theorem4.1, the majorization of p-(b) is an immediate
result, sincey (as a function ofd) tends towardd’: see Examplé.l. Nonetheless,
we still have to show that equality holds in the c&se- NV + 1 + 27T

Proofin the caséV > 3. Up to a unitary transform, we may assuine (|b/,0,0,...,0),
so that(x,b) = |[b| x; = |b|r cos 6, with 6, €]0, 7[ (we will have#, €]0,2x[in the
caseN = 2). Now

dx = rN! (sin6,)N 2 dr db, doN =1,

with the same notations as in the proof of Theorir Here:

)T N=1 (sin ;)N 2
I dr do.
r( / / 1—|b]'r cos01)” ran
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Then

P
(5.1) IRT(b):cerZ ”+ |b|”// s"tN (1 — s =) dsdt

with s = r cos#; andt = r sin#,. This integral vanishes for odd If n = 2k, its
value is given by Lemma&.4. Thus

Multiplication of
Subharmonic Functions

onaa D () DT +1) = [0)*T (k+ 1) T(2k + P)

R. Supper

Ipp(b) =

2 F(P) = QRIT (k+5+T+1) vol. 9, iss. 4, art. 118, 2008
Now [2, p. 29] and B, p. 40] lead to:
F(T 1) ’b‘% \/_F(Qk P) Title Page
+ N—1 s +
I =————>7 2 .
pr(D) o) T2 ZN T (kX 4T+ 1) Contents
44 44
Through the duplication formula3[ p. 45]), it follows that:
< >

HPPIT (4 5) T (k+ £)
2REIT (k+ 5 +T+1)

Page 31 of 40

Iray) = L 3 0

Z T (k‘ n E) Go Back
— K/ 2 ’b|2k
T /Py Full Screen
keN RIT (5)

ith Close
wit

K = NT+1) alst oP-1p (_P> ‘ journal of inequalities
['(P) 2 in pure and applied

Another application of the duplication formula provides the final expressidty of mathematics
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Proof in the caseV = 2. Now

o pl 2\T
B (I—=r5)"r
Ipa(b) = /0 /0 (1 —|b| 7 cosB)? dr df.

Then

F(TL —|— P) n 1 n 2 n Multiplication of
IP,T<b) = Z TL'F—(P) |b| ( /0 r i (1 - TQ)T d?") (/0 (COS 9) do | . Subharmonic Functions

neN R. Supper

The last integral equals [ (cos )" df for anyn. As oy = 2, here we recognize the Vol 955 4, art. 118, 2008

same expression as in formuka {), replacing/V by 2. Hence the same conclusion.

L] Title Page
Corollary 5.2. Givena > 0, 8 > —%H andy > 21 let A = ¥ 4 gandu Contents
defined onBy by:
@) 1 e B “ »
wzr) = ———— T N
1= [zP)A p >

Thenu € RS8Ya s, and My, , (u) < K’ where K’ stems from Propositios. 1

_ Page 32 of 40
(withP =2y >landT =f+y—A=~—- ¥ > 1)

Go Back
Proof. The subharmonicity of follows from Lemma3.5sinceA > 0. Let J,(u) be
defined similarly as in formula}(3). Then Pl e

_ Close
(1 — [af?)A
) = (1= o) [ d.
By (1= (z,0))F journal of inequalities
A in pure and applied
S mathematics

N+14+2T=N+1+2y—(N+1)=P,
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Propositions. 1 provides:

K’
2\«
Jb(u) S (].— |b| ) +’YW S K/

sincea > 0. The conclusion proceeds from

Mya,m(u) = sup Jp(u).
beBN

5.2. Proof of Theorem?2.3

Let A andu be defined as in Corollary.2. With R andV, as in the proof of Theo-
remz2.2

Vagla) < /B ) ) o) o

[ Qo) s ds
B(a,Ra) (1-— |x|2))\+a+¥

since: N1 N1
A= ——+03=08+N— ——.
2 2
This leads to:
d
V, g(a) < C" K / G
B(a,Ra) (1 — |z2) Mot 72
C"K'V, 1
S N—17
>\+Oé+% (1 _ |a,|2)/\+a+T
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with Cpar st defined in the same way &$%; in the proof of Propositios.1. We

obtain finally:
C// K/

< - -

(9) < 8

Aot L
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6. Annex: The SetsSX', and §)Y,, 3~ for some Special Values of
Aoy B,y

Throughout the paper, it was assumed that 0. Wheny < 0, the setS), 3, is
related to other sets of the same kind by:

Proposition 6.1. Givena € R, § € R andy < 0, then
y;—&-’y,ﬁ-i-'y,o C y(jﬁ,’y - y;—&-sw,ﬁ—sv,o Vs € [_17 1])

where), ;  denotes the subset 9%, 5 , consisting of all non-negative € V..,
(not necessarily subharmonic).

Proof. For anya € By andx € By, the following holds:
(6.1) (1—1a)*(1 = |2z[*)°(1 = [@q(2)[*)”
= (1= [al®)*(1 = |27 (1 = (a,2)) 7.

Since(a, z) €]—1, 1[through the Cauchy-Schwarz inequality, we have(a, z)) ™27 <
2727 as—2y > 0. f u € Yoty 5440 andu(z) > 0,V € By, thenu € Y, 5, with

My, ., () <275 My, oo (u).
Also, (a, ) < |a| and{(a, z) < |z|, thus
(1= (a,2)* > (1= ]a)e"" and (1 - {a,2)) 707 > (1 - [af) 7
since(s — 1)y > 0 and(—s — 1)y > 0. Moreover

1— |zf?

1— |al? - 1—|al?
2 )

1—la| =
e

and 1—|z|>
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thus

(1—(a,z))™> > (1 — |a|) D71 — |z2) =D (%) .

Finally
(1= 1af)* (1= |27 (1 = [@a(@)*)" = 227(1 = [af*)*" /(1 = |2]*)7.
Any non-negative. € ), 3 then belongs tQ/, s, g—s,0 With

Mya-‘—s'y,ﬂ—s'y,() (U) S 2_27 Mya,ﬂ,'y (u)

Remarks. Even withy < 0, Proposition3.1 still holds, since

1oy = () T (e

1 —[zf? 1—Jaf?

1 - 1 - 5
> (= - — 237
> (2) <4> 27 Vz € B(a, Ra)

according to Lemm&.3. For the proof of Propositioi.1 in the casey < 0, it is
enough to replacél — R?)7 in formula 3.1) by 2%7.

Proposition 6.2. If A < 0, then the seSX’, contains only the function = 0 on
By.

Proof. Givenu € SX, and{ € By, letr €]|¢], 1[. Then

MOSﬁgM@ZQgM@

Multiplication of
Subharmonic Functions

R. Supper
vol. 9, iss. 4, art. 118, 2008

Title Page
Contents
44 44
< >
Page 36 of 40
Go Back
Full Screen

Close

journal of inequalities
in pure and applied
mathematics

issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:supper@math.u-strasbg.fr
http://jipam.vu.edu.au

according to the maximum principle (se& pp. 48—49]). Thus
0 < u(€) < My (u) (1 —r%)7
which tends toward8 asr — 1~ (since—\ > 0). Finally u(¢) = 0. O

Remark6. Whena < 0, it is not compulsory that), s, = {0}. For instance,
with «, 3, v as in casdii) of Theorem2.2, we havea = 6+ 1 > %. It is
thus possible to choose in such a way thatr < 0. In Subsection?.2 we have
an example of functiorf, € SV, s~ (with a fixed in By) and this function is not
vanishing. Similarlys < 0 does not implySY, s, = {0}. In Tablel we have
several examples of such situations: see Subsectidne 4.6 for examples of non-
vanishing subharmonic functions belonging to such &8ts s .

Proposition 6.3. Lety € Rand(«, 5) € R? suchthatv+3 < —N, thenSY, 5., =
Us

Proof. Given R €]0,1[, let K., = (1 — R*)7if v > 0, or K, = 2% if v < 0.

Then: (1 — |®,(2)|?)” > Kg,, Ya € By, Vx € B(a, R,) according to Remark
5 (also remember thdtb,| < R on B(a, R,), see f]). With Cs as in the proof
of Proposition3.1, the following inequalities hold for any € SY, s, and any

a € By. The second inequality is based upor> 0 and the last one makes use of

the suharmonicity of..

(1—laf*)™ My, (u) 2/ (1= |2[*)7 u(z) (1 — |@q(2)[*)"dw

BN

> K, | Al ut) e
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zz@ﬂqwl—MFWZ;R)mmdx

> Kpy Cs (1= |a*)? Vo u(a)

where the volumé’, of B(a, R,) satisfies:

Vs 2 (BN gy
= N\1+R ¢
(see the end of the proof of Propositiérl). Thus

u(a) < k(1 —|af?)" >N Va € By,

the constant > 0 being independent af.

Given¢ € By, the maximum principle now provides for anys||¢|, 1]:

0 < u(é) < maxu(z) = maxu(z) < k(1 —r?)" 0N

|z|<r |z|=r

which tends toward8 asr — 1-, since—a — 5 — N > 0. Henceu(&) = 0.

Proposition 6.4. Giveny > 0, o < —y andj € R, thenSY, g, = {0}.

Proof. Sincel —(x,a) €]0,2[, we have(l—(a,z)) %" > 27 Vx € By, Va € By.
[, the formula ¢.1) leads to:

Givenu € 8V, 5+,& € By andr €]0,1 — [¢

Aumwza—wWﬂrﬁ/ (1— 2" u(z)dz  Va e By

B(&r)

sinceu > 0on By D B(§r). Now |z| < [¢| + 7, Vo € B(,r).
[1— (|| +7r)?)P 7 if B+~ >0,0rLe = 1if 3+~ < 0. Then

(1= |aP)" 2 My, , (u) > Lg/ w(w)dr > Le 25PN u(e)
o B(er) N
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sinceu is subharmonic and the volume B{¢, ) is % rV. Finally, with ¢ fixed, we
have:

0 < u(é) < ke (1—la]?)™ Va € By,
the constant, > 0 being independent of. Henceu(§) = 0, letting|a| — 17. O
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