[Article]

www.whxb.pku.edu.cn

温度对 Zn(II)-TiO₂体系吸附可逆性的影响

李薇潘纲* 陈灏 张美一 何广智 李晋 杨玉环

(中国科学院生态环境研究中心环境水质学国家重点实验室,北京 100085)

摘要: 用延展 X 射线吸收精细结构光谱(EXAFS)研究了不同温度对 Zn(II)-锐钛矿型 TiO₂ 吸附产物微观构型 和吸附可逆性的影响机制. 宏观的吸附-解吸实验表明, 不同温度下的吸附等温线可以用 Langmuir 模型进行较好的描述($R^2 \ge 0.990$). 随温度升高, 吸附等温线显著升高, Zn(II)在 TiO₂ 表面的饱和吸附量由 5 ℃时的 0.125 mmol·g⁻¹ 增至 40 ℃时的 0.446 mmol·g⁻¹; 而体系的不可逆性明显减弱, 解吸滞后角 θ 由 32.85°减至 8.64°. 求得体系反应的热力学参数 ΔH 、 ΔS 分别为 24.55 kJ·mol⁻¹和 159.13 J·mol⁻¹·K⁻¹. EXAFS 结果表明, Zn(II)主要是通过共用水合 Zn(II)离子及 TiO₂ 表面上的 O 原子结合到 TiO₂ 表面上, 其平均 Zn-O 原子间距为 R_{ZnO} =(0.199±0.001) nm. 第二配位层(Zn-Ti 层)的 EXAFS 图谱分析结果表明, 存在两个典型的 Zn-Ti 原子间距, 即 R_1 =(0.325±0.001) nm(力边结合的强吸附)和 R_2 =(0.369±0.001) nm(角-角结合的弱吸附). 随温度升高, 强吸附比例(CN₂)增加, 两者比值(CN₁/CN₂)逐渐减小. 该比值的变化从微观角度解释了宏观实验中温度升高, 不可逆性减弱的吸附现象.

关键词: EXAFS; 微观构型; 温度; 吸附-解吸; 吸附可逆性; Zn(II); 锐钛矿型 TiO₂ 中图分类号: O642

Temperature Effects on Adsorption-Desorption Irreversibility of Zn(II) onto Anatase

LI Wei PAN Gang* CHEN Hao ZHANG Mei-Yi HE Guang-Zhi LI Jin YANG Yu-Huan (State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China)

Abstract: Microscopic structures and mechanism of Zn(II) adsorbed onto anatase at different temperatures were studied using extended X-ray absorption fine structure (EXAFS) spectroscopy. Macroscopic adsorption-desorption experiments indicated that adsorption isotherms and adsorption reversibility increased substantially with increasing temperature. When temperature increased from 5 °C to 40 °C, the adsorption capacity increased from 0.125 mmol·g⁻¹ to 0.446 mmol·g⁻¹, while the desorption hysteresis angle (θ) decreased from 32.85° to 8.64°. The thermodynamic parameters ΔH and ΔS of the reaction were evaluated as 24.55 kJ·mol⁻¹ and 159.13 J·mol⁻¹·K⁻¹, respectively. EXAFS spectra results showed that Zn(II) was adsorbed onto the solid surface in the form of octahedral hydrous Zn(II) ions, which were linked to TiO₂ surface by sharing O atoms, with an average bond length R_{znO} =(0.199±0.001) nm. EXAFS analysis of the second Zn-Ti coordination sphere resulted in two Zn-Ti atomic distances of (0.325±0.001) nm and (0.369± 0.001) nm, corresponding to edge-sharing linkage (stronger adsorption site) and corner-sharing linkage (weaker adsorption site), respectively. The number of stronger adsorption sites (CN₁) remained relatively stable while the number of weaker adsorption modes (CN₁/CN₂) drop from 0.690 to 0.543. These results revealed that the increased adsorption capacity and reversibility at higher temperature were due to the increase in CN₂ and the decrease in CN₁/CN₂. This result implies that, in a given environment (soils or rivers), the bioavailability of zinc is higher at high temperature than that at low temperature.

C Editorial office of Acta Physico-Chimica Sinica

Received: December 14, 2006; Revised: January 19, 2007; Published on Web: April 27, 2007.

^{*}Corresponding author. Email: gpan@rcees.ac.cn; Tel: +8610-62849686.

国家自然科学基金(20073060)和中国科学院优秀"百人计划"资助项目

Key Words: EXAFS; Microscopic structures; Temperature; Adsorption-desorption; Adsorption reversibility; Zn(II); Anatase

目前,污染物在颗粒物表面的吸附可逆性问题 已成为环境研究领域的一个热点. 污染物在颗粒物 表面吸附-解吸的可逆程度直接决定着其在水环境 中的浓度、生物可利用性与毒性.已有大量文献报道 了 pH^[1-3]、离子强度^[4,5]、金属阳离子浓度^[6,7]、吸附剂浓 度及表面特征[8-11]、反应时间[12,13]等对金属离子在颗 粒物表面的吸附可逆性的影响.然而,温度对吸附可 逆性的影响却鲜见报道[14-16]. 众所周知, 温度是环境 的一个重要变量,不但季节的变化可以导致上下40 ℃左右的温度波动,湖泊、海洋等天然水体的水深变 化同样会引起温度的很大差异四.环境中的温度变化 可以通过影响重金属在颗粒物表面的吸附-解吸过 程而影响其在水体中的浓度、迁移和转化.因此,研 究固-液界面吸附-解吸的宏观温度效应及微观机理. 对于解释和预测环境中重金属污染物的污染行为具 有重要意义.

几十年来,由于固-液界面体系的复杂性,其吸 附可逆性的研究主要停留在宏观的动力学和热力学 水平上^[18-20]. 1998年, Pan 等人^[21]提出的亚稳平衡态 吸附(MEA)理论,为固-液界面科学向分子水平发展 提供了理论依据. 它指出, 对于理想的可逆吸附过 程,吸附态分子在固体表面以平衡态存在;而对于不 可逆吸附过程,吸附态分子是以不同的亚稳平衡态 结合于固体表面,具有较大的亚稳平衡态效应.而反 应过程和可逆性可以直接影响实际反应终态的微观 结构,这一行为是传统热力学所不能解释因而无法 预测的. 近几年, 随着 EXAFS(延展 X 射线精细结构 吸收光谱)技术在吸附产物的微观构型研究中的广 泛应用^[22-25], MEA 理论亦得到多方验证. 作者的前期 研究表明,金属吸附在固体表面的微观构型与可逆 性密切相关[26-29]. 但是, 一直以来, 人们尚未认识到温 度对吸附可逆性的宏观影响,也未见相应的微观机 理研究.

本文将 EXAFS 技术与宏观的吸附-解吸实验相结合,以水溶液中 Zn(II)-TiO2 吸附体系为研究对象, 对吸附可逆性的宏观温度效应及微观机理进行了研究.这对解释和认识金属污染物的吸附本质及从分子水平发展环境界面科学具有重要意义.

1.1 TiO₂的表征

本实验所用的吸附剂 TiO₂ 由北京化学试剂公司提供. 经XRD鉴定(图1), 该吸附剂为纯的锐钛矿, 对其进行粒度分析(Mastersizer 2000, 英国马尔文公司), 所得体积平均粒径D[4,3]为0.979 μm. BET比表 面法测得该TiO₂ 颗粒物的比表面为 201.3 m²·g⁻¹.

1.2 吸附-解吸实验

参照文献[30]的方法, 根据吸附 pH 曲线, 选取 pH=6.30, 浓度 0.1 mol·L⁻¹ NaNO₃ 的支持电解质, 颗 粒物浓度1.0 g·L⁻¹, 在温度分别为5、20、40 ℃下测定 Zn(II)在TiO₂的吸附等温线. 在50 mL聚丙烯塑料离 心管中, 依次加入TiO₂悬浊液, 0.1 mol·L⁻¹ NaNO₃溶 液和Zn(II)溶液, 总体积为30 mL, 得到固体颗粒物 浓度为1.0 g·L⁻¹, 一系列Zn(II)初始浓度不同的悬浊 液. 在设定温度下振荡 24 h, 用 0.1 mol·L⁻¹ NaOH 或 0.1 mol·L⁻¹ HNO₃ 多次调节 pH 到 6.30±0.02. 然后, 离心20 min (4500 r·min⁻¹), 用0.22 μ m滤膜过滤, 取 滤液, 用伏安极谱仪(Metrohm, 797 型)测定反应终 了时 Zn(II)的平衡浓度, 由总初始浓度与平衡浓度 之差计算吸附量得到吸附等温线. 离心之后的固体 选取具有相近平衡浓度、不同吸附量的三个样品 S₅、S₂₀、S₄₀ 用于 EXAFS 测定(实验条件见表 1).

解吸实验: 将离心之后的吸附样品除去大部分 上清液, 留 10 mL, 加入 20 mL 0.1 mol·L⁻¹ NaNO₃ 溶液. 振荡均匀后, 用 0.1 mol·L⁻¹ NaOH 或 0.1 mol· L⁻¹ HNO₃调节体系pH值到6.30±0.02(与吸附反应条 件一致), 在设定温度下恒温振荡 24 h. 其他操作条 件同吸附实验. 每一点的解吸实验如上述操作重复 两次, 从而得到解吸等温线上的三个实验点.

1 实验部分

表 1 Zn-TiO₂ 的 EXAFS 样品吸附实验条件 Table 1 The adsorption conditions of EXAFS samples

Sample	Zn-TiO ₂ adsorption data							
	pН	C_{P}	C_0	$C_{ m eq}$	$q_{ m eq}$			
		$(g \cdot L^{-1})$	$\overline{(\text{mmol}\cdot L^{-1})}$	$(mmol \cdot L^{-1})$	$(\text{mmol} \cdot g^{-1})$			
S_5	6.30	1.0	0.189	0.090	0.093			
S_{20}	6.30	1.0	0.314	0.092	0.213			
\mathbf{S}_{40}	6.30	1.0	0.393	0.092	0.290			

EXAFS samples are indicated by S_r , where *T* represents different temperatures (°C). C_P : concentration of particles; C_0 : initial

concentration; C_{eq} : equilibrium concentration; q_{eq} : equilibrium adsorption

1.3 EXAFS 样品的制备及 EXAFS 数据的采集

将用于 EXAFS 实验的吸附样品装入有机玻璃 小槽中,用胶带将小槽固定在 EXAFS 测定器上测 定.对于液体参照物(如 Zn(II)溶液),用微量进样器 将液体注入一个有机玻璃容器中;对于固体参照物 (如 ZnO),将研磨之后的固体粉末均匀地涂于胶带 上,折叠之后用于 EXAFS 测定.

EXAFS 实验测定在日本光子工厂高能加速器 研究机构的 BL-12C 实验站进行.因该实验站的光 束线具有电子流强大、能量高、分辨率高、探测信号 强等优点.储存环电子能量为 2.5 GeV,平均电流强 度为 300 mA,平面双晶 Si(111)为单色器,前电离室 为有效长度 5 cm 的充氩电离室.由于吸附样品中 Zn 含量较低,故采用荧光模式测定,探测器用 19 元 SSD 探测器,每元通路都经过调试只允许 Zn 信号 通过,因此,测定过程中不需滤波片.参照样品 ZnO 固体和 Zn(II)水样采用透射模式测定.所有样品采 集的均是 Zn 原子的 K 吸收边(9659 eV)EXAFS 谱, 能量扫描范围在 9159–10759 eV.

2 结果与讨论

2.1 宏观吸附-解吸实验及吸附热力学

在 pH 为 6.30 ± 0.02 , $0.1 \text{ mol}\cdot\text{L}^{-1}$ 的 NaNO₃ 介质 中, $5 \cdot 20 \cdot 40 \degree$ C下的吸附-解吸等温线见图 2. 由图 2 可以看出, Zn(II)在 TiO₂ 表面的吸附具有明显的温 度效应和解吸滞后现象. 随温度升高, 吸附等温线明

Solid curves represent Langmiur-type adsorption isotherms, while dotted curves represent desorption isotherms.

显升高,而解吸滞后逐渐减弱.不同温度下的吸附等 温线可以用 Langmuir 吸附模型^[31]进行较好的拟合 (拟合参数见表 2).

Langmiur 吸附模型:

$$q_{\rm eq} = \frac{q_{\rm max} K_{\rm L} C_{\rm eq}}{1 + K_{\rm L} C_{\rm eq}} \tag{1}$$

式中, q_{eq} (mmol·g⁻¹)为反应终了时 Zn(II)在 TiO₂ 表面的吸附量, C_{eq} (mmol·L⁻¹)为反应终了时溶液中的 Zn(II)浓度, K_L (L·mmol⁻¹)为 Langmuir 型等温式的拟 合常数, q_{max} (mmol·g⁻¹)为拟合所得的饱和吸附量.吸附反应的不可逆性可以用解吸滞后角(θ)进行定性 描述, 其大小可以根据文献[27]计算求出(见表 2).

由表 2 可以看出, 随温度由 5 ℃升高至 40 ℃, Zn(II)在TiO₂表面的饱和吸附量q_{max}由0.125 mmol·g⁻¹ 增加至 0.446 mmol·g⁻¹; 而解吸滞后角由 32.85°减 小至 8.64°. 这初步说明该体系的吸附反应为吸热过 程, 温度升高有利于吸附反应的进行; 同时, 体系的 吸附-解吸不可逆性随温度升高明显减弱.

针对不同温度下的吸附等温线,参照 Khan 和 Singh的方法^[32],将 $ln(q_{eq}/C_{eq})$ 对 q_{eq} 作图(见图3),线性 拟合后的截距即为不同温度下的吸附热力学平衡常 数 K 的自然对数值 lnK; 然后,由 Van't Hoff 方程(2)

表 2 Zn(II)在 TiO₂表面吸附的热力学参数 Table 2 Thermodynamic parameters of the Zn adsorption ontoTiO₂ at different temperatures

<i>T</i> /°C —	Langmuir-type parameters			0/(9)	Thermodynamic parameters					
	R^2	$q_{\rm max}/({\rm mmol}\cdot{\rm g}^{-1})$	$K_{\rm L}/({\rm L}\cdot{\rm mmol}^{-1})$	0/() -	R	$10^{-3}K$	$\Delta G/(kJ \cdot mol^{-1})$	$\Delta S/(\mathbf{J} \cdot \mathbf{mol}^{-1} \cdot \mathbf{K})$	$^{-1}$) $\Delta H/(kJ \cdot mol^{-1})$	
5	0.990	0.125	31.71	32.85	0.958	4.76	-19.58			
20	0.995	0.307	23.73	21.35	0.995	9.36	-22.28	159.13	24.55	
40	0.992	0.446	18.11	8.64	0.985	15.71	-25.04			

图 3 不同温度下 Zn(II)-TiO₂的 ln(q_{eq}/C_{eq})对 q_{eq} 图 Fig.3 Plots of ln(q_{eq}/C_{eq}) vs q_{eq} for the Zn(II) adsorption onto TiO₂ at 5, 20, 40 ℃

和(3)可以求得反应的吉布斯自由能(ΔG)、熵变(ΔS) 和焓变(ΔH)(结果见表 2).

$$\Delta G = -RT \ln K \tag{2}$$

$$\ln K = \frac{\Delta S}{R} - \frac{\Delta H}{RT}$$
(3)

结果表明,体系吸附反应的 ΔH 为 24.55 kJ·mol⁻¹,表明体系的吸附过程为化学吸附,且是吸热 反应,与吸附等温线得出的结论一致.三个温度下的 ΔG<0,表明体系的吸附反应是自发的,且温度越高, 自发程度越大.ΔS>0,吸附过程是熵驱动过程.在固 液吸附体系中,同时存在溶质的吸附和溶剂的解吸. 溶质分子吸附在吸附剂上,自由度减小,是一熵减小 过程,而溶剂分子的解吸是一熵增大的过程.吸附过 程的熵变是两者的总和.对于 Zn(II)在 TiO₂ 表面的 吸附, Zn(II)是以 Zn(H₂O)²⁺水合离子及其四配位的 水解产物Zn(OH)₂或Zn(OH)²·混合形式结合在 TiO₂ 表面,每个 Zn(II)的吸附会对应着多个 H⁺或 OH⁻的 释放^[33].由于 H⁺或 OH⁻的释放引起的熵增加的速度 大于熵减小的速度,致使总和 ΔS>0.因此, Zn(II)在 TiO₂表面的吸附是一个熵增大过程.

2.2 EXAFS 结果

经 Cordt3U、FMT 程序处理后的 EXAFS 数据 采用 Winxas 3.1 软件进行分析处理. 扣除背景后的 EXAFS 数据通过 Fourier 变换得到径向分布函数. 然后,在波矢 κ范围 22–108 nm⁻¹,采用 Bessel 窗函 数分别对第一、第二配位层进行 Fourier 反变换,每 个配位层的 Fourier 滤波分别采用曲线拟合法进行 拟合处理得到每个配位层中配位原子的种类、数目 (CN)、配位原子与中心原子间距(*R*)、Debye-Waller 因子(σ²)等结构参数.

吸附样品及参照物 Zn(II)(aq)和 ZnO 固体的归

一化的 κ^3 权重的 EXAFS 图谱和没有相位修正的 Fourier transformation (FT)图分别见图 4、图 5. 从样 品的 FT 图可以看出,样品的第一个峰主要在 0.16 nm 附近,第二个峰在 0.28 nm 附近. 用曲线拟合法 分别对这两个峰进行分析,得到第一层、第二层的拟 合结果如配位数、原子间距等(见表 3),实验与拟合 图谱见图 6、图 7. 距离中心原子 Zn 最近一层为 O 原子,表明第一配位层为 Zn-O 层. Zn(II) (aq)的 Zn-O 原子间距为 0.207 nm,配位数为 6.30; ZnO 固体 的 Zn-O 原子间距为 0.195 nm,配位数为 4.04. 样品 Zn-O 的平均原子间距 $R=(0.199\pm0.001)$ nm,配位数 4.5 左右. 随着温度的升高, Zn-O 原子间距和配位数 无明显变化. 第二配位层存在两个 Zn-Ti 原子间距, 即 $R_1=(0.325\pm0.001)$ nm 和 $R_2=(0.369\pm0.001)$ nm.

2.3 Zn在TiO₂上吸附的微观构型与可逆性的关系

最常见的 Zn(II)配位构型为六配位的八面体构型和四配位的四面体构型^[34,35], 典型的八面体构型 Zn-O 间平均距离为 0.210 nm^[35,36], 四面体构型的Zn-O间距为0.195 nm^[34-36]. 可以依据样品的Zn-O原子间

Fig.5 Radial distribution functions obtained by Fourier transformation (FT)

表 3 Zn-TiO₂ 吸附样品第一配位层(Zn-O 层)、第二配位层(Zn-Ti 层)EXAFS 结果 Table 3 EXAFS results of the first Zn-O coordination sphere and the second Zn-Ti coordination sphere

Reference —	Zn-O	Zn-O shell		Zn-O shell		First Zn-	First Zn-Ti shell		Second Zn-Ti shell	
	<i>R</i> /nm	CN	- Sample -	<i>R</i> /nm	CN	R_1/nm	CN_1	R_2/nm	CN_2	CN_1/CN_2
Zn ²⁺	0.207	6.30	S_5	0.199	4.50	0.326	1.13	0.370	1.64	0.690
ZnO	0.195	4.04	S_{20}	0.199	4.46	0.324	1.14	0.368	1.80	0.634
			S_{40}	0.198	4.49	0.325	1.17	0.369	2.15	0.543

图 6 第一配位层(ZII-0)滤波后的 EXAFS 谙(线)及 拟合结果(点) Fig.6 EXAFS spectra (solid line) and fit results (dashed line) for Zn-O shell

距和配位数判断Zn(II)的构型,因此本研究中的参照

物Zn(II)(aq)是以六配位的Zn(H₂O)²⁺水合离子形式 存在,6个水分子围绕在Zn周围形成八面体构型; ZnO(s)则是以四配位的四面体形式存在,中心原子 Zn被4个O原子围绕,与文献值相吻合^[37,39].

Zn(II)等金属水合离子与金属氧化物发生吸附 时以共用边-边和角-角的两种方式结合最常见^[39,40], 对应的原子间距R_{边-边}<R_{角-角}. Zn-TiO₂吸附样品 Zn-O 平均键长(0.199 nm)介于 Zn(H₂O)²⁺水合离子(0.207 nm)与固体 ZnO(0.195 nm)之间, 这表明吸附样品的 配位构型介于四配位与六配位之间, Zn(II)是以六配 位的 Zn(H₂O)²⁺及其四配位的水解产物 Zn(OH)₂ 或 Zn(OH)4-混合形式结合在 TiO2 表面. EXAFS 结果分 析进一步表明第二配位层分别在 0.325 和 0.369 nm 左右出现两个 Zn-Ti 配位层, 它们分别对应着边-边 和角-角两种结合方式. Zn-Ti 原子间距较短的边-边 结合方式对应着较强的固-液界面作用力(强吸附), 吸附较不可逆;而原子间距较长的角-角结合方式则 对应着较弱的固-液界面作用力(弱吸附),吸附较为 可逆. Zn(II)在 TiO₂ 表面上的两种不同的结合方式 所具有的能量状态是不一样的.

对于吸附等温线上平衡浓度相近、吸附量不同 的三个样品(S₅、S₂₀、S₄₀),其 EXAFS 图谱结果表明,

图 7 第二配位层(Zn-Ti)滤波后的 EXAFS 谱(线) 及拟合结果(点) Fig.7 EXAFS spectra (solid line) and fit results (dashed line) for Zn-Ti shell

随温度升高、吸附量增大,边-边结合的强吸附比例 CN₁基本不变,而角-角结合的弱吸附比例 CN₂增加,从而导致所对应的强吸附位与弱吸附位之比 CN₁/CN₂从 0.690 降至 0.543.由于以边-边结合和 角-角结合的吸附态 Zn(II)的能量状态是不一样的, 而且两种结合方式的比例是随着温度的变化而变化 的.因此,高温下吸附态 Zn(II)更多的以弱吸附位结 合,具有较高而不稳的能量状态,易于解吸;而低温 下主要以强吸附位结合,对应着较低而稳定的能量 状态,较不易解吸.所以,高温下吸附态 Zn(II)的吸 附可逆性比低温时强.这一发现预示着高温下(如夏 季)某一环境(河流、土壤)中锌的生物可给性比低温 下(如冬季)要高.这可为研究污染物在环境中的毒 性/生物可给性机理提供一个新的视角.

3 结 论

在pH 6.30、0.1 mol·L⁻¹ NaNO₃介质中, Zn (II)在 TiO₂表面的吸附-解吸具有明显的温度效应. 随温度 升高, Zn(II)的吸附量显著增大; 而不可逆性明显减 弱.

Zn(II)主要是通过共用水合 Zn(II)及 TiO₂ 表面 上的 O 原子结合到 TiO₂ 固体表面上,配位构型介 于四配位和六配位之间,其平均 Zn-O 原子间距为 (0.199±0.001) nm.

Zn(II)在 TiO₂ 表面存在两种结合方式,即吸附 力较强的边-边结合与吸附力较弱的角-角结合,分 别对应的平均 Zn-Ti 原子间距为 0.325 和 0.369 nm.

平衡浓度相近的吸附态 Zn(II)在不同温度下所 占据的吸附位不同. 低温下主要以强吸附位结合, 较 不易解吸; 而高温下则更多的以弱吸附位结合, 易 于解吸. 所以, 高温下 Zn(II)在 TiO₂ 表面的吸附可 逆性比低温时强.

Zn(II)在 TiO₂ 表面的吸附可逆性随温度变化的 规律预示着高温下环境中锌的毒性/生物可给性比 低温下要高. 这将为污染物在环境中的毒性/生物可 给性的机理研究提供一个新的方向.

致谢: 感谢日本光子工厂 XAFS 实验站的 NOMURA 教授、中国科学院高能物理研究所同步辐射实验室的谢亚宁教授在日本光子工厂 BL-12C 实验站的支持和帮助!

References

- Gerth, J.; Brummer, G. W.; Tiller, K. G. Zeitsc. Pflanzener. Boden., 1993, 156: 123
- 2 Davis, A. P.; Upadhyaya, M. Water Res., 1996, 30: 1894
- 3 Ghulam, M.; Balwant, S.; Rai S. K. Chemosphere, 2004, 57: 1325
- 4 Boekhold, A. E.; Temminghoff, E. J. M.; van der Zee, S. E. A. T. M. J. Soil Sci., 1993, 44: 85
- 5 Jia, C. X.; Pan, G.; Chen, H. Acta Sci. Circum., **2006**, **26**(10): 1611 [贾成霞,潘 纲,陈 灏. 环境科学学报, **2006**, **26**(10): 1611]
- 6 Li, J.; Chen, H.; Pan, G.; Gao, M. Y. Acta Sci. Circum., 2006, 26 (10): 1606 [李 晋, 陈 灏, 潘 纲, 高美缓. 环境科学学报, 2006, 26(10): 1606]
- 7 Christensen, T. H. Water Air Soil Pollut., 1984, 21b: 115
- 8 Pan, G.; Liss, P. S.; Krom, M. D. Colloids and Surfaces A, 1999, 151: 127
- 9 Naidu, R.; Bolan, N. S.; Kookana, R. S.; Tiller, K. G. *Eur. J. Soil Sci.*, **1994**, **45**: 419
- Naidu, R.; Kookana, R. S.; Sumner, M. E.; Harter, R. D.; Tiller, K. G. *J. Environ. Qual.*, **1997**, **26**: 602
- Hettiarachchi, G. M.; Ryan, J. A.; Chaney, R. L.; La Fleur, C. M. *J. Environ. Qual.*, **2003**, **32**: 1684
- 12 Gray, C. W.; McLaren, R. G.; Roberts, A. H. C.; Condron, L. M. Aust. J. Soil Res., 1998, 36: 199
- 13 Glover II, L. J.; Eick, M. J.; Brady, P. V. Soil Sci. Soc. Am. J., 2002, 66: 797
- 14 Mustafa, G.; Kookana, R. S.; Singh, B. *Chemosphere*, **2006**, **64**(5): 856
- 15 Johnson, B. B. Environ. Sci. Technol., 1990, 24: 112
- 16 Brady, P. V.; Cygan, R. T.; Nagy, K. L. J. Colloid Interface Sci.,

1996, 183: 356

- 17 Zhu, D. W.; Shi, L.; Liu, W. D. Pedosphere, 1999, 9(3): 243
- 18 Bruemmer, G. W.; Gerth, J.; Tiller, K. G. J. Soil Sci., 1988, 39: 37
- Ford, R. G.; Bertsch, P. M.; Farley, K. J. *Environ. Sci. Technol.*, 1997, 31: 2028
- 20 Gray, C. W.; McLaren, R. G.; Roberts, A. H. C.; Condron, L. M. *Eur. J. Soil Sci.*, **1999**, **50**: 127
- 21 Pan, G.; Liss, P. S. J. Colloid Interface Sci., 1998, 201: 71
- 22 Randall, S. R.; Sherman, D. M.; Ragnarsdottir, K. V.; Collins, C. R. Geochim. Cosmochim. Acta, 1999, 63(19–20): 2971
- 23 Matocha, C. J.; Elzinga, E. J.; Sparks, D. L. *Environ. Sci. Technol.*, 2001, 35: 2967
- Elzinga, E. J.; Reeder, R. J. Geochim. Cosmochim. Acta, 2002, 66 (22): 3943
- 25 Zhu, M. Q.; Pan, G.; Li, X. L.; Liu, T.; Yang, Y. H. Acta Phys. -Chim. Sin., 2005, 21(10): 1169 [朱孟强, 潘 纲, 李贤良, 刘 涛, 杨玉环. 物理化学学报, 2005, 21(10): 1169]
- Li, X. L.; Pan, G.; Qin, Y. W.; Hu, T. D.; Xie, Y. N.; Chen, H.; Du,
 Y. H. *High Energy Phys. Nuc. Phys.*, 2003, 27: 23
- 27 Pan, G.; Qin, Y. W.; Li, X. L.; Hu, T. D.; Wu, Z. Y.; Xie, Y. N. J. Colloid Interface Sci., 2004, 271: 28
- 28 Li, X. L.; Pan, G.; Qin, Y. W.; Hu, T. D.; Wu, Z. Y.; Xie, Y. N. J. Colloid Interface Sci., 2004, 271: 35
- 29 Pan, G.; Li, X. L.; Qin, Y. W.; Chen, H.; Jia, C. X.; Chang, G. H.; Yang, Y. H. Abstracts of Papers of the American Chemical Society, 2004, 228: 640
- 30 Pan, G.; Liss, P. S. J. Colloid Interface Sci., 1998, 201: 77
- 31 Lyubchik, S. I.; Lyubchik, A. I.; Galushko, O. L.; Tikhonova, L. P.; Vital, J.; Fonseca, I. M.; Lyubchik, S. B. J. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2004, 242: 151
- 32 Khan, A. A.; Singh, R. P. Colloids Surf. A: Physicochem. Eng. Aspects, 1987, 24: 33
- 33 Zhu, M. Q.; Pan, G.; Liu, T.; Li, X. L.; Yang, Y. H.; Li, W.; Li, J.; Hu, T. D.; Wu, Z. Y.; Xie, Y. N. Acta Phys. -Chim. Sin., 2005, 21(12): 1378 [朱孟强, 潘 纲, 刘 涛, 李贤良, 杨玉环, 李 薇, 李 晋, 胡天斗, 吴自玉, 谢亚宁. 物理化学学报, 2005, 21(12): 1378]
- 34 Zhu, M.; Pan, G. J. Phys. Chem. A, 2005, 109: 7648
- 35 Pavlov, M.; Siegbahn, P. E. M.; Sandstrom, M. J. Phys. Chem. A, 1998, 102: 219
- 36 Trainor, T. P.; Brown, Jr. G. E.; Parks, G. A. J. Colloid Interface Sci., 2000, 231: 359
- Mokili, B.; Charreire, Y.; Cortes, R.; Lincot, D. *Thin Solid Films*, 1996, 288: 21
- 38 Munoz, P. A.; Diaz, S.; Perez, P. J.; Martín-Zamora, M. E.; Martínez, J. M.; Pappalardo, R. R.; Marcos, E. S. *Physica B:* Condensed Matter, **1995**, 208&209: 395
- 39 Bochatay, L.; Persson, P. J. Colloid Interface Sci., 2000, 229: 593
- Manceau, A.; Schlegel, M. L.; Musso, M.; Sole, V. A.; Gauthier,
 C.; Petit, P. E.; Trolard, F. *Geochim Cosmochi Acta*, 2000, 64(21): 3643