[Article]

www.whxb.pku.edu.cn

卤代硅烷(R₃SiX)与NR'₃形成五配位硅化合物的加成反应

贝逸翎 主沉浮* 刘庆阳 戚桂斌

(山东大学化学与化工学院,济南 250100)

摘要: 对 R₃SiX(R=H、CH₃; X=F、Cl、Br、I)与 NR₃'(R'=H、CH₃)的加成物用量子化学密度泛函方法在 B3LYP/6-31g(*d*,*p*)基组下(X 原子采用 cep-121g 基组)进行了两种加成方式的研究. 一种是 NR₃'沿 Si—X 键轴向位置的加 成,另一种是 NR₃'沿 Si—X 键侧向接近的加成. 计算结果表明, 前者更稳定且更容易形成加成物; Si 上斥电子基 团不利于Si—N键的形成, 而N上斥电子基团则有利于Si—N键的形成; NH₃-H₃SiX系列和N(CH₃)₃-H₃SiX系列均能 以两种方式进行加成, NH₃-H₂(CH₃)SiX 系列仅能沿 Si—X 键轴向进行加成, 而 NH₃-H(CH₃)₂SiX 和 NH₃-(CH₃)₃SiX 系 列两种方式都不能进行加成; 在同系列加成产物中, 以 X=Cl 时所得加成物最稳定. 讨论了所有加成物中各键的 性能、NBO 电荷变化、取代基对加成物结构和稳定性的影响, 并对 H₃SiX(X=F、Cl、Br、I)与 NH₃ 及 N(CH₃)₃ 加成物 在有机溶剂中导电的可能性进行了讨论.

关键词: 卤代硅烷; 密度泛函理论; 成键性能; NBO 电荷; 导电性 中图分类号: O641

Addition Reaction of Pentacoordinated Silicon Compounds by R₃SiX with NR'₃

BEI Yi-Ling ZHU Chen-Fu^{*} LIU Qing-Yang QI Gui-Bin (School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China)

Abstract: The adducts $R_3SiX-NR'_3$ (R=H, CH₃; X=F, Cl, Br, I; R'=H, CH₃) formed in two addition modes were studied with DFT at B3LYP/6-31g(*d*,*p*) level (X atoms used the cep-121g base-set): one type was the adducts approached axially along the Si—X bond, the other type was the adducts approached laterally along the Si—X bond. The computed results showed that the former was more stable and more easily to be formed. The presence of group with pushing electron effect on Si made it difficult to form Si—N bond and the reverse was true on NR'₃. NH₃-H₃SiX and N(CH₃)₃-H₃SiX series can form two kinds of adducts. NH₃-H₂(CH₃)SiX series can only form one kind of adduct. NH₃-H(CH₃)₂SiX and NH₃-(CH₃)₃SiX series can not form any adducts. The adduct of X=Cl is the most stable one in the same series. The bonding properties of all the adducts, the change of NBO charges, the influence of various halogen atoms and methyl on the structures and the stability of adducts were analyzed. The possibility of being conductive of adducts H₃SiX-NH₃ and H₃SiX-N(CH₃)₃ in organic solvents was also discussed.

Key Words: Halosilane; DFT; Bonding property; NBO charge; Conducting property

由于可利用空的 3d 轨道成键,因此硅易接受外 界电子对与亲核试剂发生反应,形成五配位(双三角 锥型)、六配位(正八面体型)等化合物.该类配合物目 前研究最多的是杂氮硅三环化合物(silatranes)^{11–3]}. 与 silatranes 相似, 卤硅烷(SiF₄、SiCl₄、SiBr₄、Si-I₄)等也应能与带孤对电子的氨、胺、胂、磷、膦等复合 形成多配位加成产物. 但文献[4]表明, 仅有含氢氯 硅烷(包括含氢烷基氯硅烷)能与胺形成配合物, 而

Received: July 16, 2007; Revised: November 1, 2007; Published on Web: December 13, 2007.

^{*}Corresponding author. Email: chenfuz@sdu.edu.cn.

山东省自然科学基金(Y2001B06)资助项目

[©] Editorial office of Acta Physico-Chimica Sinica

当分子中的卤素完全被有机基取代后,则失去形成 配合物的能力.实验发现,形成的配合物中部分在有 机溶剂中可导电(如 SiH₃X·(CH₃)₃N, X=Cl、Br、I),因 此,有研究者认为它们可以季铵盐形式存在 ([SiH₃· MR₃]*X⁻, M=N、P、As; R=CH₃、C₂H₆; X=Cl、Br、I)^[5-7].

Marsden¹⁸、Chehayber¹⁹和Greenbeg¹⁰等曾用从 头算分子轨道理论在3-21g水平上对SiF₄NH₃进行过 研究; Feng等¹¹¹则在G2(MP2)水平上对H₃SiXNH₃ (X=F、Cl、Br、I)进行计算,分析了加成物中各键性质 及X原子对加成物结构和稳定性的影响.

但烷基卤硅烷与氨(胺)的加成物能否形成、烷 基及卤素原子对配合物结构及稳定性的影响尚未见 报道.本文利用量子化学密度泛函方法对 R₃SiX(R= H、CH₃; X=F、Cl、Br、I)与 NR'₃(R'=H、CH₃)的加成产 物进行了研究,并讨论了取代基及 X 原子对五配位 硅化合物形成的影响.

1 计算方法

文献报道表明,密度泛函(density functional theory, DFT)方法^[12]对于微观反应机理的研究具有良好 的可信性[13],本文采用量子化学的密度泛函中的 B3LYP 方法,在 6-31g(d,p)基组下对上述过程的反 应物及加成产物(X=F、Cl、Br)的几何结构与能量进 行了优化计算,对于碘原子,由于存在较大的原子 核,故在计算中采用了相对论有效核势基组 cep-121g^[14-16]. 为对结果进行比较,又对上述反应物及加 成产物中的卤素原子均采用 cep-121g 基组(其它原 子仍采用 6-31g(d,p)基组)进行了几何结构和能量的 优化计算(结果表明,两种计算方式所得规律相同). 在上述计算过程中,所有加成产物的能量均运用完 全均衡校正(counterpoise procedure, CP)法[17,18]对基 函数重叠误差(the basis-set superposition errors, BSSE)进行了校正.在此基础上,利用 $\Delta E = (E_{R-SIX} + E_{NR'2})$ -E_{NR5-RsSIX}关系式对加成产物的稳定化能进行了计算. 式中ERASIX、ENRA 及ENRARASIX分别为反应物R3SiX、NR3 及 加成产物 NR'₃-R₃SiX 的能量. 同时, 本文还利用自然 键轨道理论(natural bond orbitals, NBO)^[19-23], 研究了 反应物及加成产物的电荷布居变化.为进行比较,本 文同时对文献[11]中 H₃SiX 与 NH₃ 的反应物及加成 产物利用相同的方法与基组进行了计算.所有计算 工作均用 Gaussian 03 程序^[24]完成.

2.1 加成方式

计算表明, 当取代基 CH₃存在时, R₃SiX (R=H、 CH₃; X=F、Cl、Br、I)与NR'₃会以两种形式形成加成物: 方式一是 NR'₃从 X 原子的背后沿 Si—X 键的轴向 接近 R₃SiX 中的 Si 原子, 形成加成物 1; 方式二是 NR'₃从 Si—X 键的侧面接近 Si 原子, 形成加成物 2. 当 Si 原子上的取代基 R 相同时, 其结构均为 C₃ 对称; 当 Si 原子上的取代基 R 不同时, 其结构均为 C₁ 对称. 两种加成物的结构示意图和原子序号如图 1 所示(图中 R、R'=H、CH₃; X = F、Cl、Br、I).

表 1-4 为两种加成方式的计算结果.其中,反 应物 R₃SiX 与 NR'₃的优化结果及相应的能量、主 要原子的 NBO 电荷列于表 1,表 2 为加成产物 NR'₃-R₃SiX 的结构优化结果,表 3 为加成产物 NR'₃-R₃SiX 中主要原子的 NBO 电荷,表 4 为加成产物能量的 计算结果及稳定化能.

分析 NH₃-H₃SiX(X=F、Cl、Br、I)系列加成产物. 当 NH₃ 从卤原子的后方沿轴线靠近 R₃SiX 中的 Si 原子,即按第一种方式形成加成物时,其加成产物的 Si—N 键长分别为 0.261-0.263 nm,介于 Si—N 共 价键键长 0.177 nm 和 Si、N 范德华半径之和 0.350 nm 之间,表明该系列配合物有可能形成;当 NH₃ 从 Si—X 键的侧面接近 R₃SiX 中的 Si 原子,即按第二 种方式形成加成物时,其加成产物的 Si—N 键键长 达到 0.298-0.326 nm,均比方式一中的加成产物要 长.就能量而言,方式二加成产物的稳定化能也远低 于方式一的加成产物.方式一系列加成产物的稳定 化能介于 21.293-24.785 kJ·mol⁻¹之间,而方式二的 稳定化能仅为 4.043-8.165 kJ·mol⁻¹.上述结果均表 明按方式一加成更为有利,这一点与文献[11]的报 道吻合.其他系列加成产物亦有此规律.

但与文献[11]有所不同的是,利用 B3LYP 方法 在 6-31g(*d*,*p*)基组水平上进行的计算表明,以方式一 加成形成的 NH₃-H₃SiX 加成产物中, NH₃-H₃SiCl 中

2 结果与讨论

Reactant	X		Bond length (nm)					<i>–E</i> (a.u.)		NBO charge (e)		
		Si—X	$Si - R^1$	Si—R ³	$N-R'^4$	N-R'6	6-31g(<i>d</i> , <i>p</i>)	6-31g(<i>d</i> , <i>p</i>)/cep-121g	Si	Х	Ν	
NH ₃					1.018	1.018	56.55777				-1.125	
N(CH ₃) ₃					1.455	1.455	174.48617				-0.390	
R=H	F	0.164	0.148	0.148			391.18383	315.52840	1.295	-0.651		
	Cl	0.212	0.148	0.148			751.53430	306.25091	0.901	-0.400		
	Br	0.227	0.148	0.148			2863.04617	304.70774	0.789	-0.313		
	Ι	0.249	0.148	0.148				302.76469	0.638	0.198		
$R^1=R^2=H$	F	0.164	0.148	0.187			430.52023	354.58542	1.180	-0.419		
R ³ =CH ₃	Cl	0.213	0.148	0.187			790.86911	345.58542	1.180	-0.419		
	Br	0.229	0.148	0.187			2902.38125	344.04180	1.079	-0.337		
	Ι	0.250	0.148	0.188				342.09814	0.942	-0.228		
R ¹ =H	F	0.165	0.149	0.187			469.85618	394.19816	1.794	-0.663		
$R^2 = R^3 = CH_3$	Cl	0.214	0.148	0.188			830.20335	384.91933	1.464	-0.434		
	Br	0.230	0.149	0.187			2941.71598	383.37534	1.371	-0.356		
	Ι	0.252	0.149	0.187				381.43115	1.27	-0.249		
R=CH ₃	F	0.166	0.188	0.188			509.19166	433.53191	2.059	-0.671		
	Cl	0.215	0.188	0.188			869.53695	424.25261	1.764	-0.444		
	Br	0.231	0.188	0.188				422.70830	1.679	-0.367		
	Ι	0.253	0.188	0.188				420.76373	1.564	-0.262		

表 1 反应物 NR₃、R₃SiX 优化结果与相应能量、NBO 电荷 Table 1 Optimized geometries, energies, and NBO charges of the reactants

6-31g(d,p)/cep-121g: the cep-121g used for X atoms, 6-31g(d,p) used for others

的 Si—N 键键长最短, 稳定化能在同系列中最高.

2.2 Si 上 CH₃ 对加成产物的影响

当 R₃SiX 中存在 CH₃时,由于 CH₃的推电子及 位阻效应,使 Si 原子接受 N上孤对电子的能力减 弱,从而更难以形成配合物. 计算表明,对于 NH₃-H₂(CH₃)SiX 系列,按方式一 加成, Si—N 键长相比 NH₃-H₃SiX 系列均有不同程 度的拉长,达到 0.257-0.268 nm,此时 Si、N 之间虽 仍有一定的相互作用,但作用已经很弱,其稳定化能 下降为 11.158-14.125 kJ·mol⁻¹,均比对应的无 CH₃

Tuble = Optimized geometries of the products									
ND/DC:V	v	Th	e first addition mo	ode	The second addition mode				
INK ₃ -K ₃ 51A	А	r(Si—N)/nm	r(Si—X)/nm	α (XSiN)/(°)	r(Si—N)/nm	r(Si—X)/nm	α (XSiN)/(°)		
R=R'=H	F	0.263	0.166	180.0	2.984	0.165	70.8		
	Cl	0.261	0.217	180.0	3.109	0.213	76.8		
	Br	0.262	0.233	180.0	3.180	0.229	78.3		
	Ι	0.263	0.256	180.0	3.261	0.250	80.1		
$R^1 = R^2 = R' = H$	F	0.268	0.167	171.8	3.847	0.165	55.7		
$R^3 = CH_3$	Cl	0.260	0.219	171.8	4.096	0.214	67.2		
	Br	0.259	0.236	171.7	4.166	0.230	70.3		
	Ι	0.257	0.259	171.6	4.239	0.252	73.4		
$R^1=R'=H$	F	0.382	0.166	169.9	3.812	0.166	55.4		
$R^2 = R^3 = CH_3$	Cl	0.365	0.216	168.1	4.125	0.215	65.5		
	Br	0.365	0.231	168.0	4.217	0.231	69.5		
	Ι	0.361	0.254	166.8	4.280	0.253	71.7		
R'=H	F	0.459	0.166	159.6	3.938	0.167	52.0		
R=CH ₃	Cl	0.418	0.216	179.0	4.173	0.217	64.2		
	Br	0.418	0.232	178.5	4.251	0.233	66.9		
	Ι	0.419	0.254	179.2	4.316	0.255	70.2		
R=H	F	0.250	0.167	179.9	2.862	0.165	75.1		
$R'=CH_3$	Cl	0.244	0.219	177.8	3.259	0.213	81.6		
	Br	0.242	0.236	179.9	3.444	0.228	83.6		
	Ι	0.240	0.260	179.8	3.757	0.250	86.3		

表 2 加成产物优化结果 Table 2 Optimized geometries of the products

Table 5 Optimized geometries of the products (Abo charges (e)									
ND/ D C:V	V	TI	ne first addition mo	ode	The second addition mode				
NK3-K381X	Х	Si	Х	N	Si	Х	Ν		
R=R'=H	F	1.262	-0.678	-1.134	1.292	-0.662	-1.140		
	Cl	0.899	-0.467	-1.128	0.917	-0.422	-1.139		
	Br	0.802	-0.398	-1.124	0.810	-0.340	-1.139		
	Ι	0.675	-0.306	-1.124	0.665	-0.230	-1.138		
$R^{1}=R^{2}=R'=H$	F	1.525	-0.685	-1.136	1.538	-0.666	-1.144		
R ³ =CH ₃	Cl	1.190	-0.486	-1.130	1.188	-0.437	-1.141		
	Br	1.103	-0.423	-1.128	1.089	-0.359	-1.139		
	Ι	0.992	-0.342	-1.126	0.957	-0.254	-1.138		
$R^1=R'=H$	F	1.801	-0.670	-1.138	1.791	-0.670	-1.146		
$R^{2}=R^{3}=CH_{3}$	Cl	1.479	-0.452	-1.138	1.472	-0.451	-1.141		
	Br	1.390	-0.378	-1.138	1.383	-0.376	-1.140		
	Ι	1.269	-0.277	-1.137	1.263	-0.275	-1.139		
R'=H	F	2.060	-0.674	-1.133	2.059	-0.677	-1.144		
R=CH ₃	Cl	1.776	-0.456	-1.138	1.774	-0.461	-1.141		
	Br	1.693	-0.382	-1.138	1.692	-0.388	-1.130		
	Ι	1.582	-0.282	-1.138	1.581	-0.287	-1.138		
R=H	F	1.265	-0.681	-0.527	1.292	-0.661	-0.514		
$R'=CH_3$	F	1.265	-0.681	-0.527	1.292	-0.661	-0.514		
	Cl	0.910	-0.479	-0.527	0.911	-0.413	-0.509		
	Br	0.818	-0.416	-0.527	0.801	-0.327	-0.507		
	Ι	0.703	-0.338	-0.527	0.650	-0.213	-0.505		

表 3 加成产物的 NBO 电荷优化结果 Table 3 Optimized geometries of the products' NBO charges (e)

取代的加成产物 NH₃-H₃SiX 有明显降低, 表明该系 列配合物稳定性均低于 NH₃-H₃SiX 系列加成产物. 同时, 该系列中 Si—X 键长与反应物 H₂(CH₃)SiX 的 Si—X 键长相比亦有进一步增加, 且增加值均大于 所对应的 NH₃-H₃SiX 系列加成产物的 Si—X 键长 变化值, 说明Si上CH₃的存在使得加成产物的离子性 增强. 在该系列中, NH₃-H₂(CH₃)SiI中的Si—I键增加最 多, 表明该系列中以NH₃-H₂(CH₃)SiI的离子性最强.

就稳定性而言,该系列中 NH₃-H₂(CH₃)SiF 的稳 定化能为 11.158 kJ·mol⁻¹,在该系列中是最低的,说 明其最不稳定;与 NH₃-H₃SiX 系列相同,该系列最 稳定的加成产物同样是 NH₃-H₂(CH₃)SiCl,其稳定化 能为 14.125 kJ·mol⁻¹,为该系列加成产物中最高的.

当NH₃-H₂(CH₃)SiX系列按方式二加成时,其加成产物的Si—N键长均超过Si、N间的范德华半径之和,表明反应物之间均不成键,已无法形成配合物.

对于 NH₃-H(CH₃)₂SiX 和 NH₃-(CH₃)₃SiX 系列, 随 CH₃ 数量的增加,无论是按方式一加成还是按方 式二加成,其加成产物的 Si—N 键长进一步增加(按 方式一加成时 Si—N 键长分别达到 0.361-0.382 nm 与 0.418-0.459 nm,而按方式二加成时 Si—N 键长 分别为 0.381-0.428 nm 与 0.394-0.432 nm),均已超 过 Si \N 原子范德华半径之和;同时,与反应物相比 Si—X 键长变化极小或几乎没有变化,说明这两种 情况下无法形成配合物.由此进一步表明 Si 上斥电 子基团CH₃的存在,不利于配合物的形成.

2.3 N上CH₃的存在对加成产物的影响

当 N 上存在斥电子基团 CH₃ 时, CH₃ 的斥电子 作用使 N 上孤对电子更易从 Si 转移到 H₃SiH₃X 中 的四个取代基上,因此理论上应该更容易形成相应 的加成产物,计算结果也说明了这一点.

计算表明,当N(CH₃)₃与H₃SiX按方式一加成时, 所形成加成产物的Si—N键长介于0.240-0.250 nm 之间,均明显小于相应NH₃-H₃SiX加成物中的Si—N 键长,且按F、Cl、Br、I的顺序其差值依次增加.但由于 CH₃的作用,使得其稳定化能要比相应NH₃-H₃SiX加 成物的低.不过若单纯考察该系列加成产物的稳 定化能,仍以N(CH₃)₃-H₃SiCl的最高,N(CH₃)₃-H₃SiI的 最低,表明该系列加成物与NH₃-H₃SiX系列加成物有 着相同的稳定性规律,即以N(CH₃)₃-H₃SiCl最稳定, 而N(CH₃)₃-H₃SiI最不稳定.

就该系列加成产物中的 Si—X 键长而言, 均要 比 NH₃-H₃SiX 系列中相应加成物的 Si—X 键长要 长, 表明该系列加成物的离子性要强于 NH₃-H₃SiX 系列. 其中 N(CH₃)₃-H₃SiI 中 Si—I 键长为 0.260 nm (已超过Si、I共价半径之和0.244 nm), 较反应物 H₃SiI

ND/ D CV	v		The first a	ddition mode		The second addition mode				
INK ₃ -K ₃ 51A	л	6-31g(<i>d</i> , <i>p</i>)		6-31g(<i>d</i> , <i>p</i>)/	6-31g(<i>d</i> , <i>p</i>)/cep-121g		6-31g(<i>d</i> , <i>p</i>)		6-31g(<i>d</i> , <i>p</i>)/cep-121g	
		-Е	ΔE	- <i>E</i>	ΔE	- <i>E</i>	ΔE	-Е	ΔE	
R=R'=H	F	447.74945	20.610	372.09510	23.446	447.74476	8.297	372.08928	8.165	
	Cl	808.10109	23.682	362.81812	24.785	808.09506	7.850	362.81113	6.432	
	Br	2919.61205	21.293	361.27451	23.630	2919.60628	6.144	361.26749	5.198	
	Ι			359.33057	21.293			359.32400	4.043	
$R^1 = R^2 = R' = H$	F	487.08179	9.951	411.42564	11.158	487.08126	8.559	411.42429	7.614	
$R^3 = CH_3$	Cl	847.43202	13.495	402.14857	14.125	847.43070	10.029	402.14623	7.982	
	Br	2958.94423	13.679	400.60479	13.705	2958.94268	9.609	400.60247	7.614	
	Ι			398.66066	12.471			398.65870	7.325	
$R^1=R'=H$	F	526.41610	5.645	450.75715	3.203	526.41712	8.323	450.75866	7.168	
$R^2 = R^3 = CH_3$	Cl	886.76390	7.299	441.47901	5.015	886.76468	9.347	441.47985	7.220	
	Br	2998.27642	7.010	439.93503	5.041	2998.27721	9.084	439.93564	6.643	
	Ι			437.99086	5.093			437.99144	6.616	
R'=H	F	565.75136	5.067	490.09056	2.310	565.75244	7.903	490.09222	6.670	
R=CH ₃	Cl	926.09702	6.039	480.81166	3.361	926.09800	8.612	480.81284	6.459	
	Br	3037.61034	5.724	479.26742	3.544	3037.61131	3.544	479.26836	6.012	
	Ι			477.32297	3.859			477.32373	5.855	
R=H	F	565.67647	16.987	490.02059	15.806	565.67190	4.988	490.01406	-1.339	
$R'=CH_3$	Cl	926.02828	20.505	480.74378	17.591	926.02168	3.177	480.73554	-4.043	
	Br	3037.53911	17.775	479.20025	16.646	3037.53310	1.995	479.19197	-5.093	
	Ι			477.25642	14.598			477.24861	-5.907	

表 4 加成产物能量优化结果(*E*: a.u.; Δ*E*: kJ·mol⁻¹) Table 4 Optimized geometries of the products' energies(*E*: a.u.; Δ*E*: kJ·mol⁻¹)

中 Si—I 键长增加 0.010 nm, 较 NH₃-H₃SiI 中 Si—I 键长增加了 0.004 nm. 该键长不仅为 N(CH₃)₃-SiH₃X 系列中 Si—I 键最长的, 亦是本文所讨论体系中最长的, 表明其离子性最强.

分析H₃SiX与N(CH₃)₃按方式二形成的加成物,其 Si—N 键键长同样长于方式一加成产物中的 Si—N 键长,同时其稳定化能亦均低于方式一加成所形成 的加成产物,表明第二种方式加成产物中 Si 和 N 之间的作用力均比方式一中 Si、N 间的作用力弱, 因此以方式一加成更为有利.

2.4 不同卤素原子对加成产物的影响

加成过程中,从N原子转移到Si上的电荷不 是完全停留在Si上,而是通过再分配部分转移到与 Si原子相连的卤素原子、H原子及CH₃的C原子 上.因此,不同卤素原子相差极大的电负性会直接影 响到加成产物的结构与性能.

文献[11]报道了卤素原子对NH₃-H₃SiX系列加 成产物的影响,当NH₃与H₃SiX按方式一形成加成物 时,H₃SiCl与NH₃形成的加成物中的Si—N键是此系 列中最短的,而从稳定化能的角度考虑,该系列中以 H₃SiF与NH₃形成的加成物最稳定,其稳定化能最高; 以方式二形成的加成物中,Si—N键长按F、Cl、Br、I 的顺序依次增加,其稳定化能也随之依次降低.

本文所研究的体系中,由于 CH₃ 的存在,使得 卤素原子对加成产物的影响规律又有所变化.在 NH₃-H₂(CH₃)SiX(X=F、Cl、Br、I)系列加成产物中,反 应物无法以方式二形成加成产物. 当反应物以方式 一形成加成物时,H₂(CH₃)SiX系列中Si原子所带的正 电荷按F、Cl、Br、I的顺序依次降低,以H₂(CH₃)SiF 中Si的电正性最强(正电荷为1.544), H₂(CH₂)SiI中Si 的电正性最弱(正电荷为0.942).因此, H₂(CH₃)SiF中 Si原子应当最容易接受NH。分子中的孤对电子形成 Si—N键,但由于F原子的电负性极强,使得Si原子与 F原子之间存在很强的相互作用,从而导致了NH₃-H₂(CH₃)SiF中Si-N之间作用力要较NH₃-H₂(CH₃)SiCl 的弱;在此系列中,NH₃-H₉(CH₃)SiF 中的 Si-N 键长 为 0.268 nm, 大于 NH₃-H₂(CH₃)SiCl 中的 Si-N 键长 0.260 nm; NH₃-H₂(CH₃)SiBr 和 NH₃-H₂(CH₃)SiI 中的 Si—N 键长同样随着 X 原子电负性的减弱而缩短, 即此系列中以NH₃-H₂(CH₃)SiI中的 Si-N 键长(0.257 nm)最短.

与H₂(CH₃)SiF相比,加成产物NH₃-H₂(CH₃)SiF的 Si—F键长仅增加了0.002 nm,而NH₃-H₂(CH₃)SiCl中 的Si—Cl键长与反应物相比则增加了0.006 nm; NH₃-H₂(CH₃)SiBr中的Si—Br键长增加了0.007 nm; NH₃-H₂(CH₃)SiI中的Si—I键长则增加了0.009 nm.即 随着卤素原子电负性的减少,与反应物相比,产物 Si—X键长的变化值逐渐增大,表明离子性逐渐增强.

就键能而言,该系列加成产物在 B3LYP/6-31g (*d*,*p*)(X 原子采用 cep-121 g)的计算条件下,稳定化 能最高的仍为 NH₃-H₂(CH₃)SiCl(14.125 kJ·mol⁻¹),而 以NH₃-H₂(CH₃)SiF的稳定化能最低(11.158 kJ·mol⁻¹). 这表明,在该系列加成物中,以NH₃-H₂(CH₃)SiCl最 为稳定,而以 NH₃-H₂(CH₃)SiF 最不稳定.

对 N(CH₃)₃-H₃SiX 系列加成产物,当以第一种方 式形成加成产物时,其 Si—N 键长、Si—X 增加值及 稳定化能的变化规律均与上一系列相同.

当其按方式二加成形成产物时,由于X原子对 N原子作用力增强,加成产物时的Si—N键长随着 X元素电负性的减少而逐渐增加,导致仅有N(CH₃)₃-H₃SiF与N(CH₃)₃-H₃SiCl的Si—N键长小于Si、N范 德华半径之和,可形成配合物;而N(CH₃)₃-H₃SiBr中 Si—N键长已达0.344 nm,与Si、N范德华半径之和 几乎一致,而N(CH₃)₃-H₃SiI中的Si—N键长则超出 了Si、N范德华半径之和,无法形成配合物.就能量 而言,以该方式加成形成的加成产物中稳定化能最 高的是N(CH₃)₃-H₃SiF,但其稳定化能均已变为负值, 说明事实上该类加成产物极难形成.

3 结 论

R₃SiX(R=H、CH₃; X=F、Cl、Br、I)与 NR'₃(R'=H、 CH₃)有两种加成方式:一种是 NR'₃沿 Si—X 键轴向 位置接近R₃SiX形成加成物,另一种是NR'₃沿Si—X 键侧向位置接近R₃SiX形成加成物.结果表明,前者 更稳定也更容易形成.按方式一加成,产物N(CH₃)₃-H₃SiCl、NH₃-H₃SiCl与NH₃-H₂(CH₃)SiCl分别在同系 列加成物中稳定化能最高,即最为稳定,这一点与文 献[11]所讨论的 NH₃-H₃SiX 系列加成产物的稳定性 规律是一致的.而在这三种加成物中又以 N(CH₃)₃-H₃SiCl最稳定,表明N上斥电子基(CH₃)的存在有利 于Si—N键的形成.加成物N(CH₃)₃-H₃SiI、NH₃-H₃SiI 与NH₃-H₂(CH₃)SiI中Si—I键较相应反应物H₃SiI和 H₂(CH₃)SiI拉长最多,也最容易导电,其结构应该是 季铵盐式.H(CH₃)₂SiX 及(CH₃)₃SiX系列由于甲基的 作用均不能与NH₃形成 Si—N 键,即 Si 上斥电子基团的存在不利于 Si—N 键的形成.按方式二,仅有加成物N(CH₃)₃-H₃SiX或NH₃-H₃SiF能形成Si—N键,其他均不成键.在成键过程中,N上的孤对电子同样转移到 Si 上之后又进行了再分配,从 Si 上转移到了与 Si 相连的四个取代基(C 或 H)上

References

- Trofimov, A. B.; Zakrzewski, V. G.; Dolgounitcheva, O.; Ortiz, J.
 V.; Sidorkin, V. F.; Belogolova, E. F.; Belogolov, M.; Pestunovich,
 V. A. J. Am. Chem. Soc., 2005, 127(3): 986
- Chandrasekaran, A.; Day, R. O.; Holmes, R. R. J. Am. Chem. Soc., 2000, 122(6): 1066
- 3 Joseph, H. I.; Gary, E. M. J. Am. Chem. Soc., 1993, 115(15): 6835
- 4 Du, Z. D.; Chen, J. H.; Bei, X. L.; Zhou, C. G. Organosilion chemistry. Beijing: Higher Education Press, 1990 [杜作栋, 陈剑 华, 贝小来, 周重光. 有机硅化学. 北京: 高等教育出版社, 1990]
- 5 Anton, B. B. J. Am. Chem. Soc., **1954**, **76**(10): 2674
- 6 Driess, M.; Barmeyer, R.; Monsé, C.; Merz, K. Angew. Chem. Int. Ed., 2001, 40(12): 2308
- 7 Gutmann, V. Angew. Chem. Int. Ed., 1970, 9(11):843
- 8 Marsden, C. J. Inorg. Chem., 1983, 22(22): 3177
- 9 Chehayber, J. M.; Nagy, S. T.; Lin, C. S. Can. J. Chem., 1984, 62 (1): 27
- 10 Greenberg, A.; Plant, C.; Venanzi, C. A. J. Mol. Struct. -Theochem, 1991, 234: 291
- 11 Feng, S. Y.; Feng, D. C.; Li, M. J.; Zhou, Y. F; Wang, P. G. J. Mol. Struct. -Theochem, 2002, 618: 51
- 12 Becke, A. D. J. Chem. Phys., 1993, 98(7): 5648
- 13 Su, M. D.; Chu, S. Y. J. Am. Chem. Soc., 1999, 121(17): 4229
- Stevens, W.; Basch, H.; Krauss, J. J. Chem. Phys., 1984, 81(12):
 6026
- 15 Stevens, W. J.; Krauss, M.; Bausch, H.; Jasien, P. G. Can. J. Chem., 1992, 70(2): 612
- 16 Cundari, T. R.; Stevens, W. J. J. Chem. Phys., 1993, 98(7): 5555
- 17 Boys, S. F.; Bernardi, F. Mol. Phys., 1970, 19, 553
- 18 Simon, S.; Duran, M.; Dannenbery, J. J. J. Chem. Phys., 1996, 105 (24): 11024
- 19 Foster, J. P.; Weinhold, F. J. Am. Chem. Soc., 1980, 102(24): 7211
- 20 Reed, A. E.; Weinhold, F. J. Chem. Phys., 1983, 78(6): 4066
- 21 Reed, A. E.; Weinhold, F. J. Chem. Phys., 1985, 83(4): 1736
- 22 Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys., 1985, 83(2):735
- Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev., 1988, 88(6):
 899
- Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; *et al.* Gaussian 03, Revision A. 1. Pittsburgh PA: Gaussian Inc., 2003