2010年2月 February 2010

・博士论文・

文章编号: 1000—3428(2010)03—0024—04 文献标识码: A

中图分类号: N945.12

基于相关向量回归的仿真元建模方法

吴 冰¹,程思微¹,张文琼²,梁加红¹

(1. 国防科技大学机电工程与自动化学院,长沙 410073; 2. 第二炮兵网管中心,北京 100085)

摘 要:针对支持向量回归元模型存在的不足,提出将相关向量回归应用于仿真元建模,使用多个不同维度和非线性程度的基准测试函数, 在元模型精确性、采样技术、样本规模、模型维度和非线性程度等多方面与多项式回归、Kriging、径向基函数、支持向量回归4种方法进 行对比研究,结果证明该方法具有较高的精确性和鲁棒性。

关键词:元建模;相关向量回归;支持向量回归

Simulation Metamodeling Approach Based on Relevance Vector Regression

WU Bing¹, CHENG Si-wei¹, ZHANG Wen-qiong², LIANG Jia-hong¹

College of Electromechanical Engineering and Automation, National University of Defense Technology, Changsha 410073;
 Network Management Centre of Second Artillery Arming, Beijing 100085)

(Abstract) Aiming at the shortcoming of support vector regression metamodel, Relevance Vector Regression(RVR) is investigated as an alternative metamodeling approach. Using several benchmark test functions with varying model dimensions and degrees of nonlinearity, RVR is compared with four metamodeling approaches, including polynomial regression, Kriging, radial basis function and support vector regression. Several performance criterions are considered, including metamodel accuracy, effect of sampling techniques, effect of sample size, effect of model dimensions and degrees of nonlinearity. RVR approach can achieve higher accuracy and more robustness.

[Key words] metamodeling; Relevance Vector Regression(RVR); support vector regression

1 概述

探索性分析是兰德公司提出的一种全局定量系统分析方 法,它可以全面分析各种不确定性要素对结果影响,具有较 好的灵活性、高效性与适应性,在军事领域具有巨大的应用 前景。但目前制约探索性分析应用的主要困难之一就是搜索 空间太大,计算规模过大,而减少问题分析规模、提高运行 效率一种重要方法就是仿真元模型技术。仿真元模型 (simulation metamodel)^[1],即模型的模型,是对精确仿真模型 的输入输出数据进行拟合而得到的模型,使用元模型代替或 者部分代替精确仿真模型进行仿真实验,可以在满足较高精 度的前提下,大幅降低计算开销,提高仿真效率。

元模型建立的过程称为元建模(metamodeling)。仿真元建 模方法主要包括多项式回归、径向基函数、Kriging、神经网 络、支持向量回归等,这些方法可以实现对复杂仿真模型的 逼近,但在拟合精度、鲁棒性、计算复杂度和算法透明性等 方面存在差异。文献[2]将支持向量回归与其他方法进行了对 比研究,证明了支持向量回归方法的优越性,然而支持向量 回归元模型也存在一些不足,如无法得到概率性预测、核函 数必须满足 mercer 定理等,为此本文将基于贝叶斯理论的相 关向量机方法^[3]应用于仿真元模型的建立,并与多项式回归、 Kriging 法、径向基函数和支持向量回归在多个方面进行性能 对比分析,研究相关向量机应用于仿真元建模的可行性。

2 相关向量回归

相关向量机(Relevance Vector Machine, RVM)是文献[3]

提出的一种贝叶斯框架下的稀疏概率机器学习模型。相比于 支持向量机,相关向量机的优势在于不仅可以输出预测的点 估计,还可以输出预测的分布;使用更少的支持向量;不用 估计支持向量机的误差常量约束 C;核函数不需要满足 mercer 定理,可以在更宽的范围内选择核函数,具有更好的 适应性。

设广义线性模型为
$$y(x) = \sum_{i=1}^{N} w_i K(x, x_i) + w_0$$
(1)

其中, $K(x,x_i)$ 为非线性基函数,一般选用高斯核或 RBF 核; { w_i }为模型的权值向量。给定训练样本输入输出集 { x_i,t_i } $_{[n]}^{N}$, 假定目标值是独立的,并且数据的噪声服从方差为 σ^2 的零均 值高斯分布,则训练样本集的似然函数为^[3]

$$p(t \mid \boldsymbol{w}, \sigma^2) = (2\pi\sigma^2)^{-N/2} \exp\left\{-\frac{1}{2\sigma^2} \left\|\boldsymbol{t} - \boldsymbol{\Phi}\boldsymbol{w}\right\|^2\right\}$$
(2)

其中, $t = (t_1, t_2, \dots, t_n)$; $w = (w_0, w_1, \dots, w_n)$; $\boldsymbol{\sigma} \in n \times (n+1)$ 为设 计矩阵, $\boldsymbol{\sigma}_{ij} = k(x_i, x_{j-1}), j > 1$, $\boldsymbol{\sigma}_{n1} = 1$ 为常量项。定义模型权重 的先验分布为依赖于超参数 α 的高斯分布,即

基金项目:国家自然科学基金资助项目(60704038)

作者简介:吴 冰(1980-),男,博士研究生,主研方向:复杂系统 建模,实时仿真;程思微,博士研究生;张文琼,硕士;梁加红, 教授、博士

收稿日期: 2009-07-04 E-mail: bingwu@nudt.edu.cn

$$p(\boldsymbol{w} \mid \boldsymbol{\alpha}) = \prod_{i=1}^{N} N(w_i \mid \boldsymbol{0}, \boldsymbol{\alpha}_i^{-1})$$
(3)

其中, α 是决定权值先验分布的超参数, 它最终决定模型的 稀疏特性。根据贝叶斯准则, 可以得到权重向量的后验似然 分布为

$$p(\boldsymbol{w} | t, \alpha, \sigma^2) \propto N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$
(4)

其中, $\Sigma = (\boldsymbol{\Phi}^{\mathrm{T}} B \boldsymbol{\Phi} + A)^{-1}$, $\mu = \Sigma \boldsymbol{\Phi}^{\mathrm{T}} B t$; $A = \operatorname{diag}(\alpha_0, \alpha_1, \dots, \alpha_1)$; $B = \sigma^2 I_n$ 。训练样本集的式(2)通过对权重变量进行积分,可 以得到依赖于 α 和 σ^2 的边缘似然分布为

$$p(t|\alpha,\sigma^{2}) = \int p(t|w,\sigma^{2})p(w|\alpha)dw \propto N(0,C)$$
(5)
其中,协方差 $C = (B^{-1} + \boldsymbol{\sigma}A^{-1}\boldsymbol{\sigma}^{T})^{-1}$ 。

RVM 方法中模型权值的估计值由后验分布的均值给出, 同时也是权值的最大后验估计。权值的最大后验估计取决于 超参数和噪声方差。假设 $p(\alpha)$ 和 $p(\sigma^2)$ 为均匀分布,由 $p(\alpha,\sigma^2|t) \propto p(t|\alpha,\sigma^2)p(\alpha)p(\sigma^2),则\alpha 和 \sigma^2$ 的最大后验估 计可以通过式(5)得到。式(5)分别对 α 和 σ^2 求导,并令导数 等于 0,可以得到更新公式^[3]:

$$\alpha_i^{\text{new}} = \gamma_i / \mu_i^2 \tag{6}$$

$$\left(\sigma^{2}\right)^{\text{new}} = \left\|\boldsymbol{t} - \boldsymbol{\Phi}\boldsymbol{\mu}\right\|^{2} / (N - \sum_{i} \gamma_{i})$$
(7)

其中, $\gamma_i = 1 - \alpha_i \sum_{ii}$; μ 为当前权重的后验均值; Σ 为当前 权重方差。在得到 α^{new} 和 (σ^2)^{new} 后,重新估计权重的后验均 值和方差。在迭代估计过程中,超参数 α 的一部分元素将趋 于无穷大,根据式(3),相对应的权重的分布将在零处形成尖 峰,暗示相对应的基函数可以进行修剪,从而实现了 RVM 的稀疏化。

3 对比方法

本文选择了文献[4-7]中使用的9个基准测试函数进行性 能对比研究,这9个函数基本可以覆盖复杂系统的不同维度 和系统行为的非线性程度。模型输入小于等于4的为低维, 反之为高维。测试函数如下:

(1)函数 1^[4]: $f_1 = (10^5)x_1^2 + x_2^2 - (x_1^2 + x_2^2)^2 + (10^{-5})(x_1^2 + x_2^2)^4$

$$-20 \le x_i \le 20$$

(2)函数 $2^{[5]}$:

$$f_2 = (30 + x_1 \sin x_1) (4 + \exp(-x_2^2)), -4 < x_i < 4$$
(9)
(3) 函数 3^[5]:

$$f_3 = \sin(\pi x_1/12)\cos(\pi x_2/16), \ -10 < x_i < 10$$
(4) 函数 4^[5]: (10)

$$f_{4} = 2 + 0.01 (x_{2} - x_{1}^{2})^{2} + (1 - x_{1}) + 2(2 - x_{2})^{2} + 7\sin(0.5x_{1})\sin(0.7x_{1}x_{2})$$
(11)
$$0 < x_{i} < 5$$

$$f_{5} = (x_{1} - 10)^{2} + 5(x_{2} - 12)^{2} + x_{3}^{4} + 3(x_{4} - 11)^{2} + 10x_{5}^{6} + 7x_{6}^{2} + x_{7}^{4} - 4x_{6}x_{7} - 10x_{6} - 8x_{7}$$
(12)

$$-10 \le x_i \le 10, i = 1, 2, \cdots, 7$$

(6)函数
$$6^{-7}$$
:

$$f_{6} = \sum_{j=1}^{10} \left[\frac{3}{10} + \sin\left(\frac{16}{15}x_{j} - 1\right) + \sin\left(\frac{16}{15}x_{j} - 1\right) \right]$$
(13)
 $-1 \le x_{j} \le 1, i = 1, 2, \cdots, 10$
(7)函数 $7^{[5]}$:

$$f_{7} = \sum_{i=1}^{10} \left\{ \left(\ln \left(x_{i} - 2 \right) \right)^{2} + \left(\ln \left(10 - x_{i} \right) \right)^{2} \right\} - \left(\prod_{i=1}^{10} x_{i} \right)^{2}$$

$$2.1 \le x_{j} \le 9.9, \ i = 1, 2, \cdots, 10$$
(14)

(8)函数 8^[5]:

$$f_{8} = \sum_{j=1}^{10} \exp(x_{j}) \left(c_{j} + x_{j} - In\left(\sum_{k=1}^{10} \exp(x_{k})\right) \right)$$

$$-10 \leqslant x_{i} \leqslant 10, \ i = 1, 2, \cdots, 10$$
(9) 函数 9^[5]:

$$f_{9} = \sum_{i=1}^{16} \sum_{j=1}^{16} a_{ij} \left(x_{i}^{2} + x_{i} + 1 \right) \left(x_{j}^{2} + x_{j} + 1 \right)$$

$$-1 \leq x_{j} \leq 1, \quad i = 1, 2, \cdots, 16$$

$$(16)$$

对比实验步骤如下:

(1)产生训练和测试数据。为了考虑样本规模对元模型精 度的影响,对于每个测试函数都选择了低、中、高 3种样本 规模,具体的采样点数取决于模型维度。为了减小采样方法 对元模型建立的影响,对于每个测试函数都采用了 3 种不同 的采样方法,包括拉丁超立方体法(LHS)、Hammersley 序列 采样(HSS)和随机序列采样方法(RSS)。另外,采用拉丁超立 方体法生成 1 000 个数据点的测试数据集。表 1 给出了测试 函数属性和生成训练数据集大小。

表1 测试函数属性及训练集规模

云粉	桧)	维度	非化州钽度	:	样本规模				
ЩЖ	1四 八	堆戊	非线性性度	低	中	高			
f_1	2	低	低	10	25	50			
f_2	2	低	高	10	25	50			
f_3	2	低	高	10	25	50			
f_4	2	低	高	10	25	50			
f_5	7	高	低	20	50	80			
f_6	10	高	高	25	50	80			
f_7	10	高	高	25	50	80			
f_8	10	高	高	25	50	80			
f_9	16	高	高	50	125	200			

(2)使用训练数据创建元模型。本文采用了5种元建模方 法、3种采样技术、3种样本规模和9个测试函数,共创建了 5×3×3×9=405个元模型。

(3)对建立的元模型的精确性和鲁棒性对比分析。使用测试样本,对步骤(2)中建立的元模型进行验证,根据在测试点处的预测值 ŷ_i和观测值 y_i之间的差异来分析建立的元模型的精度。为了降低不同测试函数对元模型精度的不同影响,本文使用归一化均方根误差 NRMSE 和归一化最大绝对误差 NMAE 2 个统计量,作为元模型精度的全局和局部精度衡量标准:

$$NRMSE = \sqrt{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 / \sum_{i=1}^{n} y_i^2}$$
(17)

$$NMAE = \max \left| y_i - \hat{y}_i \right| / \sqrt{\frac{1}{n} \sum_{i=1}^n (y_i - \overline{y})^2}$$
(18)

4 仿真结果及分析

(8)

表 2、表 3 给出了对比实验中这 5 种元建模方法在高采本规模下的元模型精确性指标 NRMSE 和 NMAE。由于篇幅 原因,基于低、中采样样本的计算结果不再给出。其中,Ld, Hd,Ln和 Hn 分别代表低维、高维、低非线性和高非线性函 数的平均值;All则为对所有测试函数的平均值。

表 2 NRMSE 指标

云粉	云 米 PR		Kriging		RBF			SVR		RVR					
函数	LHS	HSS	RSS	LHS	HSS	RSS	LHS	HSS	RSS	LHS	HSS	RSS	LHS	HSS	RSS
f_1	0.016 2	0.014 4	0.016 6	0.006 8	0.005 3	0.011 6	0.009 4	0.006 0	0.010 9	0.009 2	0.009 2	0.015 4	0.010 0	0.009 3	0.013 3
f_2	0.068 8	0.068 5	0.093 2	0.035 6	0.022 9	0.052 3	0.021 3	0.020 5	0.045 0	0.022 0	0.019 6	0.020 9	0.021 6	0.017 7	0.027 8
f_3	0.789 9	0.793 2	0.765 6	0.024 9	0.048 0	0.037 4	0.015 2	0.027 3	0.009 4	0.018 2	0.017 6	0.015 7	0.010 6	0.012 3	0.019 7
f_4	0.416 2	0.399 6	0.427 3	0.185 4	0.170 4	0.165 8	0.204 1	0.2861	0.311 5	0.235 3	0.176 6	0.178 1	0.214 8	0.160 6	0.179 4
f_5	0.747 3	0.780 1	0.843 5	0.480 5	0.573 9	0.563 9	0.753 4	0.676 4	0.656 1	0.514 0	0.493 3	0.511 2	0.510 9	0.505 2	0.522 4
f_6	0.306 6	0.308 8	0.322 6	0.127 8	0.127 0	0.136 3	0.132 7	0.130 7	0.137 4	0.133 4	0.131 8	0.132 9	0.124 8	0.119 0	0.127 3
f_7	0.931 5	0.932 0	1.045 0	0.713 8	0.837 7	0.952 9	0.782 0	0.719 8	0.904 1	0.798 1	0.849 4	0.920 8	0.770 4	0.734 4	0.903 4
f_8	0.673 9	0.684 3	0.627 9	0.651 7	0.674 5	0.629 8	0.591 0	0.651 5	0.603 7	0.640 4	0.678 2	0.626 9	0.568 7	0.632 1	0.585 4
f_9	0.237 6	0.232 3	0.235 9	0.149 6	0.163 4	0.151 9	0.109 1	0.115 5	0.109 4	0.094 3	0.116 3	0.094 7	0.036 2	0.035 6	0.038 9
Ld	0.322 8	0.318 9	0.325 7	0.063 2	0.061 6	0.066 8	0.062 5	0.085 0	0.094 2	0.071 2	0.055 8	0.057 5	0.064 3	$0.050\ 0$	0.060 0
Hd	0.579 4	0.587 5	0.615 0	0.424 7	0.475 3	0.487 0	0.473 6	0.458 8	0.482 1	0.436 0	0.453 8	0.457 3	0.402 2	0.405 3	0.435 5
Ln	0.333 7	0.342 3	0.365 3	0.212 3	0.247 5	0.242 5	0.290 6	0.266 0	0.258 8	0.205 8	0.206 3	0.207 1	0.185 7	0.183 4	0.191 5
Hn	0.531 2	0.531 1	0.546 9	0.289 9	0.313 4	0.329 1	0.291 1	0.306 0	0.335 2	0.307 9	0.312 2	0.315 9	0.285 1	0.279 3	0.307 2
All	0.465 3	0.468 1	0.486 4	0.264 0	0.291 5	0.300 2	0.290 9	0.292 6	0.309 7	0.273 9	0.276 9	0.279 6	0.252 0	0.247 4	0.268 6
	書 3 NMAE 指标														
	PR			Kriging			RBF			SVR			RVR		
函数					00										
f_1	LHS	HSS	RSS	LHS	HSS	RSS	LHS	HSS	RSS	LHS	HSS	RSS	LHS	HSS	RSS
51	LHS 0.185 4	HSS 0.184 8	RSS 0.221 4	LHS 0.139 7	HSS 0.062 7	RSS 0.183 9	LHS 0.168 0	HSS 0.065 0	RSS 0.178 6	LHS 0.148 4	HSS 0.137 1	RSS 0.224 7	LHS 0.138 3	HSS 0.120 6	RSS 0.175 1
f_2	LHS 0.185 4 2.017 1	HSS 0.184 8 1.927 5	RSS 0.221 4 2.970 2	LHS 0.139 7 2.665 2	HSS 0.062 7 1.521 3	RSS 0.183 9 3.067 3	LHS 0.168 0 1.017 8	HSS 0.065 0 1.274 1	RSS 0.178 6 2.621 1	LHS 0.148 4 1.113 1	HSS 0.137 1 1.084 2	RSS 0.224 7 1.080 5	LHS 0.138 3 1.158 8	HSS 0.120 6 0.966 0	RSS 0.175 1 0.974 1
f_2 f_3	LHS 0.185 4 2.017 1 1.889 9	HSS 0.184 8 1.927 5 2.950 9	RSS 0.221 4 2.970 2 2.736 2	LHS 0.139 7 2.665 2 0.174 3	HSS 0.062 7 1.521 3 0.420 1	RSS 0.183 9 3.067 3 0.241 8	LHS 0.168 0 1.017 8 0.108 7	HSS 0.065 0 1.274 1 0.249 5	RSS 0.178 6 2.621 1 0.072 3	LHS 0.148 4 1.113 1 0.170 7	HSS 0.137 1 1.084 2 0.163 2	RSS 0.224 7 1.080 5 0.143 1	LHS 0.138 3 1.158 8 0.091 1	HSS 0.120 6 0.966 0 0.132 6	RSS 0.175 1 0.974 1 0.211 4
f_2 f_3 f_4	LHS 0.185 4 2.017 1 1.889 9 1.501 7	HSS 0.184 8 1.927 5 2.950 9 1.258 3	RSS 0.221 4 2.970 2 2.736 2 1.697 3	LHS 0.139 7 2.665 2 0.174 3 1.954 7	HSS 0.062 7 1.521 3 0.420 1 1.916 7	RSS 0.183 9 3.067 3 0.241 8 2.196 8	LHS 0.168 0 1.017 8 0.108 7 1.559 2	HSS 0.065 0 1.274 1 0.249 5 4.141 0	RSS 0.178 6 2.621 1 0.072 3 3.771 5	LHS 0.148 4 1.113 1 0.170 7 2.112 3	HSS 0.137 1 1.084 2 0.163 2 1.770 6	RSS 0.224 7 1.080 5 0.143 1 2.264 5	LHS 0.138 3 1.158 8 0.091 1 2.230 3	HSS 0.120 6 0.966 0 0.132 6 1.822 0	RSS 0.175 1 0.974 1 0.211 4 2.151 3
f_2 f_3 f_4 f_5	LHS 0.185 4 2.017 1 1.889 9 1.501 7 3.473 7	HSS 0.184 8 1.927 5 2.950 9 1.258 3 3.730 5	RSS 0.221 4 2.970 2 2.736 2 1.697 3 4.888 9	LHS 0.139 7 2.665 2 0.174 3 1.954 7 2.329 6	HSS 0.062 7 1.521 3 0.420 1 1.916 7 2.633 9	RSS 0.183 9 3.067 3 0.241 8 2.196 8 2.286 0	LHS 0.168 0 1.017 8 0.108 7 1.559 2 3.504 3	HSS 0.065 0 1.274 1 0.249 5 4.141 0 4.267 0	RSS 0.178 6 2.621 1 0.072 3 3.771 5 3.842 2	LHS 0.148 4 1.113 1 0.170 7 2.112 3 2.621 6	HSS 0.137 1 1.084 2 0.163 2 1.770 6 2.437 5	RSS 0.224 7 1.080 5 0.143 1 2.264 5 2.696 9	LHS 0.138 3 1.158 8 0.091 1 2.230 3 2.813 9	HSS 0.120 6 0.966 0 0.132 6 1.822 0 2.714 1	RSS 0.175 1 0.974 1 0.211 4 2.151 3 2.967 1
$f_2 \\ f_3 \\ f_4 \\ f_5 \\ f_6$	LHS 0.185 4 2.017 1 1.889 9 1.501 7 3.473 7 7.010 4	HSS 0.184 8 1.927 5 2.950 9 1.258 3 3.730 5 6.389 8	RSS 0.221 4 2.970 2 2.736 2 1.697 3 4.888 9 6.174 1	LHS 0.139 7 2.665 2 0.174 3 1.954 7 2.329 6 2.780 8	HSS 0.062 7 1.521 3 0.420 1 1.916 7 2.633 9 2.763 5	RSS 0.183 9 3.067 3 0.241 8 2.196 8 2.286 0 3.163 8	LHS 0.168 0 1.017 8 0.108 7 1.559 2 3.504 3 3.141 7	HSS 0.065 0 1.274 1 0.249 5 4.141 0 4.267 0 3.324 7	RSS 0.178 6 2.621 1 0.072 3 3.771 5 3.842 2 3.148 1	LHS 0.148 4 1.113 1 0.170 7 2.112 3 2.621 6 2.858 0	HSS 0.137 1 1.084 2 0.163 2 1.770 6 2.437 5 2.960 5	RSS 0.224 7 1.080 5 0.143 1 2.264 5 2.696 9 2.436 1	LHS 0.138 3 1.158 8 0.091 1 2.230 3 2.813 9 3.188 1	HSS 0.120 6 0.966 0 0.132 6 1.822 0 2.714 1 2.807 8	RSS 0.175 1 0.974 1 0.211 4 2.151 3 2.967 1 2.822 3
f_2 f_3 f_4 f_5 f_6 f_7	LHS 0.185 4 2.017 1 1.889 9 1.501 7 3.473 7 7.010 4 20.90 7	HSS 0.184 8 1.927 5 2.950 9 1.258 3 3.730 5 6.389 8 21.58 6	RSS 0.221 4 2.970 2 2.736 2 1.697 3 4.888 9 6.174 1 20.60 2	LHS 0.139 7 2.665 2 0.174 3 1.954 7 2.329 6 2.780 8 11.62 9	HSS 0.062 7 1.521 3 0.420 1 1.916 7 2.633 9 2.763 5 15.57 2	RSS 0.183 9 3.067 3 0.241 8 2.196 8 2.286 0 3.163 8 16.84 7	LHS 0.168 0 1.017 8 0.108 7 1.559 2 3.504 3 3.141 7 9.389 5	HSS 0.065 0 1.274 1 0.249 5 4.141 0 4.267 0 3.324 7 14.08 4	RSS 0.178 6 2.621 1 0.072 3 3.771 5 3.842 2 3.148 1 16.43 9	LHS 0.148 4 1.113 1 0.170 7 2.112 3 2.621 6 2.858 0 15.08 6	HSS 0.137 1 1.084 2 0.163 2 1.770 6 2.437 5 2.960 5 15.85 8	RSS 0.224 7 1.080 5 0.143 1 2.264 5 2.696 9 2.436 1 16.60 5	LHS 0.138 3 1.158 8 0.091 1 2.230 3 2.813 9 3.188 1 10.07 6	HSS 0.120 6 0.966 0 0.132 6 1.822 0 2.714 1 2.807 8 14.22 0	RSS 0.175 1 0.974 1 0.211 4 2.151 3 2.967 1 2.822 3 16.41 1
f_2 f_3 f_4 f_5 f_6 f_7 f_8	LHS 0.185 4 2.017 1 1.889 9 1.501 7 3.473 7 7.010 4 20.90 7 4.575 0	HSS 0.184 8 1.927 5 2.950 9 1.258 3 3.730 5 6.389 8 21.58 6 4.660 9	RSS 0.221 4 2.970 2 2.736 2 1.697 3 4.888 9 6.174 1 20.60 2 4.364 5	LHS 0.139 7 2.665 2 0.174 3 1.954 7 2.329 6 2.780 8 11.62 9 4.799 4	HSS 0.062 7 1.521 3 0.420 1 1.916 7 2.633 9 2.763 5 15.57 2 5.431 7	RSS 0.183 9 3.067 3 0.241 8 2.196 8 2.286 0 3.163 8 16.84 7 4.093 7	LHS 0.168 0 1.017 8 0.108 7 1.559 2 3.504 3 3.141 7 9.389 5 4.296 0	HSS 0.065 0 1.274 1 0.249 5 4.141 0 4.267 0 3.324 7 14.08 4 5.101 1	RSS 0.178 6 2.621 1 0.072 3 3.771 5 3.842 2 3.148 1 16.43 9 4.004 0	LHS 0.148 4 1.113 1 0.170 7 2.112 3 2.621 6 2.858 0 15.08 6 4.915 8	HSS 0.137 1 1.084 2 0.163 2 1.770 6 2.437 5 2.960 5 15.85 8 5.511 5	RSS 0.224 7 1.080 5 0.143 1 2.264 5 2.696 9 2.436 1 16.60 5 4.169 5	LHS 0.138 3 1.158 8 0.091 1 2.230 3 2.813 9 3.188 1 10.07 6 3.557 7	HSS 0.120 6 0.966 0 0.132 6 1.822 0 2.714 1 2.807 8 14.22 0 4.618 1	RSS 0.175 1 0.974 1 0.211 4 2.151 3 2.967 1 2.822 3 16.41 1 3.710 2
$f_2 \\ f_3 \\ f_4 \\ f_5 \\ f_6 \\ f_7 \\ f_8 \\ f_9$	LHS 0.185 4 2.017 1 1.889 9 1.501 7 3.473 7 7.010 4 20.90 7 4.575 0 3.970 4	HSS 0.184 8 1.927 5 2.950 9 1.258 3 3.730 5 6.389 8 21.58 6 4.660 9 3.571 2	RSS 0.221 4 2.970 2 2.736 2 1.697 3 4.888 9 6.174 1 20.60 2 4.364 5 3.985 9	LHS 0.139 7 2.665 2 0.174 3 1.954 7 2.329 6 2.780 8 11.62 9 4.799 4 3.913 6	HSS 0.062 7 1.521 3 0.420 1 1.916 7 2.633 9 2.763 5 15.57 2 5.431 7 4.174 2	RSS 0.183 9 3.067 3 0.241 8 2.196 8 2.286 0 3.163 8 16.84 7 4.093 7 4.001 7	LHS 0.168 0 1.017 8 0.108 7 1.559 2 3.504 3 3.141 7 9.389 5 4.296 0 2.195 8	HSS 0.065 0 1.274 1 0.249 5 4.141 0 4.267 0 3.324 7 14.08 4 5.101 1 2.613 7	RSS 0.178 6 2.621 1 0.072 3 3.771 5 3.842 2 3.148 1 16.43 9 4.004 0 2.191 3	LHS 0.148 4 1.113 1 0.170 7 2.112 3 2.621 6 2.858 0 15.08 6 4.915 8 2.207 1	HSS 0.137 1 1.084 2 0.163 2 1.770 6 2.437 5 2.960 5 15.85 8 5.511 5 2.618 2	RSS 0.224 7 1.080 5 0.143 1 2.264 5 2.696 9 2.436 1 16.60 5 4.169 5 1.922 8	LHS 0.138 3 1.158 8 0.091 1 2.230 3 2.813 9 3.188 1 10.07 6 3.557 7 0.667 6	HSS 0.120 6 0.966 0 0.132 6 1.822 0 2.714 1 2.807 8 14.22 0 4.618 1 0.718 5	RSS 0.175 1 0.974 1 0.211 4 2.151 3 2.967 1 2.822 3 16.41 1 3.710 2 0.789 6
f_{2} f_{3} f_{4} f_{5} f_{6} f_{7} f_{8} f_{9} Ld	LHS 0.185 4 2.017 1 1.889 9 1.501 7 3.473 7 7.010 4 20.90 7 4.575 0 3.970 4 1.398 5	HSS 0.184 8 1.927 5 2.950 9 1.258 3 3.730 5 6.389 8 21.58 6 4.660 9 3.571 2 1.580 4	RSS 0.221 4 2.970 2 2.736 2 1.697 3 4.888 9 6.174 1 20.60 2 4.364 5 3.985 9 1.906 3	LHS 0.139 7 2.665 2 0.174 3 1.954 7 2.329 6 2.780 8 11.62 9 4.799 4 3.913 6 1.233 5	HSS 0.062 7 1.521 3 0.420 1 1.916 7 2.633 9 2.763 5 15.57 2 5.431 7 4.174 2 0.980 2	RSS 0.183 9 3.067 3 0.241 8 2.196 8 2.286 0 3.163 8 16.84 7 4.093 7 4.001 7 1.422 5	LHS 0.168 0 1.017 8 0.108 7 1.559 2 3.504 3 3.141 7 9.389 5 4.296 0 2.195 8 0.713 4	HSS 0.065 0 1.274 1 0.249 5 4.141 0 4.267 0 3.324 7 14.08 4 5.101 1 2.613 7 1.432 4	RSS 0.178 6 2.621 1 0.072 3 3.771 5 3.842 2 3.148 1 16.43 9 4.004 0 2.191 3 1.660 9	LHS 0.148 4 1.113 1 0.170 7 2.112 3 2.621 6 2.858 0 15.08 6 4.915 8 2.207 1 0.886 1	HSS 0.137 1 1.084 2 0.163 2 1.770 6 2.437 5 2.960 5 15.85 8 5.511 5 2.618 2 0.788 8	RSS 0.224 7 1.080 5 0.143 1 2.264 5 2.696 9 2.436 1 16.60 5 4.169 5 1.922 8 0.928 2	LHS 0.138 3 1.158 8 0.091 1 2.230 3 2.813 9 3.188 1 10.07 6 3.557 7 0.667 6 0.904 6	HSS 0.120 6 0.966 0 0.132 6 1.822 0 2.714 1 2.807 8 14.22 0 4.618 1 0.718 5 0.760 3	RSS 0.175 1 0.974 1 0.211 4 2.151 3 2.967 1 2.822 3 16.41 1 3.710 2 0.789 6 0.878 0
f ₂ f ₃ f ₄ f ₅ f ₆ f ₇ f ₈ f ₉ Ld Hd	LHS 0.185 4 2.017 1 1.889 9 1.501 7 3.473 7 7.010 4 20.90 7 4.575 0 3.970 4 1.398 5 7.987 4	HSS 0.184 8 1.927 5 2.950 9 1.258 3 3.730 5 6.389 8 21.58 6 4.660 9 3.571 2 1.580 4 7.987 8	RSS 0.221 4 2.970 2 2.736 2 1.697 3 4.888 9 6.174 1 20.60 2 4.364 5 3.985 9 1.906 3 8.003 1	LHS 0.139 7 2.665 2 0.174 3 1.954 7 2.329 6 2.780 8 11.62 9 4.799 4 3.913 6 1.233 5 5.090 6	HSS 0.062 7 1.521 3 0.420 1 1.916 7 2.633 9 2.763 5 15.57 2 5.431 7 4.174 2 0.980 2 6.115 1	RSS 0.183 9 3.067 3 0.241 8 2.196 8 2.286 0 3.163 8 16.84 7 4.093 7 4.001 7 1.422 5 6.078 6	LHS 0.168 0 1.017 8 0.108 7 1.559 2 3.504 3 3.141 7 9.389 5 4.296 0 2.195 8 0.713 4 4.505 5	HSS 0.065 0 1.274 1 0.249 5 4.141 0 4.267 0 3.324 7 14.08 4 5.101 1 2.613 7 1.432 4 5.878 3	RSS 0.178 6 2.621 1 0.072 3 3.771 5 3.842 2 3.148 1 16.43 9 4.004 0 2.191 3 1.660 9 5.925 0	LHS 0.148 4 1.113 1 0.170 7 2.112 3 2.621 6 2.858 0 15.08 6 4.915 8 2.207 1 0.886 1 5.537 8	HSS 0.137 1 1.084 2 0.163 2 1.770 6 2.437 5 2.960 5 15.85 8 5.511 5 2.618 2 0.788 8 5.877 3	RSS 0.224 7 1.080 5 0.143 1 2.264 5 2.696 9 2.436 1 16.60 5 4.169 5 1.922 8 0.928 2 5.566 1	LHS 0.138 3 1.158 8 0.091 1 2.230 3 2.813 9 3.188 1 10.07 6 3.557 7 0.667 6 0.904 6 4.060 7	HSS 0.120 6 0.966 0 0.132 6 1.822 0 2.714 1 2.807 8 14.22 0 4.618 1 0.718 5 0.760 3 5.015 8	RSS 0.175 1 0.974 1 0.211 4 2.151 3 2.967 1 2.822 3 16.41 1 3.710 2 0.789 6 0.878 0 5.340 1

图 1 和图 2 给出了各种元建模方法对不同测试函数的总 平均 NRMSE 和 NMAE。可以看出, RVR 方法相比于其他方 法取得了最高的精确度。对采样技术进行平均计算, 相比于 PR, Kriging, RBF 和 SVR, RVR 在 NRMSE 上分别减少了 88.48%, 11.41%, 16.29% 和 8.12%, 而在 NRMSE 上减少了 69.51%, 22.75%, 17.65%和 15.88%。总之, 无论在仿真元模 型拟合的全局还是在局部, 相关向量回归方法都取得了最佳 的逼近效果。

4.000 7

3.3763

4.604 3

3.832.9

4.935 2

4 009 2

3.252 2

2 820 1

4.695 9

3 902 3

5.009 4

4 029 8

4.376 1

3.470 4

4.558 2

3.6157

6.424 1

5 293 4

图 1 平均 NRMSE 对比

图 2 平均 NMAE 对比

为研究相关向量回归(Relevance Vector Regression, RVR) 方法的对不同类型仿真模型的拟合能力,本文考虑了测试函 数的维度和非线性特性对元模型建立的影响。从表 2 和表 3 中的 Ld, Hd, Ln, Hn 可以看到,无论测试问题的输入维度高 或低,还是其非线性程度高或低, RVR 方法在多数情况都能 取得最佳性能。另外,文中使用了 3 种采样技术进行对比研 究,从图 1、图 2 可以看出,在每一种采样技术上, RVR 方 法相比于其他元仿真建模方法都得到了最佳的拟合精度。

4.449 8

3.504 8

3.383 7

2.658 0

4.094 5

3.124 5

4.380 1

3.356 9

图 3 和图 4 给出了不同的采样规模对于仿真元模型拟合 精度 NRMSE 和 NMAE 的影响。可以看到各种元建模方法都 随着采样样本的规模增大其拟合精度同时提高。RVR 方法在 高、中、低采样样本规模上的拟合精度上明显优于其他算法, RVR 方法不仅在小样本情况下取得较好的拟合效果,而且在 样本相对较大时也没有出现拟合现象,从一定程度上体现了 该方法具有较好的稳定性。

图 3 样本规模对平均 NRMSE 的影响

Hn

All

6.317 0

5 059 0

6.462 3

5 140 0

图 4 样本规模对平均 NMAE 的影响

计算复杂性是元建模方法必须要考虑的一个重要因素。 在 CPU 为奔腾 3.0 GHz 的 PC 机上,建立 RVR 仿真元模型的 计算时间一般在秒级,而应用建好文模型进行预测的时间一 般少于 1 s。由于 RVR 方法在建立拟合模型时进行迭代计算, 因此其拟合时间一般长于 SVR 方法。根据文献[2]中元建模方 法的计算时间分析,可以认为 RVR 方法的计算效率完全可以 满足元建模应用需求。

5 结束语

与支持向量回归方法相比,基于稀疏贝代斯理论的相关 向量回归方法的主要优点在于可以输出预测值分布;使用更 少的支持向量;不需估计过多参数;核函数不需要满足 Mercer 定理。本文将相关向量回归方法引入到仿真元建模中,与其 他四种元建模方法进行性能对比,仿真结果表明相关向量回 归方法具有较高的精度和较好的泛化能力,尤其适于解决复 杂战争系统探索性分析仿真所面临的高维高非线性问题。在 下一步工作中,将研究如何通过多核学习(Multiple kernel learning)技术改善相关向量回归的性能,以及利用增量学习

(上接第 21 页)

参考文献

- Girvan M, Newman M E J. Community Structure in Social and Biological Networks[J]. Proceedings of National Academy of Science, 2002, 99(12): 7821-7826.
- [2] Alberts D S, Hayes R E. Power to the Edge: Command, Control in the Information Age[M]. Washington D. C., USA: CCRP Publications Series, 2003: 213-222.
- [3] Newman M E J, Girvan M. Finding and Evaluating Community Structure in Networks[J]. Physical Review E, 2004, 69(2).

(上接第23页)

- [5] Udaya P, Siddiqi M U. Optimal Biphase Sequences with Large Linear Complexity Derived from Sequences over Z₄[J]. IEEE Trans. on Inform. Theory, 1996, 42(1): 206-216.
- [6] Lahtonen J, Ling S, Solé P, et al. Z₈-Kerdock Codes and Pseudorandom Binary Sequences[J]. Journal of Complexity, 2004, 20(1): 318-330.
- [7] Shanbhag A G, Kumar P V, Helleseth T. Improved Binary Codes and Sequence Families from Z₄-linear Codes[J]. IEEE Trans. on Inform. Theory, 1996, 42(5): 1582-1587.
- [8] Tang Xiaohu, Udaya P. A Note on the Optimal Quadriphase Sequences Families[J]. IEEE. Trans. on Inform. Theory, 2007, 53(1): 433-436.
- [9] Udaya P, Siddiqi M U. Optimal and Suboptimal Quadriphase Sequences Derived from Maximal Length Sequences Over Z₄[J].

(Incremental learning)技术进行相关向量回归算法的在线学习 改造。另外还要将相关向量回归元模型应用于战争复杂系统 探索性分析仿真,解决实际问题。

参考文献

- Kleijnen J P C, Robert G S. A Methodology for Fitting and Validating Metamodels in Simulation[J]. European Journal of Operational Research, 2000, 120(1): 14-29.
- [2] Clarke S M, Griebsch J H, Simpson F Sin Analysis of Support Vector Regression for Approximation of Ponplex Engineering Analyses[J]. Journal of Mechanical Design, 265, P27(6): 1077-1087.
- [3] Tipping M E. Sparse Bayesian Raming and the Relevance Vector Machine[J]. Journal of Machine Learning Research, 2001, 1(3): 211-244.
- [4] Hussain M F, Barton R R, Joshi S B. Metamodeling: Radial Basis Functions, Versus Polynomials[J]. European Journal of Operational Research, 2002, 138(1):142-154.
- [5] Jin Ruichen, Chen Wei, Simpson T W. Comparative Studies of Metamodeling Techniques Under Multiple Modeling Criteria[J]. Structural, and Multidisciplinary Optimization, 2002;23(1): 1-13.
- [6] Meckesheimer M, Booker A J, Barton R R, Simpson T W. Con并比本規模nexpensive Metamodel Assessment Strategies[J]. AIAA Journal, 2002, 40(10): 2053-2060.
- [7] Giunta A A, Watson L T. A Comparison of Approximation Modeling Techniques: Polynomial Versus Interpolating Models[C]//Proc. of the 7th AIAA Symposium on Multidisciplinary Analysis and Optimization. St Louis, MO, USA: [s. n.], 1998.

编辑 金胡考

- [4] Clauset A. Finding Local Community Structure in Networks[J]. Phys. Rev. E, 2005, 72(2).
- [5] Newman M E J. Fast Algorithm for Detecting Community Structure in Networks[J]. Phys. Rev. E, 2004, 69(6).
- [6] Newman M E J. Modularity and Community Structure in Networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(23): 8577-8582.

编辑 金胡考

Applications Algebra Engineering Communications Computer, 1998, 9(2): 161-191.

- [10] Sun Nigang, Hu Lei. A New Prime-phase Sequence Family with Low Correlation and Large Size[C]//Proceedings of International Workshop on Signal Design and Its Applications in Communications. Chengdu, China: IEEE Press, 2007: 79-83.
- [11] Hu Lei, Sun Nigang. A Formula on Linear Complexity of Highest Coordinate Sequences from Maximal Periodic Sequences over Galois Rings[J]. Progress in Natural Science, 2006, 16(9): 998-1001.
- [12] Kumar P V, Helleseth T, Calderbank A R. An Upper Bound for Weil Exponential Sums over Galois Rings and Applications[J]. IEEE Trans. on Inform. Theory, 1995, 41(2): 456-468.

编辑 索书志

—1—