[Article]

www.whxb.pku.edu.cn

水蒸汽在 Pd 表面吸附的热力学

孙希媛 孔凡杰 蒋 刚* 朱正和

(四川大学原子与分子物理研究所,成都 610065)

摘要: 用密度泛函方法和相对论有效原子实势分别对 PdOH₂、PdOH 及 PdO 的几何构型进行了优化,得到 PdOH₂ 分子为 C_s构型, Pd 与 H₂O 分子不在同一平面, R_{PdO}=0.2283 nm; PdOH 分子为 ²A'态, R_{PdO}=0.1965 nm, R_{OH}= 0.0968 nm, ∠PdOH=110.186°; PdO 分子基态为 ³Π, R_{PdO}=0.1858 nm. 根据电子-振动近似理论计算了不同温度下 金属 Pd 与 H₂O、OH 及游离态 O 原子反应的生成热力学函数,导出了反应平衡压力随温度的变化关系,分析认 为水蒸汽引起 Pd 合金膜中毒是由于 H₂O 分子的离解产物 OH 和 O 原子吸附在膜表面所致.

关键词: PdOH₂; PdOH; PdO; 热力学函数; 解离吸附; 中毒 中图分类号: O647

Thermodynamics of Water Adsorbed on Palladium Surface

SUN Xi-Yuan KONG Fan-Jie JIANG Gang* ZHU Zheng-He

(Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, P. R. China)

Abstract: The different structures of PdOH₂, PdOH, and PdO were optimized by the relativistic effective core potential (RECP) and the density functional method B3LYP. The results showed that Pd and H₂O of stable Pd-OH₂ molecule were not in the same plane, and the bond length (R_{PAO}) was 0.2283 nm. For PdOH molecule, the ground state was ²A', the structure parameters R_{PAO} , R_{OH} , and \angle PdOH were 0.1965 nm, 0.0968 nm, and 110.186°, respectively; The ground state of PdO was ³ Π , and the bond length was 0.1858 nm. Furthermore, the thermodynamic functions of PdOH₂, PdOH, and PdO were also calculated according to electronic-vibration approximation, and based on this results, the relationship of the equilibrium pressures with temperatures was obtained. From the results, it was deduced that the poisoning effect of H₂O was due to the adsorption of O and OH dissociated from H₂O on palladium surface.

Key Words: PdOH₂; PdOH; PdO; Thermodynamic function; Dissociative adsorption; Poisoning

氢(同位素)的纯化与分离,氢能源利用技术中 高纯氢的提取,工业生产中氢的分离与回收,对于开 发清洁的氢能源具有重要的意义. 钯合金膜扩散法 由于其独特的纯化特征成为分离氢及其同位素的主 要方法^[1,2],但杂质气体的存在会引起合金膜中毒,从 而影响到膜的渗氢效率和使用寿命,因此研究合金 膜的中毒机理,探讨抗中毒的途径成为人们日益关 注的问题.

众多研究表明,水蒸汽吸附到合金膜上会大大降低合金膜的渗氢率,但对于 H₂O 引起膜中毒的机

理却众说不一. Desai 等¹³利用密度泛函方法研究表明, H₂O分子可以稳定地吸附到 Pd 表面; 实验上对H₂O在多晶 Pd 膜表面的研究发现, 温度为 77 K 时H₂O 分子可以吸附到膜表面, 但温度升至 473 K 时H₂O 在 Pd 表面会发生离解, 使得膜表面吸附的氧原子增加¹⁴; 基于水分子的离解现象, Gao等¹⁵认为H₂O 分子在膜表面离解得到游离态的 O 原子, O 原子的吸附减少了 Pd 合金膜对 H 的吸附从而导致合金膜中毒. Alfonso¹⁶用密度泛函方法计算了 H₂O 分子在 Pd 表面离解时的能全, 吸附热等, 计算结果表明,

国家自然科学基金委-中国工程物理研究院联合基金(10176021)资助项目

© Editorial office of Acta Physico-Chimica Sinica

Received: October 27, 2006; Revised: December 21, 2006; Published on Web: April 11, 2007. *Corresponding author. Email: gjiang@scu.edu.cn; Tel: +8628-85408810.

H₂O 的离解产物 O 原子可以稳定地吸附到膜表面 从而引起膜中毒.本文利用密度泛函理论(DFT)计算 了H₂O分子及其离解产物OH、O (H₂O→H+OH, OH→ H+O)与 Pd 反应的热力学函数, 探讨 H₂O 分子在 Pd 表面的中毒机理.

本文运用 Gaussian03W 程序^[7], 对 Pd 原子采用 相对论有效原子实势(RECP)基组 SDD, 并用密度泛 函理论 B3LYP 方法计算了 PdOH₂、PdOH、PdO 分子 的微观结构以及不同温度下 Pd 与 H₂O、OH、O 反应 的生成热力学函数, 并根据

 $\Delta G^0 = -RT \ln K_p = 2.303 RT lgp$ 导出了反应的平衡压力随温度的变化关系.

1 理论方法

气体的能量 E, 熵 S 和焓 H 可由量子力学从头 计算直接得到, 对于固体可以引入电子-振动近似理 论^[8-10], 近似以气态分子的振动能E_v和电子运动与分 子振动的熵 S_{Ev}分别代替固态分子的能量 E 和熵 S, 而且固态分子因反应前后体积变化不大可近似认为 H≈E, 这样可以得到不同温度下固态分子对生成焓 ΔH[°]₄的贡献.电子运动对生成焓的贡献 ΔH[°]₆可以通 过以下方法得到(以Pd与O反应生成PdO为例):

 $Pd(s)+O(g) \xrightarrow{\Delta H_{e}^{0}} PdO(s)$ $\downarrow \Delta H_{a} \qquad \qquad \downarrow \Delta H_{s}^{0}$

 $Pd(g)+O(g) \xrightarrow{-D_0(PdO)} PdO(g)$

其中 $D_0(PdO)$ 为 PdO 分子的化学离解能,可通过量 子力学方法计算得到, ΔH_a 为金属 Pd 的原子化能, PdO(s)的升华焓变 $\Delta H_s^0 = E_c - D_0(PdO) - I - A^{[0,11]}$, 其中 E_c 为 PdO 的晶格能, I 和 A 分别为 Pd 原子的二阶电离势和O原子的电子亲和能.则气固反应Pd(s)+O(g) →PdO(s)的生成热力学函数可表示为, $\Delta H^0 = \Delta H^0_n + \Delta H^0_e$

$$\approx E_{\rm V}({\rm PdO}) - E({\rm Pd}) - H({\rm O}) + \Delta H_{\rm a} - D_0({\rm PdO}) - \Delta H_{\rm s}^0$$
(1)

$$\Delta S^0 \approx S_{\rm EV}({\rm PdO}) - S({\rm Pd}) - S({\rm O}) \tag{2}$$

$$\Delta G^0 = \Delta H^0 - T \Delta S^0 \tag{3}$$

若缺乏晶格能实验数据, 假设 Pd 吸附气体前 后结构变化不大, 粗略认为 $\Delta H_a \approx \Delta H_s^\circ$, 生成热力学 函数 ΔH^0 则为,

$$\Delta H^0 \approx E_{\rm v}({\rm PdO}) - E({\rm Pd}) - H({\rm O}) - D_{\rm o}({\rm PdO})$$
(4)

2 PdOH₂、PdOH、PdO 分子的结构与性质

在 B3LYP/SDD 水平上分别对 PdOH₂、PdOH、 PdO 分子的可能构型进行几何优化,得到分子的平 衡结构见表 1. 其中 Pd 原子内壳层 28 个电子 ($1s^22s^22p^3s^23p^3d^0$)用相对论有效原子实势(RECP/ SDD)取代,18 个价电子($4s^24p^64d^0$)采用(6s5p3d)价 基集合^[12]; O、H原子采用aug-cc-pvdz基组.表2给出了 不同温度下气态 O 原子与 H₂O 分子、OH 的能量 *E* 和熵 *S* 以及 PdOH₂、PdOH、PdO 分子的振动能 *E*_v 和 电子振动熵 *S*_{Ev}.

3 PdOH₂、PdOH、PdO 的生成热力学函数 与结果分析

Pd 原子化能 ΔH_a = 377 kJ·mol⁻¹, PdO 晶格能 E_c =3736 kJ·mol⁻¹, Pd原子二阶电离势*I*=2674.4 kJ· mol⁻¹ (数据均来自 www.webelememts.com). O 原子 电子亲和能通过 aug-cc-pv5z 方法计算得到为 414.677 kJ·mol⁻¹. 根据(1)–(4)式,得出不同温度下气 固反应的生成热力学函数 ΔH^0 、 ΔS^0 、 ΔG^0 列于表3. 气 固反应的平衡压力随温度的变化关系可以根据 ΔG^0 =-*RT*ln*K_a*=2.303*RT*lgp求出,结果如图1所示.

从表 3 可以看出, 在 98.15-898.15 K 温度范围

表 1 PdOH₂、PdOH、PdO 分子的微观性质 Table 1 The structure properties of PdOH₂, PdOH, and PdO

		State			Structure parameters			
PdOH ₂	HO Pd	$^{1}A(C_{s})$	<i>R</i> _{Pd0} =0.2283 nm	<i>R</i> _{0H} =0.0966 nm	∠HOH=105.486°	9.568(0.236ª)		
PdOH	H O	$^{2}A'(C_{s})$	$R_{\rm PHO}$ =0.1965 nm	<i>R</i> _{OH} =0.0968 nm	∠ PdOH=110.186°	6.563(2.161 ^b)		
PdO	O Pd	${}^{3}\Pi(C_{\infty v})$	<i>R</i> _{Pi0} =0.1858 nm			2.364		

a) dissociation energy of Pd-H2O; b) dissociation energy of Pd-OH

表 2 O 原子和 H ₂ O、OH、PdOH ₂ 、PdOH、PdO 分子的振动能 E_v 和电子振动熵 S_{Ev}														
Table 2Entropy and enthalpy for H2O, OH, PdOH2, PdOH, PdO molecules and O atom at different temperatures														
T	Pd	OH_2	Pd	ОН	Po	iO	Н	₂ O		0	0)H	Po	i ^[11]
K	Ev	$S_{\rm EV}$	$E_{\rm V}$	$S_{\rm EV}$	$E_{\rm v}$	$S_{\rm EV}$	E	S	E	S	Ε	S	E	S
98.15	61.49	1.79	30.59	5.80	3.54	9.15	58.18	151.74	1.23	129.36	24.07	145.90	2.88	8.97
198.15	62.61	9.18	30.76	6.83	3.64	9.74	60.68	175.11	2.47	143.96	26.15	166.34	5.39	26.61
298.15	64.43	16.57	31.34	9.13	3.97	10.89	63.18	188.73	3.72	152.46	28.23	178.23	7.96	37.10
398.15	66.60	22.82	32.26	11.77	4.49	12.36	65.72	198.48	4.97	158.47	30.31	186.65	10.58	44.69
498.15	68.99	28.17	33.41	14.33	5.10	13.75	68.35	206.22	6.21	163.13	32.39	193.17	13.27	50.71
598.15	71.55	32.86	34.71	16.70	5.79	15.00	71.07	212.72	7.46	166.93	34.47	198.50	16.01	55.73

79.90 The units of E and S are $kJ \cdot mol^{-1}$ and $J \cdot mol^{-1} \cdot K^{-1}$, respectively.

73.90

76.84

218.37

223.42

228.01

8.71

9.95

11.20

170.14

172.93

175.38

36.56

38.68

40.82

203.03

206.97

210.48

18.81

21.67

24.59

60.06

63.88

67.33

表 3 不同温度下反应的生成热力学函数	
---------------------	--

Table 3 The thermodynamic functions at different temperatures

		$PdOH_2$			PdOH		PdO			
T/K	ΔH^0	ΔS^{0}	ΔG^0	ΔH^0	ΔS^{0}	ΔG^{0}	ΔH^0	ΔS^{0}	ΔG^{0}	
	(kJ·mol ⁻¹)	$\overline{(J \cdot mol^{-1} \cdot K^{-1})}$	(kJ·mol ⁻¹)	$(kJ \cdot mol^{-1})$	$(J \cdot mol^{-1} \cdot K^{-1})$	(kJ·mol ⁻¹)	(kJ·mol ⁻¹)	$(J \cdot mol^{-1} \cdot K^{-1})$	(kJ·mol ⁻¹)	
98.15	-23.18	-158.93	-7.58	-205.64	-149.07	-191.01	-271.31	-129.19	-258.63	
198.15	-27.90	-192.54	10.25	-210.89	-186.12	-174.01	-275.80	-160.83	-243.93	
298.15	-31.98	-209.26	30.41	-215.79	-206.21	-154.31	-280.11	-178.67	-226.84	
398.15	-35.81	-220.35	51.93	-220.40	-219.57	-132.98	-284.30	-190.80	-208.33	
498.15	-39.56	-228.76	74.39	-224.86	-229.55	-110.51	-288.44	-200.09	-188.77	
598.15	-43.29	-235.59	97.62	-229.22	-237.53	-87.13	-292.58	-207.66	-168.37	
698.15	-47.03	-241.37	121.48	-233.54	-244.23	-63.03	-296.74	-214.09	-147.27	
798.15	-50.80	-246.42	145.87	-237.87	-250.01	-38.32	-300.93	-219.70	-125.58	
898.15	-54.61	-250.92	170.75	-242.21	-255.15	-13.06	-305.17	-224.70	-103.36	

内,反应均为放热反应,且放热量随着温度升高而增 加. 比较三个反应生成物 PdOH₂、PdOH、PdO 的 ΔG^0 发现, Pd 吸附 OH 及 O 原子的反应可以自发进行, 且吸附 O 原子的反应较吸附 OH 的反应更易进行. 而水分子在 Pd 表面的吸附只有在低温(约 98.15 K) 下才可能自发进行,温度升高反应不能自发进行,这

Fig.1 The relationship between equilibrium pressures and temperatures

与文献[4]观察到的结果一致.同时根据计算得到的 PdOH。解离为 Pd 和 H₂O 的离解能 D₀(PdOH₂)=0.236 eV,可以认为H2O分子与Pd的结合能力比较弱,因 此 H₂O 分子即使在低温下能被 Pd 表面吸附也不稳 定,容易脱附.文献[6]计算得到 Pd 表面 H₂O 分子两 步离解 (H₂O→H+OH, OH→H+O) 的活化能分别为 0.9 eV 和 1.27 eV, 随着温度升高 Pd 表面 H₂O 分子 的解离反应速率增大, H₂O 分子容易解离成 OH 和 H. 当HO分子一旦解离后, 根据表 3 的结果可以得 到,其离解产物 OH 及 O 原子极易与 Pd 结合形成 PdOH 和 PdO 固溶体. 由此可以认为, 水蒸汽引起 Pd 合金膜中毒不是 H₂O 分子在 Pd 表面的吸附所 致, 而是因为 H₂O 分子的离解产物 OH 和 O 原子被 Pd 表面吸附占据了膜表面的部分间隙位致使膜对 H 的吸附量减少. 渗氢率降低.

结 论 4

利用 Gaussian03W 程序,采用 B3LYP 方法及

698.15

798.15

898.15

74.27

77.13

80.13

37.06

40.89

44.42

36.10

37.58

39.13

18.86

20.84

22.67

6.51

7.26

8.02

16.11

17.11

18.01

相对论有效原子实势(RECP)对PdOH₂、PdOH及 PdO 分子进行几何优化,得到相应的平衡结构.根据电 子-振动近似理论计算得到了不同温度下反应的生 成热力学函数,并导出了反应的平衡压力随温度的 变化关系.计算结果表明,水蒸汽在合金膜表面中毒 主要是 H₂O 分子的离解引起的, H₂O 分子的离解产 物 OH 及 O 原子可以很好地吸附到膜表面,吸附的 OH 和 O 原子使得 H 在 Pd 合金膜表面的吸附减少 从而导致合金膜中毒.

References

- Sakamoto, Y.; Kajihara, K.; Kikumura, T.; Flanagan, T. B. J. Chem. Soc. Faraday Trans., 1990, 86(2): 377
- Wang, H. Y.; Fu, Y. B. Membrane Science and Technology, 2002,
 22(5): 41 [王和义, 傅依备. 膜科学与技术, 2002, 22(5): 41]
- Besai, S. K.; Pallasana, V.; Neurock, M. J. Phys. Chem. B, 2001, 105: 9171
- 4 Heras, J. M.; Estiú, G.; Viscido, L. Appl. Surf. Sci., 1997, 108: 455
- 5 Gao, H.; Lin, Y. S.; Li, Y.; Zhang, B. Ind. Eng. Chem. Res., 2004,

43: 6920

- 6 Alfonso, D. R. Appl. Phys. Lett., 2006, 88: 051908
- Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; *et al.* Gaussian 03.
 Rev. B.02, Pittsburgh PA: Gaussian, Inc., 2003
- Zhu, Z. H.; Liu, Y. C.; Wang, H. Y.; Jiang, G.; Tan, M. L.; Wu, S.; Jiang, G. Q.; Luo, D. L. *Chin. J. Atom. & Mole. Phys.*, **1998, 15** (4): 435 [朱正和, 刘幼成, 王红艳, 蒋 刚, 谭明亮, 武 胜, 蒋 国强, 罗德礼. 原子与分子物理学报, **1998, 15**(4): 435]
- 9 Luo, D. L.; Zhu, Z. H.; Jiang, G.; Meng, D. Q.; Xue, W. D. Acta Phys. -Chim. Sin., 2001, 17(7): 626 [罗德礼, 朱正和, 蒋 刚, 蒙大桥, 薛卫东. 物理化学学报, 2001, 17(7): 626]
- Zhu, Y.; Jiang, G.; Yu, G. F.; Zhu, Z. H.; Wang, H. Y.; Fu, Y. B. *Acta Phys. -Chim. Sin.*, **2005**, **21**(12): 1343 [朱 瑜, 蒋 刚, 于 桂凤, 朱正和, 王和义, 傅依备. 物理化学学报, **2005**, **21**(12): 1343]
- Jiang, G.; Yu, G. F.; Ni, Y.; Wang, H. Y.; Zhu, Z. H. Chin. J. Atom. & Mole. Phys., 2004, 21(4): 642 [蒋 刚, 于桂凤, 倪 羽, 王和 义, 朱正和. 原子与分子物理学报, 2004, 21(4): 642]
- Andrae, D.; Haeussermann, U.; Dolg, M.; Stoll, H.; Preuss, H. Theor. Chim. Acta, 1990, 77: 123

刘天波撤消作者身份声明

Tianbo Liu requests withdrawal of his name as a co-author of *Acta Phys. -Chim. Sin.*, **2006**, **22**(10): 1300 due to the unawareness of the article.