www.whxb.pku.edu.cn

Cu/Sr₃Ti₂O₇的制备及其光催化分解水制氢活性

方舒玫¹ 欧 延¹ 林敬东¹ 廖代伟^{1,2,3,*} ('厦门大学化学系,²固体表面物理化学国家重点实验室,³物理化学研究所,福建厦门 361005)

摘要: 采用聚合合成法(PCM)合成出层状钙钛矿结构的 Sr₃Ti₂O₇, 进而负载 Cu 离子, 制成 Cu/Sr₃Ti₂O₇ 催化剂. 以超纯水和甲醇牺牲剂体系的光催化分解反应为探针, 通过检测氢气生成速率评价了催化剂的光催化性能, 并 借助光电子能谱(XPS)、X 射线衍射(XRD)分析、紫外-可见漫反射光谱(UV-Vis DRS)等手段对催化剂进行了表征. 实验结果表明, Cu 在催化剂中以多价态存在, Cu⁺和吸附氧有利于光生电子的转移. Cu/Sr₃Ti₂O₇ 催化剂较之纯 Sr₃Ti₂O₇ 催化剂活性大大提高, Cu 最佳负载量为 1.5%(w). 产氢速率可稳定在 550-600 μmol·h⁻¹. 还原过的 Cu/ Sr₃Ti₂O₇ 催化剂产氢速率最高可达 1140.8 μmol·h⁻¹.

关键词: 钙钛矿; 分解水; 氢气; 光催化剂; Sr₃Ti₂O₇ 中图分类号: O644

Preparation of Cu/Sr₃Ti₂O₇ and Its Photocatalytic Activity of Water-splitting for Hydrogen Evolution

FANG Shu-Mei¹ OU Yan¹ LIN Jing-Dong¹ LIAO Dai-Wei^{1,2,3,*}

(¹Department of Chemistry, ²State Key Laboratory of Physical Chemistry of Solid Surfaces, ³Institute of Physical Chemistry, Xiamen University, Xiamen 361005, Fujian Province, P. R. China)

Abstract: $Sr_3Ti_2O_7$ photocatalyst with perovskite-layered structure was synthesized by polymerized complex method (PCM). Cu ion as an effective dopant was loaded onto $Sr_3Ti_2O_7$ catalyst. Cu/ $Sr_3Ti_2O_7$ catalyst was applied in the mixture of water and methanol, methanol was used as a sacrificial agent under ultra-violet irradiation, and the catalyst was characterized by XPS, XRD, and UV-Vis DRS. The results showed that Cu existed in several kinds of valence and the photocatalytic activity of Cu/ $Sr_3Ti_2O_7$ was superior to that of pure $Sr_3Ti_2O_7$. Cu⁺ and adsorbed oxygen can accelerate the interfacial electron transfer. When the amount of Cu was 1.5%(w), the best catalytic effect was obtained and the stable average hydrogen evolution rate was about $550-600 \ \mu mol \cdot h^{-1}$. The Cu/ $Sr_3Ti_2O_7$ after reduction attained the highest hydrogen evolution rate that was close to $1140.8 \ \mu mol \cdot h^{-1}$.

Key Words: Perovskite; Water splitting; Hydrogen; Photocatalysts; Sr₃Ti₂O₇

光催化分解水制氢是光催化和洁净新能源领域中极其重要和热门的研究课题.目前已知光解水制氢最好的催化剂是钽酸盐^[1,2],在紫外光照射下光解水制氢的活性最高达 2.18 mmol·h⁻¹.但钽酸盐成本昂贵,应用受到限制.具有层状和管状等规则形状的氧化物,有利于光生电子和空穴的迁移,是光解水制氢的有效催化剂^[1],层状钙钛矿型复合氧化物半导体 Sr₃Ti₂O₇^[34]光催化分解水效果明显, Jeong

等⁶用负载 NiO 显著提高了 Sr₃Ti₂O₇ 的光催化活性.

铜离子(Cu⁺、Cu²⁺)既可以是电子的捕获陷阱,也 可以是空穴的捕获剂,不同于 Cr³⁺、Co²⁺、Ni²⁺等只能 捕获一种载流子^[0]. Cu⁺和 Cu²⁺起到协同分离载流子 的作用,负载铜离子对于提高光催化活性非常有效. 本文利用铜离子这种特殊的性质,将铜离子负载在 Sr₃Ti₂O₇上,结合两者各自分离载流子和迁移载流子 的优势,对催化剂进行催化性能的改进.

[Note]

Received: October 10, 2006; Revised: November 21, 2006; Published on Web: March 9, 2007.

^{*}Corresponding author. Email: dwliao@xmu.edu.cn; Tel: +8659-22183045.

国家自然科学基金(20673089, 20273053, 20023001, 29933040), 973项目(001CB108906)和福建省科技重大专项(2005HZ01-3)资助

[©] Editorial office of Acta Physico-Chimica Sinica

1 实验部分

1.1 试剂和仪器

钛酸丁脂为化学纯(金坛市试剂厂), 硝酸铜等其 余试剂均为分析纯, 实验用水为超纯水.

采用气相色谱仪(GC-950上海海欣色谱仪器有限公司)进行催化剂活性测试;荷兰 X'Pert Pro X 射线粉末衍射仪测试样品的晶型;美国 Tristar 3000 型吸附仪(BET)测得样品比表面积;禁带宽度测试采用 Cary 5000 紫外-可见-近红外分光光度计(美国 Varian 公司); XPS 装置为 Physical Electronics 公司 生产的 Quantum 2000 Scanning Esca Microprobe.

1.2 样品的制备

以钛酸丁脂、硝酸锶等为原料,通过聚合合成法 (polymerized complex method, PCM)^[7]合成出Sr₃Ti₂O₇, 再植入不同含量的铜后得到 Cu/Sr₃Ti₂O₇(Cu 指 Cu 物种,实际上 Cu 以 CuO、Cu₂O 两种形式存在).将钛 酸丁脂加入乙二醇和甲醇的混合液中,将混合液于 60℃下恒温,加入无水柠檬酸及硝酸锶,搅拌 1 h 后 升温至 130℃,聚酯化至透明的凝胶状态.将凝胶转 移至马弗炉中,分别在 350、900℃煅烧 2 h,得到 Sr₃Ti₂O₇ 白色粉末.然后用浸渍法负载 Cu²⁺,旋转蒸 干,放入马弗炉 350℃烘成干燥粉末,制得不同质量 比的 Cu/Sr₃Ti₂O₇ 催化剂.为考察 Cu⁺含量对催化剂 活性的影响,另再于 500℃用纯氢还原做对比实验.

1.3 催化活性评价

自制光反应器使用内置型光源(300 W 高压汞 灯), 气体闭合回路系统(氮气做载气).1g 催化剂, 反 应液为 600 mL 超纯水和 12 mL 甲醇, 磁力搅拌. 采 用气相色谱对氢产量进行检测.

2 结果与讨论

2.1 活性评价

2.1.1 不同 Cu 负载量的 Sr₃Ti₂O₇的催化产氢速率测试结果

图 1 为铜的质量分数为 0%、1%、1.5%、2%、3% Cu/Sr₃Ti₂O₇ 催化剂的产氢速率随反应时间的变化曲 线. 由图 1 可知, 负载 1.5%Cu 的 Sr₃Ti₂O₇ 的产氢速 率远高于其它负载量或未负载的催化剂, 10 h 仍没 有失活, 稳定产氢速率在 550-600 µmol·h⁻¹ 范围. 过渡金属离子负载进入半导体, 可能会引入缺陷位 置或改变结晶度等, 成为电子或空穴的陷阱而延长 半导体的寿命, 而且金属离子负载往往有一个最佳 负载量, 当负载量小于最佳负载量时没有形成足够 捕获载流子的陷阱, 则过量负载金属离子会成为电

 $w(\mathbf{cu})$. (u) = 0, v, (v) = 1, v, (v) = 1, 0, v, (u) = 2, v, (v)

子-空穴的复合中心而加快复合[68].

2.1.2 负载 1.5%Cu 还原前后催化活性的比较

由上文知, 负载 1.5%Cu 的 Sr₃Ti₂O₇ 为最佳负载 量催化剂. 因此, 对 1.5%Cu/Sr₃Ti₂O₇ 重点加以研究. 图 2 为用 H₂还原前后 1.5%Cu/Sr₃Ti₂O₇ 的产氢速率 随反应时间的变化曲线. 由图可见, 用 H₂还原前后 1.5%Cu/Sr₃Ti₂O₇ 催化活性差别很大, 还原后的 1.5% Cu/Sr₃Ti₂O₇ 催化剂产氢率 164 μ mol·h⁻¹的 7 倍^[5], 是未经还原 催化剂 1.5%Cu/Sr₃Ti₂O₇ 的最高产氢率(b 曲线764.1 μ mol·h⁻¹)的 1.5 倍. 随着反应时间的延长, 还原后 的 1.5%Cu/Sr₃Ti₂O₇ 产氢速率减小幅度较大, 2.5 h 时, 其产氢速率反而低于未还原的 1.5%Cu/Sr₃Ti₂O₇. 另图中a 曲线是纯 Sr₃Ti₂O₇ 的产氢速率随时间变化

图 2 1.5%Cu/Sr₃Ti₂O₇ 还原前后产氢速率(v) Fig.2 The rates of H₂ evolution (v) of 1.5%Cu/Sr₃Ti₂O₇ before and after reduction (a) pure Sr₃Ti₂O₇; (b) 1.5%Cu/Sr₃Ti₂O₇; (c) 1.5%Cu/Sr₃Ti₂O₇ reduced by H₂

图 3 纯 Sr₃Ti₂O₇和 1.5%Cu/Sr₃Ti₂O₇还原前后的 XRD 图 Fig.3 XRD patterns of pure Sr₃Ti₂O₇ and 1.5%Cu/ Sr₃Ti₂O₇ before and after reduction (a) pure Sr₃Ti₂O₇; (b) 1.5%Cu/Sr₃Ti₂O₇; (c) 1.5%Cu/Sr₃Ti₂O₇ reduced by H₂

曲线.可以看出未负载的 Sr₃Ti₂O₇ 产氢速率很低,随 着反应时间的增长,曲线变化不明显.

2.2 1.5%Cu/Sr₃Ti₂O₇的表征

2.2.1 样品的 XRD 和 BET 表征

图 3 为纯 Sr₃Ti₂O₇ 及 1.5%Cu/Sr₃Ti₂O₇ 还原前后 的 XRD 图. 由图 3 可知,利用 PCM 方法制得的 Sr₃Ti₂O₇ 晶型完整,出现(105)、(110)等特征峰. Cu 的 负载对 Sr₃Ti₂O₇ 的衍射峰出峰影响不大,可能是由 于其掺杂量较少的缘故. 与还原前 1.5%Cu/Sr₃Ti₂O₇ 相比, 还原后其衍射峰出峰位置基本相同, 说明 H₂ 还原对Sr₃Ti₂O₇ 的结构未造成影响. BET 测试得到 未还原的 1.5%Cu/Sr₃Ti₂O₇ 比表面积为 12.5 m²·g⁻¹. 2.2.2 XPS 表征

图 4 为 1.5%Cu/Sr₃Ti₂O₇ 的 XPS 谱图. 根据图 4 给出的峰形特点及元素结合能的数据,可以判断出 存在两类 Cu 物种¹⁹,元素结合能分别在 932 和 933 eV 附近的 Cu⁺和 Cu²⁺, Cu 离子的变价既可以捕获电 子又可以捕获空穴:

$h\nu \rightarrow h^+ + e^-$	(光激发),
$Cu^{2+}+e^{-}\rightarrow Cu^{+}$	(光生电子捕获),
$Cu^++O_{ads} \rightarrow Cu^{2+}+O_{ads}^-$	。(捕获电子向吸附氧迁移),

 O_{ads} +H⁺→H₂+O₂ (电子在界面上的转移). Cu⁺的存在有利于光生电子转移,抑制了光生载流子 的复合,保证了催化剂界面上的反应能有效进行.比 较图 4(a)、4(b)两图及表 1,可以看出,还原前后 Cu⁺ 和 Cu²⁺的质量分数有较大变化,还原后的催化剂的 Cu⁺质量分数增加,催化剂的活性增大,但由于反应 中 Cu⁺易被 O₂氧化,因而活性下降很快.而牺牲试 剂甲醇的加入有利于捕获空穴,抑制 O₂的生成.避 免光生电子与空穴的快速复合,有利于电子转移.

图 4 1.5% Cu/Sr₃Ti₂O₇的 XPS 谱图 Fig.4 XPS of Sr₃Ti₂O₇ doped with copper

表 1 Cu 2*p*₃₂的 XPS 拟合结果 Table 1 Fitting results of Cu 2*p*₃₇XPS

	0		1 3/2
1.5%Cu/Sr ₃ Ti ₂ O ₇	$E_{\rm B}/{\rm eV}$	Copper species	Mass fraction (%)
before reduction	933.1	Cu ²⁺	48.5
	932.2	Cu^{+}	51.5
after reduction	933.2	Cu ²⁺	39.1
	932.4	Cu^+	60.9

表 2 01s的 XPS 拟合结果 Table 2 Fitting results of 01s XPS

		•	
1.5%Cu/Sr ₃ Ti ₂ O ₇	$E_{\rm B}/{\rm eV}$	Oxygen species	Volume fraction(%)
before reduction	529.2	lattice oxygen	53.6
	531.2	adsorption oxygen	46.4
after reduction	529.3	lattice oxygen	44.4
	531.4	adsorption oxygen	55.6

Ti、O、Sr均只有一种价态存在,分别为+4价、-2 价、+2价.其中,如图4(c)、(d),O以吸附氧和晶格氧 存在,结合能分别位于529和531eV附近,吸附氧 和晶格氧的体积分数如表2所示.从表2可看出,与 还原前相比,还原后的催化剂中吸附氧的质量分数 增加.吸附氧对于捕获电子抑制其与空穴复合有重 要作用^[10],因此这也可能是还原后的活性较高的一 个原因.

2.2.3 UV-Vis 漫反射光谱

图 5 为催化剂的紫外-可见漫反射光谱图.可以 看出,光吸收带在 400 nm 以下,根据光吸收波长阈 值 $\lambda_g(nm)$ 与禁带宽度 $E_g(eV)$ 的关系式^[11] $\lambda_g=1240/E_g$, 由 $\lambda_g=400$ nm 可以得出催化剂的禁带宽度为 3.1 eV,高于水的分解能 1.23 eV^[12].故该催化剂对分解 水制氢有良好的催化作用.另外,图 5 中 c 曲线为 1.5% Cu/Sr₃Ti₂O₇ 500 ℃下用氢气还原后的样品,与

the catalysts (a) pure Sr₃Ti₂O₇; (b)1.5%Cu/ Sr₃Ti₂O₇; (c) 1.5%Cu/ Sr₃Ti₂O₇ reduced by H₂ 纯 Sr₃Ti₂O₇(a 曲线)及未还原的 1.5%Cu/Sr₃Ti₂O₇(b 曲线)相比,其在可见光区 500-700 nm 之间出现一 个微弱的吸收带,这也是其活性高的原因之一.

3 结 论

(1) Cu 的负载大大提高 Sr₃Ti₂O₇ 催化剂光催化
活性,最佳负载量为 1.5%,该催化剂的活性较高,10
h 内产氢速率能保持在 550-600 μmol·h⁻¹范围内.

(2) 负载 Cu 对催化剂晶型改变不大, 在催化剂 中 Cu 以 Cu²⁺、Cu⁺两种价态形式存在, 成为光生电 子-空穴的捕获阱, 抑制光生电子和空穴的复合. 且 Cu⁺越多, 越有利于捕获光生电子并传递给界面吸附 氧, 从而提高催化剂活性.

(3) 还原后的 1.5% Cu/Sr₃Ti₂O₇ 的催化活性初始 活性高, 产氢速率最高可达 1140.8 μmol·h⁻¹, 可能是 还原后的催化剂中产生了更多的一价铜, 但其稳定 性较未还原的 1.5% Cu/Sr₃Ti₂O₇ 差.

References

- 1 Kudo, A. Catal. Surv. Asia, 2003, 7(1): 31
- 2 Kato, H.; Kudo, A. J. Phys. Chem. B, 2001, 105(19): 4285
- 3 Tilley, R. J. D. J. Solid State Chem., 1977, 21: 293
- 4 Niu, X. S.; Cao, Z. M. Chemical Research and Application, 2006, 18(7): 770 [牛新书, 曹志明. 化学研究与应用, 2006, 18(7): 770]
- 5 Jeong, M.; Kimm T. Int. J. Hydrogen Energ., 2006, 31(9): 1142
- 6 Ni, M.; Leung, M. K. H.; Leung, D. Y. C. *Renew. Sust. Energ. Rev.*, 2007, 11(3): 401
- Kakihana, M.; Yoshimura, M. Bull. Chem. Soc. Jpn., 1999, 72(7): 1427
- 8 Jin, Z. L.; Lü, G. X. Mol. Catal., 2004, 18(4): 310 [靳治良, 吕 功煊. 分子催化, 2004, 18(4): 310]
- 9 Wu, S. X.; Ma, Z.; Qin, Y. N.; Qi, X. Z.; Liang, Z. C. Acta Phys.-Chim. Sin., 2004, 20(2):138 [吴树新, 马 智, 秦永宁, 齐晓周, 梁珍成. 物理化学学报, 2004, 20(2):138]
- 10 Linsebigler, A. L.; Lu, G. Q. Chem. Rev., 1995, 95: 735
- Gao, L.; Zheng, S.; Zhang, Q. H. Nano titanium oxide photocatalyst material and its application. Beijing: Chemical Industry Press, 2002: 40-41 [高 濂,郑 珊,张青红. 纳米氧化钛光催化材料 及应用. 北京: 化学工业出版社, 2002: 40-41]
- Liu, S. X.; Liu, H. The foundation and application of photocatalysis and photoelectrocatalysis. Beijing: Chemical Industry Press, 2006: 274–275 [刘守新, 刘 鸿. 光催化及光电催化基础与应用. 北 京: 化学工业出版社, 2006: 274–275]