Advances in Geosciences, 2, 2292 2005 "* .
SRef-ID: 1680-7359/adge0/2005-2-285 G Advances in

European Geosciences Union Geosciences
© 2005 Author(s). This work is licensed -

under a Creative Commons License.

Orographic influences in rainfall downscaling

M. G. Badas, R. Deidda, and E. Piga
Dipartimento di Ingegneria del Territorio, Univeisidi Cagliari, Piazza d’Armi, 09123 Cagliari, Italy

Received: 14 December 2004 — Revised: 10 February 2005 — Accepted: 10 February 2005 — Published: 15 August 2005

Abstract. The problem of rainfall downscaling in a moun- tial equations solved by GCMs are based, cannot allow to
tainous region is discussed, and a simple methodology aimedorrectly localize and quantify rainfall peaks in high reso-
at introducing spatial heterogeneity induced by orography inlution space-time domains, where LAMs are usually nested.
downscaling models is proposed. This procedure was caliThus also in these cases statistical downscaling procedures
brated and applied to rainfall data retrieved by the high tem-can be applied as a tool to account for small scales uncer-
poral resolution rain gage network of the Sardinian Hydro- tainties.

logical Survey. Also other sources of model uncertainties may affect a
forecasting operational chain. The ensemble prediction sys-
tem (EPS) that is currently running at the ECMWF (Euro-
pean Center for Medium range Weather Forecasting) allows
accounting for meteorological model uncertainty due to the
The development of effective procedures for precipitationCoarseneSS of the (_)bservation ngtwork and t(_) the chaoticity
downscaling has a prominent role in the forecast of hydro-Of €quations used in meteorological modeigza et al.
geological risk for small watersheds. Actually an efficient 1999- As the last element of a forecasting chain, hydrologi-
application of rainfall-runoff models requires the knowledge cal models are also affected by uncertainties that are mainly

of precipitation over space and time scales which are smallefiu® to our limited knowledge of catchment subsurface prop-
than the ones resolved by meteorological models. Thus th&"€S Beven 200]). In this paper we focus the problem of
rainfall volume (or equivalently the mean rainfall intensity), "ainfall downscaling with special regard to mountain regions,
which has been forecasted by meteorological models ovetVNile for a discussion of the different sources of model un-
large space and time scales, needs to be disaggregated upﬁgrtamtles the reader is referre.d?terrarls etal(2002), since
the smallest scales of hydrologic models. In Fighe do- 't 90€S beyond the scope of this work. _
main of a downscaling process is illustratéddandT are the An important class of statistical models useful for rainfall
space and time scales resolved by the meteorological modelgownscaling is represented by multifractal models, which are
Ao andr are the smallest scales of the hydrologic resolution,@ble to reproduce rainfall fields observed variability at dif-
which are compatible with the watershed extension. ferent space and time scales. Statistical properties of rainfall
Statisical downscaling procedures allow describing thefield; in space and time are usually c.haracterized py means of
small scale uncertainty in the localization of rainfall peaks Multifractal theory applying self-similar or self-affine trans-
in space and time. A source of uncertainty is indeed relatedormations. When self-similarity holds scale invariance can
to the gap of scales between meteorological and hydrological® investigated introducing a constant parametghaving
models. This is certainly true when the meteorological modeithe dimension of a velocity, which allows statistical proper-
resolution is larger than the required hydrological scales, andi€S Observed at spatial scale® be equivalent to the proper-
it may still remain true when limited area models (LAMs) are {i€S at time scales=1/U. For the general case of self-affine
nested into general circulation models (GCMs) in order to in-fi€lds Lovejoy and Schertzef1989 introduced the G.S.I.
crease the resolved resolutions. Indeed, the coarse resolutidffeneralized Scale Invariance) formalism, where the equiv-
of the observation network used to build the meteorologica/2/€nce between statistical properties observed in space and

analyses, on which the initial conditions for partial differen- fime can be pursued by means of a velocity paramigtex
function of A scale, whereH is defined as the anisotropy

Correspondence tdR. Deidda scaling exponent. The conditioH=0 corresponds to the
(rdeidda@unica.it) self-similar hypothesis.

1 Introduction
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t The opportunity of introducing a heterogeneous compo-
nent when modeling synthetic rainfall fields over land was
also investigated biarris et al (1996, Jothityangkoon et al.
(2000, Purdy et al.(2001), Pathirana and Herat{2002.
SpecificallyJothityangkoon et ak2000 and Pathirana and
Herath(2002 analyzed a 400 kw400 km area in southwest-
ern Australia and a 128 k128 km region centered in the
Japanese archipelago respectively. In order to reproduce ob-
served spatial heterogeneity they multiplied a homogeneous
spatial random cascade by a deterministic factor depending
on the spatial location without linking it to local features.
Analyzing a transect along the Southern Alps of New Zeland,
Harris et al.(1996 andPurdy et al.(200]) found a depen-
dence of scaling parameters on orography and rain features.
More recentlyDeidda et al(2005 investigated the presence
of rainfall spatial heterogeneity induced by orography on
rainfall fields retrieved over Brazil by radars (TRMM-LBA,
Tropical Rainfall Measurement Mission — Large Scale Bio-
sphere Atmosphere Experiment). Nevertheless these analy-
ses did not highlight the presence of any spatial heterogene-
ity, probably because the limited differences in altitude of
the examined domain were not sufficient to force significant
upward air movements.
In the present paper the analysis of the orographic influ-
. > ence on precipitation observed by the high temporal resolu-
PLLT ) I:))‘0)‘0T0 tion rain gage network of the Sardinian Hydrological Survey
is discussed. The examined data were collected in the pe-
Fig. 1. A schematization of a downscaling problem: a rainfall mea- rijod from 1986 to 1996 by 235 pluviometric stations (F2y.
sure is given over a regiohxLxT (e.g., the grid resolution of  \yhich recorded on solid memory the instants when 0.2 mm
a NWP model), we want to determine the probability distribution ¢ rainta|l were cumulated. With the aim to perform a scale
ggg%'nfa” intensity over any smaller regiotpxoxo (Deidda jp ariance analysis and to validate the downscaling proce-
' dure, rain gage data were averaged on the cells of a regular
grid. The grid spatial stepg=13 km was obtained divid-
Some recent studies performed on radar rainfall datasetthg the island width.=104 km by an integer power of two,
retrieved during the two international campaigns GATE with at least one rain gage in most of the cells. The compar-
(GARP, Global Atmospheric Reasearch Program, Atlanticison of self-correlation functions in space and time allowed
Tropical Experiment) and TOGA-COARE (Tropical Ocean to determine the velocity paramet&e=17.33 km/h needed
Global Atmosphere Coupled Ocean-Atmosphere Responsfor self-similar transformations. Therefore the smallest time
Experiment) gave evidence of a scale invariance behavresolution istg=1o/ U=45min, while the examined event
ior with self-similar transformationddeiddg 200Q Deidda  duration isT=L/U=6h. Figure2 shows the domains and
et al, 2009. the grid used for both the space-time scale invariance analy-
Both GATE and TOGA-COARE precipitation fields were sis and the downscaling process.
retrieved over the ocean without any physical obstacle which The present work is organised as follows. In S@cive
could bias the spatial distribution of rainfall probability in the present a methodology to introduce local constraints in the
analyzed domain. On the contrary, when precipitation fieldsrainfall disaggregation by means of a modulating function.
need to be generated in presence of orographic obstacles afdhis function is determined in Se@&.on the basis of some
barriers, it is convenient to analyze the effects of these conpreliminary analyses based on both rain gage observations
straints on rainfall fields and on local probability rainfall dis- and average rainfall on cells displayed in FAgln Sect4 the
tributions. Actually mean and extreme precipitation valuesscale-invariance analysis performed on space-time domains
are known to vary with the terrain elevation. More generally is described, in Sech.the results obtained for numerical sim-
local probability distribution of rainfall may be influenced by ulations are discussed and finally in Segthe conclusions
many morphological factors besides the altitude: slope anaf the work are drawn.
shape of orographic relieves, as well as their exposition with
respect to the direction of the perturbation. Nevertheless it
may be rather difficult to deduct the influence of each fac-
tor from the analysis of point rainfall data retrieved by rain
gages.
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2 Introduction of local heterogeneity in synthetic rain-

fall fields 0 —o o " ~—a

S D DomainA f:

We propose a simple methodology allowing to investigate | o | ™1 DomanB |:
spatial heterogeneity in rainfall fields and to introduce corre-

sponding constraints in downscaling models. Let us consider
the domainL x L x T of Fig. 1 whose mean rainfall intensity
I for each precipitation event may be computed as follows:

1 L pL pT
| = —— [ (x, v, t)dxdydt 1
LLT/C,/O/OZ(”)” )

wherei(x, y, t) is rainfall intensity at locationx, y) and
time ¢. The ratio between mean rainfall intensity of each
cell (x, y) and the mean rainfall in this whole domain rep-
resents a local modulating function expressed by:

%fOTi(x,y,t)dt

§(x,y) = )

()

The functioné (x, y) shows high variability due to the ef-
fect of orography and to the specific feature of each precipita-|--
tion event. Averaging (x, y) on many events and analyzing
the sample mea#(x, y) filters the sample variability due to
rain storm features and helps to assess the existence of ord
graphic constraints in observed fields.

If rainfall is spatially homogeneous the expected value of
the&(x, y) function should be equal to one for any location
(x, ). If the analysis highlights a dependence on localiza-
tion, this represents a territorial heterogeneity which has to
be reproduced also in the synthetic fields.

Following a similar approach to the one adoptedibth-
ityangkoon et al(2000 and Pathirana and Herat{2002),
this kind of spatial heterogeneity can be reproduced multi-
plying homogeneous random cascagle, y, ¢) by the mod-
ulating functioné (x, y):

i(x,y,1) =&(x, y)iolx, y, 1) 3
Fig. 2. Points indicating the location of the rain gages and regular
grid with 13 km resolution used for spatial homogeneity investiga-

3 Estimate of the modulating function tion, the number of rain gages per cell is reported inside the cell.
Space-time sequences used in Set@nd5 were extracted from

The research of a modulating function has been performedhe A and B domains.

on raw rain gage data and on data gridded on the cells of the

grid described in the introduction. Both the analyses were

made on intense precipitation events with a duraficequal ~ WherenN,, is the number of active recording rain gages dur-

to 6 h. ing the precipitation event beginning at timeandi,(r) is
rainfall intensity retrieved by the-th rain gage.
3.1 Analysis on rain gage data The most intense 794 independent events were

selected, with average intensity/, ranging from
The analysis on rain gage data was performed on indepers.2 mm/h and 4.5mm/h. For rain gagethe function

dent events selected on a regional scale by computing foé(k)=(% ftz’+r ix()dn)/1, of each event and its average

each ev_ent the regional mean intendigyon a time interval value on all the events(k) were computed. The analysis
of duration7 =6 h:

of the results showed a spatial variability ®fk) function
N, T wh_ich can be partiglly explain(_ad C(_)nsidering the rai.n gage
1)) = 1 3 i/ (1)t (4)  altitude z(k). As illustrated in Fig.3 the comparison

— T J; between modulating functiorigk) and altitudez(k) shows
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altitudez(k) and corresponding regression line. intensity. Solid line represents meanvalue computed on all the
events.
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where N, is the number of grid cells with at least one rain
/ . . . L
150 o Q...0 0 gage working during the event; is the beginning of the
o g/e/ event, V\{hll_ezk(t) is th_e average rainfall intensity of rain
125 5 g e o gages within the-th grid cell.
100 6.~ 080,&%6 ° o The most intense 806 events were selected with mean in-
S 5’%’950 o © tensity 7, ranging from 0.2mm/h and 4.5 mm/h. Similarly
0.75 %,O o % to the case of raw rain gage data, for each grid celly)
° the mean valué(x, y) on all the events was computed. The
050 X Fig. 4 shows the behavior of the modulating functigx, y)
025 with the average altitude(x, y) of the cell: the regression
line slopex=0.65/1000 m* shows a similar value to the one
0.00 obtained for single rain gage data.
0 200 400 600 800 1000 1200 1400

Zmj With the aim to verify the stability ofx estimates, the
dataset containing 806 sequences has been divided accord-
ing to intensity into four and then eight groups having the
same number of elements. Mean valgés, y) and slopes

of the regression lines (in tlez plane) have been computed

) ) , . , for each group. The values are plotted in Fidh versus the

a behavior which can be interpreted linearly, despite Ofpaqn rainfall intensity of the group. As these values do not
a noticeable dispersion of the representative points. Thepgw any trend with intensityy has been thus considered

regression line sloper computed on sample points and ¢qnstant and equal to its mean value 0.65/1008,mhich
showed in Fig3 is equal to 0.61/1000 nt. was estimated on the 806 events.

Fig. 4. Modulating function valueg (x, y) versus mean grid cell
altitudez(x, y) and corresponding regression line.

In order to represent the behavior of the modulating func-
tion & (x, y) with the average cell altitudg(x, y) the follow-
ing equation was assumed:

3.2 Analysis on a regular grid

With the aim to obtain a feasible relationship for the anal-
ysis and the simulation of space-time rainfall events,&he
function was also examined for rainfall data averaged on th _
regular grid described in the introduction and displayed ineg(x’ V) =aztoy) b ©
Fig. 2. The regional mean intensity on 7=6 h and on the
whole spatial grid was on this case computed as: where the intercepi=1—-a<z>(,,,) iS computed using the
relationships 1) and @), while < - >, ) is the spatial aver-

N , age on the selected domain. In such a way it is possible to
1) = 1 zg: 1 t+Tl. define the functional relationship betwegmnd the altitude
O T / Kt ®) for different spatial d i

— t patial domains.
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Fig. 6. Partition functions of the third ordef3(2) computed on I (mnvh)

spatial scales ranging frormg=13 km to L=104km (and corre-

sponding time scales fronpy=45 min a7 =6 h) for the 25 mostin-  Fig. 7. Sample estimates of theparameter computed on the 138

tense sequences. For each sequence the multifractal exggBent  selected sequences plotted versus mean rainfall intehsitgl cor-

slope of the regression line, is indicated. responding regression line (top). Samplestimates for the se-
guences extracted from TRMM-LBA, TOGA and GATE datasets,
corresponding regression ling¢/) and confidence limits (bottom).

4 Scale invariant properties on rainfall events extracted

on a regular grid . .
each sequence the partition functidijgi) on space scalés

Due to the lack of rain gages in some cells or to their discon-l0M 20=13km toL =104 km and corresponding time scales
tinuous retrieving in the examined period, some of the cell? from to=4o/U=45mintoT=L/U=6h:
data were missing and it was necessary to fill them in order to NGYNG) N(D)
perform the scale invariance analysis. In these cells the lack _ 1 o q
. . . . . " Sq (A) 2 Z Z H'l,],k()“) (7)
ing data were estimated averaging rainfall intensities on the NONQ@) H ‘3=
adjacent eight grid cells in the same time intemg@t45 min.

The 138 most intense sequences defined dvet04km  where N(1)2N(7) is the number of cells in the parti-
and T=6h, with a resolutionkop=13 km andrg=45 min, tion, Mi’j’k()\'):f;i‘FA dx fyy}/%)» dy ftrkH/Udt i(x,y. 1), is

H k
were selected over the A and B domains (Flydepend- 0 rainfall volume of the single cell locatediin i, . The

ing on where the highest intensity occurred. The mean rain, o cinjtation field is scale invariant if there is at least one

intepsitiesl resulted in the range 0.2-3.5 mm/h. For th_e fol- range of scales where relationships of the following type
lowing analyses, selected sequences were made spatially h83<ist:

mogeneous dividing rainfall intensity of each cell y) by
the corresponding modulating function vakie, y) defined Sy() ~ 28@ (8)
by the Eq. 6) for the respective domain.

The research of scale invariant properties was thus per- The field is multifractal ifz (¢) exponents turn out to be a
formed using self-similar transformations and computing for no-linear function of the momet. The partition functions



290 M. G. Badas et al.: Orographic influences in rainfall downscaling

.9990

20) ¢ o

1.75 O

9900 e R
// i 150 5
7o o
.9000 A g sequenceN. 7 1.25 g% : o]
V4 _ observedC_DF o
Y - I et o 10b o o S S®
i o o ©° 8 00, o © o
400 10 20 30 20 i (mmh) 0.75 958/ %695 o
%3

Fig. 8. Cumulative distribution function of rainfall rain rate at 00 OO oOO
higher resolution is compared to the 90% confidence limits esti- 025
mated from synthetic fields for one of the analyzed sequences.

0.00
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Sy (1), computed for momenig from 1 to 6, showed a good A
correspondence to the scaling la8) for all the space and
time scales considered. As an example in Bithe third or- e
der partition functions of the most intense 25 sequences are, g, ©
showed: sample points are well interpreted by scaling laws o ¢ _—"0
(8) which correspond to linear trends in the log-log plane. 125 % 8 _—o0%
The regression line slopes, given in F&g provide estimates %p o ®° /oeg °
of the¢ (¢) multifractal exponents which are useful in the cal-  *® o© m
ibration of multifractal models, wherg(g) expected values _753%&\/2 o @D P
are generally expressed as a function of the generator param- ;6 o
eters and of. 0.50
In the present work the behavior of the multifractal expo-

nents¢(g) was interpreted by the STRAIN cascade model 9%
(Deidda 2000 which is based on a log-Poisson generator 000

n=p", wherey is a log-Poisson variable with mean Thus o 200 400 600 800 1000 1200 1400
the expected value of the multifractal exponents results to be 2l

a function of the two model parametersg, other than the Fig. 9. Averages of the modulating functiégnplotted versus mean

momentg: cell altitudez for the events selected on the A domain. The plots
oy 1 pq refer to the observed sequences (top) and to one set of syntethic

Cq(l ﬂ)l 2(1 ) (9) generations (bottom).

n

¢(q) =dq —

whered=3 is the dimension of the analyzed fields. As al- _ ) o

ready found in the GATE and TOGA-COARE datasess from rain gages in Sardinia are moved away from the ones
estimates do not show a great variability among the differenobtained from radar data. This outcome might depend on
sequences, therefofpewas considered as constant and equalthe difference in analyzed data, concerning their type and
toe~L. Thec parameter estimates, bounded to the congtant discretization, as well as on the specific features of the ex-
value, showed (despite a high variability) a decreasing trendMined region. Despite the analyzed sequences had similar
with increasing mean intensities. This behavior, displayed inSC@le invariant properties, a unique equation does not seem

Fig. 7 (top), was interpreted with the following equation: able to interpret parameter behavior. Thus in the following
sections we use EqLQ) calibrated on Sardinian stations (top

c(l) =aexp(—yI) + coo (10) of Fig. 7).

wherea=1.3679,y=1.4792¢,,=0.8257.

The form of the Eg. 10) is the same of the one used 5 Simulation of synthetic fields
to interpret thec behavior for GATE, TOGA-COARE, and
TRMM-LBA sequenceseidda 200Q Deidda et al.2004 In order to verify the effectiveness of the proposed downscal-
2005. Estimates of the parameter obtained for these radar ing procedure, a set of 100 synthetic fields was generated for
campaigns are displayed in Fig.(bottom) together with  each of the 138 sequences using the STRAIN model with pa-
the regression ling (1) and the intervat (I)=u(1)[1£CV] rameterst=e 1 andc obtained from Eq.0) for the same
which was determined by means of the variation coefficientrainfall intensity! of the corresponding observed field.
CV. The comparison between Figs(top) and7 (bottom) The selected observed sequences were made spatially ho-
highlights thatc estimates obtained for sequences extractednogeneous by dividing them b§(x, y) function. A first
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comparison was performed among these sequences and syn- .
thetic homogeneous ones. Cumulative distribution functions
(CDF) of local rainfall intensity at the smallest scales (13 km

and 45 min) computed for the observed sequences were com so
pared to the 90% confidence intervals at obtained from the ® &8 P
corresponding set of s.yr!theu_c sequences. 1235 o & S

Sample CDF are within this interval for most of the ana- 100
lyzed fields, meaning a correct reproduction of the observed ™ /ocxo/o‘* ® o ©
behavior. As an example the CDF corresponding to one of 5 .. 00 %
the selected sequence and its 90% confidence intervals are )
displayed in Fig8. 0.50 3576 &

Spatial heterogeneity was later introduced in homoge-
neous synthetic fields by multiplying rainfall intensity in
each cell(x, y) by the same modulating functicfx, y) 0.00
given by Eqg. 6). The dependence of the cell mean intensity 0 200 400 600 800 1000 1200 Z[lr;‘]fo
values on the altitude was verified on observed and simulated
sequences over the A and B domains.

In Figs.9 (top) and10 (top) sample behavior of the aver-
age parametef as a function of the altitude is showed for 150
the observed events on the A and B domains. A visual ex- o o o —
amination of these figures confirms a dependenéeanf the 125 e 5 :5 @
altitude, despite a notable dispersion of the data. The regres- o ©8 — °
sion line slope isx=0.86/1000 nT! for the A domain and _® BB ®
«=0.40/1000 nT* for the B domain, therefore the slope is, o5 2 80..0 ¢
in both cases, different from the one obtained for the entire ~ ©
region in Sect. 3 analysing more than 800 events. 050

It is important to notice that selected sequences are 70 on
the A domain and 68 on the B domain and that the analyseso'25
performed on a regional scale showed a reasonable variabily
ity in the o estimate with the number of events used §or 0 200 400 600 800 1000 1200 Z[lnﬁ?o
averaging. As showed in Fid, the dispersion ofr esti-
mates made on sets of 100 events (square symbols) is conig. 10. Averages of the modulating functidnplotted versus mean
parable to the one obtained for the data belonging to the Acell altitudez for the events selected on the B domain. The plots
and B domains. It is therefore difficult to understand whetherrefer to the observed sequences (top) and to one set of syntethic
differences in the two domains, which are superimposed forgenerations (bottom).
three quarters, are due to a different local behavior or to the

high variability ina estimates computed on a small group of . _ _
events. The dependency between modulating function and altitude

was determined on precipitation data referring to more than
800 events. This relationship was used to make observed se-
6 Conclusions guences spatially homogeneous as well as to introduce local
orographic constraints in synthetic rainfall fields generated
The orographic influence in rainfall fields has been investi-with a homogeneous and isotropic model.
gated on data retrieved by the high temporal resolution rain  The proposed downscaling procedure is based on the mul-
gage network of the Sardinian Hydrological Survey. The aimtifractal model STRAIN, with self-similar transformations
of this analysis is the application of downscaling proceduresbetween space and time scales. The model parsimonious-
to space-time rainfall fields in case of orographic constraintsness allowed to keep only one free parameter depending on
The results have highlighted the existence of spatial hetthe mean rainfall intensity, that should be predicted by me-
erogeneity in point rain gage measurements as well as ineorological models.
precipitation fields averaged on a regular spatial grid. This The orographic influences highlighted in the analysis are
heterogeneity was partially considered by means of a locallyfinally introduced multiplying synthetic fields obtained with
defined modulating function which takes into account the dif-the STRAIN model by a modulating function depending on
ferent mean values of the precipitation intensity probability the altitude of the grid cells. According to the obtained re-
distributions depending on the altitude. sults the proposed methodology appears suitable in the gen-
Due to the high space-time variability in the precipitation eration of rainfall fields also in case of a mountainous terrain.
events, a great number of events has to be examined in or- A final comment regards the way the multifractal analy-
der to retrieve local dependencies in rainfall distributions. sis was here conducted. Indeed deriving rainfall fields from

175
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point measurements may affect the estimates of multifractaDeidda, R., Badas, M. G., and Piga, E.: Space-time scaling in high-
exponents and consequently the downscaling model calibra- intensity Tropical Ocean Global Atmosphere Coupled Ocean-

tion. It would be advisable to understand the effect induced Atmosphere Response Experiment TOGA-COARE storms, Wa-

tunately we were not able to perform in the analyzed region 2004. _ ) _ _
Deidda, R., Badas, M. G., and Piga, E.: Space-time multifractality

th'? kind of InV?Stlgatlon due to the.IaCk (.)f areal_ measures . of remotely sensed rainfall fields, J. Hydrol., in press (corrected
This research issue can be better investigated in orographic proof available onling), 29 April 2005

reglops where both faqaf data and rain gage measuremer%%rraris, L., Rudari, R., and Siccardi, F.: The uncertainty in the
are simultaneously available. prediction of flash floods in the northern mediterranean environ-

o . ment, J. Hydrometeorology, 3, 714-727, 2002.

AcknowledgementsiVe are grateful to Sardinian Hydrological Harris, D., Menabde, M., Seed, A. W., and Austin, G.: Multiscaling
Survey for making data of the high temporal resolution rain gage .54 cterization of rain fields with a strong orographic influence,
network available. The research was supported by the Italian Min- J. Geophys. Res., 101(D21), 26 405-26 414, 1996.

istry of Education, University and Research (MIUR) - ProgrammaJothityangkoon, C., Sivapalan, M., and Viney, N. R.: Tests of a

Operativo Nazionale - Misura 1.3, Prot. 13018/2001. space-time model of daily rainfall in southwest Australia based

. . on nonhomogeneous random cascades, Water Resour. Res., 36,
Edited by: L. Ferraris 267—284. 2000.
Reviewed by: anonymous referees Lovejoy, S. and Schertzer, D.: Generalized scale invariance and

fractal models of rain, Water Resour. Res., 21, 1233-1250, 1985.
Pathirana, A. and Herath, S.: Multifractal modelling and simulation

References o L . .

of rain fields exhibiting spatial heterogeneity, Hydrol. Earth Syst.
) . i . . ' Sci., 6(4), 659-708, 2002.
Beven, K. J.: Rainfall-Runoff Modelling: The Primer, Wiley, Purdy, J. C., Harris, D., Austin, G. L., Seed, A. W., and Gray, W.:

Chichester, 2001. ;i . . .
A case study of orographic rainfall processes incorporating mul-

Buizza, R., Miller, M., and Palmer, T. N.: Stochastic simulation of . i I X
model uncertainty in the ECMWF ensemble prediction system, ‘gzc;a;l|n79822ar2aocéirlzatlon techniques, J. Geophys. Res., 106(D8),

Quart. J. Roy. Meteor. Soc., 125, 2887-2908, 1999.
Deidda, R.: Rainfall downscaling in a space-time multifractal
framework, Water Resour. Res., 36, 1779-1794, 2000.



