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Abstract. This paper analyses the effect of spatial input data
resolution on the simulated effects of regional scale landuse
scenarios using the TOPLATS model. A data set of 25 m res-
olution of the central German Dill catchment (693 km2) and
three different landuse scenarios are used for the investiga-
tion. Landuse scenarios in this study are field size scenarios,
and depending on a specific target field size (0.5 ha, 1.5 ha
and 5.0 ha) landuse is determined by optimising economic
outcome of agricultural used areas and forest. After an aggre-
gation of digital elevation model, soil map, current landuse
and landuse scenarios to 50 m, 75 m, 100 m, 150 m, 200 m,
300 m, 500 m, 1 km and 2 km, water balances and water flow
components for a 20 years time period are calculated for the
entire Dill catchment as well as for 3 subcatchments without
any recalibration. Additionally water balances based on the
three landuse scenarios as well as changes between current
conditions and scenarios are calculated. The study reveals
that both model performance measures (for current landuse)
as well as water balances (for current landuse and landuse
scenarios) almost remain constant for most of the aggrega-
tion steps for all investigated catchments. Small deviations
are detected at the resolution of 50 m to 500 m, while sig-
nificant differences occur at the resolution of 1 km and 2 km
which can be explained by changes in the statistics of the
input data. Calculating the scenario effects based on increas-
ing grid sizes yields similar results. However, the change
effects react more sensitive to data aggregation than simple
water balance calculations. Increasing deviations between
simulations based on small grid sizes and simulations using
grid sizes of 300 m and more are observed. Summarizing,
this study indicates that an aggregation of input data for the
calculation of regional water balances using TOPLATS type
models does not lead to significant errors up to a resolution
of 500 m. Focusing on scenario effects the model is more
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sensitive to input data aggregation as aggregation effects of
current data and scenarios partly sum up. The maximum rea-
sonable grid size for scenario calculations decreases to 200–
300 m.

1 Introduction

The prediction of water fluxes in changing environments and
under changing boundary conditions requires the use of dis-
tributed and process-based models which have been vali-
dated for different environmental conditions (e.g. climate,
topography). Spatially distributed modelling of regional wa-
ter fluxes and water balances, again, requires different spa-
tial data sets representing the landscape structure. At least
information on topography, soils and vegetation is needed.
Thereby the higher the resolution of these data is, the bet-
ter the landscape is represented by the data base (Kuo et al.,
1999). Spatial patterns can be represented in more detail and
small scale fluxes can be considered by the models. As cli-
mate change and environmental change are global problems,
predictions are needed in many regions of the world with dif-
fering data availability in both resolution and quality. A few
studies have examined the effect of grid size of input data on
catchment hydrological simulations such as Kuo et al. (1999,
focusing on topography), Farajalla and Vieux (1995, soils)
and Pelgrum (2000, vegetation). Thus, although it is well
documented in the literature that data resolution can have a
significant impact on simulation results, there are only a few
integrative studies analysing all relevant data sets together
(Bormann, 2006; Kuo et al., 1999), and obtained model re-
sults often are compared and evaluated without taking data
resolution into account. With respect to scenario analysis no
studies were found analysing the effect of data resolution on
scenario results. Therefore, this study elaborates in detail
which effect data and model resolution can have on simu-
lated water balances and scenario effects. Based on a detailed
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Fig. 1. Subcatchments (upper Dill, Dietzhölze, Aar), rain and stream gauges in the Dill catchment (693 km2) in central Germany.

spatial data set of the meso-scale Dill catchment in central
Germany a systematic data aggregation (ten aggregation lev-
els from 25 m to 2 km resolution) and subsequent model ap-
plication using current landuse data, as well as three landuse
scenarios is performed investigating the influence of data ag-
gregation on model applicability in case of the TOPLATS
model (Famiglietti and Wood, 1994). The study was moti-
vated by the international initiative onEnsemble Model Pre-
diction of the Effects of Landuse Change on Hydrology, or-
ganised by the Working Group on Resources Management of
the University of Gießen.

2 Material and methods

2.1 Study region

The Dill catchment (693 km2) belongs to the Lahn-Dill low
mountainous region in central Germany. It is the target catch-
ment of the collaborative research centre SFB 299 (“Landuse
options for peripheral regions”) of the University of Gießen
(Germany) and represents a typical peripheral region dom-
inated by extensive agriculture and forestry. Mean annual
precipitation is between 700 mm to 1100 mm and is highly
correlated to the elevation which ranges between 155 m and
674 m above sea level. Average annual mean temperature is
about 8◦C. The main soil types are cambisols, planosols and
gleysols. For the entire catchment a data set in 25 m reso-
lution is available for topography (digital elevation model),
soil types, current landuse and three landuse scenarios. Two
weather stations are located in the catchment providing daily
data on temperature, air humidity, wind speed and global ra-

diation. Stream flow is observed at four gauges, precipitation
at 15 gauges (Fig. 1). All time series are available for a 20
years time period (1980–1999).

2.2 TOPLATS model

The TOPLATS model (TOPMODEL based atmosphere
transfer scheme; Famiglietti and Wood, 1994; Peters-Lidard
et al., 1997) is a multi-scale model to simulate local to re-
gional scale catchment water and energy fluxes. It combines
the local scale SVAT approach (soil vegetation atmosphere
transfer scheme) to represent local scale vertical water fluxes
with the catchment scale TOPMODEL approach (Beven et
al., 1995) to laterally redistribute the water within a catch-
ment. There is no lateral interaction between the local SVATs
accounted for by the model. But based on the soils topo-
graphic index of the TOPMODEL approach a lateral redistri-
bution of water is realized by adaptation of the local ground-
water levels which are used as lower boundary conditions of
the local SVATs. Main process descriptions of TOPLATS are
summarized in Table 1. In order to reduce the calibration to
a minimum, parameterisation of the TOPLATS model was
carried out by deriving as many parameters as possible from
standard data bases. Soil parameters were derived using the
pedotransfer function of Rawls and Brakensiek (1985). To-
pographic parameters were calculated directly from the dig-
ital elevation model and plant parameters were taken from
the PlaPaDa data base (Breuer et al., 2003). Hence, the cal-
ibration was reduced to adjusting stomatal resistances by a
constant factor to meet the long-term water balance and to
the adaptation of the parameters of the base flow recession
curve.
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Table 1. Hydrological processes and process descriptions within the TOPLATS model.

Model part Process Approach

Local SVATs Interception Storage approach: storage capacity is proportional to leaf area index
Actual
evapotranspiration

Reduction of potential Penman-Monteith evapotranspiration by soil
moisture status

Infiltration Infiltration capacity depending on soil properties and soil water status
(Milly, 1986)

Infiltration excess runoff Rainfall rate minus infiltration capacity
Saturation excess runoff Contributing areas derived from TOPMODEL
Percolation Gravity driven drainage
Capillary rise Capillary rise from water table: Gardner (1958)
Lower boundary Top of capillary fringe

TOPMODEL Water tables Soils-topographic index
Base flow Exponential decay function

Table 2. Areal proportions of landuse classes of current landuse and three different landuse scenarios in the Dill catchment provided by
ProLand (values for water and urban areas remain constant).

Landuse data set Forest Pasture Crops Fallow Water Urban

Current landuse 54.4% 20.5% 6.5% 9.1% 0.3% 9.2%
Scenario: 0.5 ha 56.0% 31.8% 2.7% – 0.3% 9.2%
Scenario: 1.5 ha 45.9% 17.5% 27.1% – 0.3% 9.2%
Scenario: 5.0 ha 34.0% 20.6% 35.9% – 0.3% 9.2%

2.3 Landuse scenarios

The landuse scenarios investigated in this project are so
called field size scenarios. The average field size in the Dill
catchment is currently smaller than 1 ha. This is mainly a
result of the traditional inheritance system where land is split
between all children. This heritage system and the geomor-
phologic boundary conditions of the area led to the charac-
teristic heterogeneous landscape pattern. The existing land
tenure and the small field sizes currently do not support full-
time farmers. Part time farms with high machinery cost are
common in the catchment. As result of the small acreages
and the high machinery costs, farmers do not use any large
machines. One way of increasing the farm income and sup-
porting the utilization of larger machineries is field aggrega-
tion by land consolidation. This may lead to a change in pro-
duction systems, resulting in a landuse distribution which is
different compared to current situation (Weber et al., 2001).

Landuse scenarios were developed using the “ProLand
model” (Fohrer et al., 2002) and provided by the Work-
ing Group on Resources Management of the University of
Gießen. ProLand is an agro-economical model that predicts
optimal production systems, such as intensive or extensive
rangeland, suckler cow production, dairy, cropland, or for-
est, for a given location. It accounts for different natural,

technical, economic and political premises and assumes that
farmers act to optimize their land rent. The field size scenar-
ios were provided by ProLand assuming different boundary
conditions for farming practices, for example different field
size allocations. ProLand predicts economic variables and
provides spatially explicit landuse maps. These maps serve
as input for the scenario analysis. ProLand differentiates be-
tween several pasture and crop production systems, as well as
mixed forest. Based on different target field sizes of 0.5, 1.5
and 5.0 hectares, three different landuse maps are provided
in 25 m resolution which can be used for scenario analysis.
Statistics of landuse scenarios compared to the current con-
ditions are given by Table 2.

2.4 Data aggregation

The available grids of soil types, topography, landuse and
landuse scenarios (25 m resolution) were systematically ag-
gregated stepwise to create grid-based data sets of increasing
grid size (50 m, 75 m, 100 m, 150 m, 200 m, 300 m, 500 m,
1 km, 2 km). The aggregation of the digital elevation model
was carried out by calculating the simple averages of the pix-
els to be aggregated. Concerning soils and landuse, the data
sets were aggregated with respect to the majority of the pix-
els to be aggregated. The most frequent value was allocated
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Fig. 2. Comparison of observed versus simulated stream flow of the
Dill catchment in weekly resolution.

to the aggregated pixel. If there was no unambiguous major-
ity the surrounding pixels were included into the allocation
procedure (Bormann, 2006).

3 Grid size dependent model results

For the current landuse conditions, TOPLATS was calibrated
for the whole Dill catchment using the data of the years
1983–1989, validation period was 1990–1999, and the years
1980–1982 were used as a spin up period. The accuracy
of the simulation (Fig. 2) is satisfactory considering that
TOPLATS was calibrated only with minimum effort. Qual-
ity measures for the validation period are only slightly worse
than for the calibration period. While for daily discharges
the model efficiency (Nash and Suttcliffe, 1970) is of mod-
erate quality (0.65 for calibration, 0.61 for validation), the
model efficiencies and coefficients of determination increase
for longer time intervals (weeks, months) to values greater
than 0.8. The mean deviation in annual discharge between
observations and simulations is about±5.9% for the calibra-
tion and±12.0% for the validation period.

For the simulation of the three subcatchments a recalibra-
tion was carried only for the maximum baseflow parameter
(“baseflow at basin saturation”). The simulation results for
the Dietzḧolze (81 km2) and on the upper Dill (63 km2) are
quite good while the results for the Aar catchment (134 km2)

are of a moderate quality. Model efficiencies for daily dis-
charges range from 0.59 (Aar) to 0.73 (upper Dill, Diezhölze)
for the calibration period, and from 0.52 (Aar) to 0.69 (up-
per Dill, Diezḧolze) for the validation period. They increase
with increasing time intervals to values of 0.76–0.85 (weeks)
and 0.82–0.90 (months).

In order to analyse the effect of input data resolution on
simulation results for all grid sizes derived from the orig-
inal data sets (10 grids ranging from 25 m to 2 km resolu-
tion), continuous water balance simulations for 20 years were
performed. Exemplary results of the grid size dependent to-
tal stream flows (sums of simulated surface runoff and base
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Fig. 3. Dependence of total stream flow (surface runoff + base flow)
on grid sizes for the Dill basin and its three subcatchments (Up. Dill
= Upper Dill, Diet. = Dietzḧolze). Calibration and validation peri-
ods (cal., val.) are analysed separately.
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Fig. 4. Dependence of model efficiencies on grid sizes for the Dill
basin and its three subcatchments (Up. Dill = Upper Dill, Diet. =
Dietzḧolze). Calibration and validation periods (cal., val.) are anal-
ysed separately.

flow) are shown in Fig. 3. Up to a grid size of 500 m the
simulated water fluxes remain almost constant except slight
differences at the grid size of 100 m, which can be explained
by differences in landuse composition at the 100 m aggrega-
tion level (Bormann, 2006). At a grid size of 500 m the dif-
ferences slightly increase, and from 1 km grid size onwards
the simulation results get significantly different. Differences
with respect to simulations based on high resolutions in-
crease. The same systematics of these results can be found
for all main simulated water fluxes (evapotranspiration, sur-
face runoff, base flow, stream flow) in all investigated catch-
ments, and results are also similar for the calibration and the
validation period.

A very similar structure of results also shows the analysis
concerning the dependence of the model efficiencies on grid
size (Fig. 4). As expected from the simulated water balances
they remain constant up to an aggregation level of 300 m to
500 m grid size. Model efficiencies for the 1 km and the 2 km
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Fig. 5. Dependence of simulated water balances on grid size for scenarios for the Dill catchment – scenarios with target field size of 0.5 ha
(a), 1.5 ha(b) and 5.0 ha(c); ETA = actual evapotranspiration.

grids are significantly lower. For these grid sizes a significant
and systematic decrease of the quality measures (model effi-
ciency, coefficient of determination) is observed. A detailed
analysis of the dependence of simulation results and model
quality measures on grid size, as well as on correlations to
input data is given by Bormann (2006).

Analysing the simulated water balances of three landuse
scenarios available for the Dill catchment, the same system-
atics of the effect of aggregation on simulated water fluxes
is observed (Fig. 5). For the Dill catchment as a whole and
for all investigated subcatchments the annual water fluxes re-
main almost constant up to a grid size of 300 m except the
simulated actual evapotranspiration of the 1.5 ha (target field

size of 1.5 ha) scenario for the Dietzhölze (Fig. 5b) which
shows a clear deviation at the 300 m level. As observed for
the current landuse, slight deviations occur at the 100 m level
due to aggregation of landuse data, slight deviations also oc-
cur at the 500 m level and significant deviations are observed
for 1 km and 2 km grid sizes. While the deviation of the sim-
ulation results based on large grid cells compared to small
grid sizes can be positive or negative, the absolute values of
the deviations are high for all investigated water flows (50–
100 mm/a) and especially for the subcatchments.
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Fig. 6. Dependence of relative scenario effects (= ((current – scenario)/current)) on grid size for the Dill catchment(a, b, c)and the upper
Dill subcatchment(d, e, f): scenarios with target field sizes of 0.5 ha (a, d), 1.5 ha (b, e) and 5.0 ha (c, f); QT = stream flow, Run = surface
runoff, Base = base flow, ETA = actual evapotranspiration.

4 Grid size dependent scenario effects

Focusing on the differences between simulation results based
on current landuse conditions and the simulations based on
the three different landuse scenarios provided by ProLand
(Table 2), a partly different picture is obtained as relative
changes of the fluxes due to data aggregation are focused on.
The definition of the scenario effects with respect to the wa-
ter flows (e.g. evapotranspiration, surface runoff, base flow,
stream flow) is given by:

scenario effect=
current-scenario

current
(1)

where scenario = simulated water flow [mm/a] based on lan-
duse scenario at a distinct grid size, and current = simulated
water flow [mm/a] based on current landuse at the same grid
size.

Different effects are identified for the scenarios. While the
0.5 ha scenario (target field size of 0.5 ha) reacts relatively ro-
bust on increasing grid size (Figs. 6a, d, 7a, and d), the 1.5 ha
and the 5.0 ha scenarios (target field size of 1.5 ha and 5.0 ha,
respectively) show higher sensitivities to aggregation of input
data grids. The robust behaviour of the 0.5 ha scenario can
be explained by the considerable changes in water flows in-
duced by the scenario. Changes in the annual water flows by
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Fig. 7. Dependence of relative scenario effects (= ((current – scenario)/current)) on grid size for the Dietzhölze (a, b, c) and the Aar
subcatchment(d, e, f): scenarios with target field sizes of 0.5 ha (a, d), 1.5 ha (b, e) and 5.0 ha (c, f); QT = stream flow, Run = surface runoff,
Base = base flow, ETA = actual evapotranspiration.

±20–30% mask differences between the aggregation levels
in the order of a few percent. This is in contrast to the 1.5 ha
and 5.0 ha scenarios which cause changes in annual water
flows of about±5% except for the Aar subcatchment. Hence
uncertainties due to aggregation in the order of a few percent
can have a significant impact in simulated scenario effects.
This leads to the problem that differences caused by aggre-
gation can lead to a change in the magnitude of the scenario
effect (e.g. for the Dill and the Aar rivers, Figs. 6c, 7f) as well
as even lead to a change in the direction of change caused
by landuse scenarios (e.g. for the Dietzhölze river compared
to current situation, Figs. 7b, c). Nevertheless, although the

sensitivity of scenario effects on aggregation seems to be
higher then the sensitivity of water balances, the effects of
aggregation on scenario results are similar for smaller grid
sizes (between 25 m and 200 m except the 100 m level). For
increased grid sizes significant deviations can be expected.

5 Conclusions

This study indicates that an aggregation of spatial input
data for the calculation of regional water balances us-
ing TOPLATS type models does not lead to significant
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deviations in simulation results data up to a grid size of
300 m. Between a grid size of 300 m and 500 m a slight to
partly significant information loss leads to affected simula-
tion results. Applying the model on a grid size of 1 km and
more causes significant errors in the computed water balance.

Changes in scenario effects react more sensitive to aggre-
gation of data than the simulated water balance terms. Up to
a grid size of 200 m the deviations compared to the smallest
grid sizes remain small except aggregation levels where ag-
gregation changed the statistics of landuse composition sig-
nificantly. The increased sensitivity of simulated scenario ef-
fects compared to the water balance terms can have two rea-
sons. It firstly can be explained by the partly limited magni-
tude of scenario effects compared to the uncertainty induced
by the aggregation process. Secondly aggregation effects in
current state data and scenario data sets add up and therefore
intensify model sensitivity.

Thus due to the existence of model sensitivity to data res-
olution, scenario studies in general should be carried out in
combination with uncertainty studies. Focusing on scenario
effects, the magnitude of the simulated changes, which de-
pends on the flow process accounted for, should be set in
relation to the sensitivity of the model due to model and data
resolution. This can be accomplished for example by per-
forming a comprehensive uncertainty analysis and analysing
the signal-to-noise ratio between scenario effects and model
uncertainty suggested by Bormann (2005).
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