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Type structures in CFA

JOACHIM KRAUTH
1

Summary

Confi gural Frequency Analysis (CFA) is a procedure in data analysis which was 
introduced by G.A. Lienert (1969). This procedure is based on a specifi c statistical 
defi nition of types. Due to this defi nition results can be obtained which may, at fi rst 
glance, contradict intuition. In particular, for small contingency tables it is observed that 
only a small percentage of imaginable type structures, i.e. patterns of types, antitypes and 
others, is actually possible. Here, we try to give bounds for the percentage of possible 
type structures and discuss consequences for the performance of a CFA.
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1. Types and Antitypes in CFA

A random sample of subjects is selected from a population and for each of these subjects it 
is observed which values are obtained by t ≥ 2 nominal scaled variables X1,...,Xt . The variable 
Xi can take the ri ≥ 2 unordered categories (Ci1,...,Ciri

) as possible values, for i=1,...,t. Thus, each 
subject produces a t-dimensional vector (C1j1,...,Ctjt) of categories with 1 1≤ ≤ =j r i ti i , , ..., .
Instead of this explicit notation we will rather use the short version (j1,..., jt). Lienert (1969) 
denoted the vector (j1,..., jt) as a confi guration. The number of subjects (fj1...jt) in the random 
sample which exhibit the confi guration (j1,..., jt) is denoted by Lienert (1969) as a confi gural 
frequency. In case of high confi gural frequencies which cannot be explained by a random 
combination of such categories which occur all with high probabilities, Lienert (1969) 
assumes the possible existence of types of subjects. Such types are to be identifi ed by means 
of the so-called confi gural frequency analysis (CFA).

Let πj1...jt be the probability of the occurrence of the confi guration (j1,...,jt) if a subject is 
randomly sampled from the population, for ji = 1,...,ri , i = 1,...,t. Altogether
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different confi gurations are possible. Because to each subject in the population corresponds 
exactly one of the r possible confi gurations, the sum of the r confi gural probabilities πj1...jt 
must yield 1:
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If we fi x category ji for variable Xi and sum over all categories of the other variables, we 
derive the corresponding onedimensional marginal probability
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where *i means, that the sum 
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 is not considered in the summation. The marginal 

probability π...ji ...  is the probability that a subject which is randomly selected from the 
population exhibits the category Ciji for variable Xi irrespective of the categories which this 
subject exhibits for the other variables.

The concept of types or antitypes, respectively, which was formulated by Lienert (1969) 
can be formalized in the following way. We consider the differences (so-called residuals)
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Here, we subtract from the confi gural probability πj1...jt that probability for the confi gura-
tion (j1,..., jt) which would result if the t variables X1,...,Xt  would be independent, i.e. if the t 
categories Cj1,...,Cjt would be randomly combined to form a confi guration.

For

(5)  δ j jt1
0... >

a type (T) is present according to CFA.
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For

(6)  δ j jt1
0... <

an antitype (A) is present according to CFA.
Finally, for

(7)  δ j jt1
0... =

neither a type nor an antitype is present (0) according to CFA.
By summation we get
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Types and antitypes are identifi ed by means of CFA in the following way: For each of the r 
confi gurations ( , ..., ), ..., ( , ..., )1 1 1r rt  two statistical tests are performed for fi nding out which of 
the three possible situations (T, A or 0) has the highest evidence. We denote an r-dimensional 
vector with components T, A or 0, as it is identifi ed by CFA, as a type structure. Thus, with 
r confi gurations each with three possible outcomes (T, A or 0), the maximum number of 
different type structures is given by

(10) M = 3r.

From condition (8) we can conclude that the two type structures (T, …, T), i.e. r types, 
or (A, …, A), i.e. r antitypes, respectively, are not possible, because a sum consisting only 
of positive numbers or only of negative numbers, respectively, is not possible because such 
a sum cannot yield 0. However, a structure of the form (0, …, 0), where neither types nor 
antitypes are present, is possible.

If we consider in addition the r1+...+rt conditions (9), it is obvious that the number of 
possible type structures must be smaller than M. In order to identify a type structure by means 
of CFA, altogether (2r) dependent statistical tests for types and antitypes have to be performed 
simultaneously. Since this requires an alpha adjustment, it would be interesting to investigate 
whether there exist situations where we need fewer tests for identifying a type structure, if we 
know which type structures are actually possible.

2. Type Structures in a Fourfold Scheme

In the case of a fourfold scheme with t r r= = =2 21 2, , which was already discussed by 
Krauth (1993, pp. 25 – 28) we get r = 4 and the 3 possible type structures given in Table 1.
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Table 1: 
Possible type structures for a 2 2×  scheme.

From (9) we get

(11) δ δ δ δ δ δ δ δ11 12 21 22 11 21 12 220 0 0 0+ = + = + = + =, , , .

If we choose the reparameterization ε δ1 11= , we get δ ε δ ε δ ε12 1 21 1 22 1= − = − =, , , , i.e. all 
possible type structures are determined by only one parameter (ε1). Depending on whether ε1 
is positive, negative or equal to 0, we get one of the 3 possible type structures (T, A, A, T), (A, 
T, T, A) or (0, 0, 0, 0). Instead of the maximal number of M = 81 structures only 3 structures 
are possible. Thus, it is possible to identify the inherent type structure by performing only 2 
tests (e.g. tests for type and antitype with respect to the confi guration (1, 1)) instead of per-
forming 2r = 8 tests as in the usual procedure.

The number of parameters to be considered (in this case: 1, i.e. ε1) corresponds to the 
number (F) of degrees of freedom as given in Lienert (1969). We have

(12) F r r ti
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in the general case and

(13) F = 2t - t - 1

in the special case with r1 =...= rt = 2. Thus, we get for the fourfold scheme with t r r= = =2 21 2,  
the value F = 1.

Since ε1 is the difference of 2 probabilities, this parameter cannot be chosen arbitrarily 
large or small. In view of

(14) max { , }0 1 2 11π π π⋅ ⋅− ≤ ≤  min { , }π π1 1⋅ ⋅

following from the defi nition of onedimensional marginal probabilities we get for 

(15) ε π π π1 11 1 1= − ⋅ ⋅

the inequalities

(16) max { , }0 1 2 1 1 1π π π π ε⋅ ⋅ ⋅ ⋅− − ≤ ≤  min { , } .π π π π1 1 1 1⋅ ⋅ ⋅ ⋅−

j1   j2 π j j1 2
δ j j1 2

ε1 0> ε1 0< ε1 0=

1  1 π11 δ π π π11 11 1 1= − ⋅ ⋅ ε1 T A 0

1  2 π12 δ π π π12 12 1 2= − ⋅ ⋅ −ε1 A T 0

2  1 π21 δ π π π21 21 2 1= − ⋅ ⋅ −ε1 A T 0

2  2 π22 δ π π π22 22 2 2= − ⋅ ⋅ ε1 T A 0
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The value of ε1 may be chosen arbitrarily within the interval defi ned by (16). However, if 
at least one of the marginal probabilities is equal to 0, the interval degenerates to a single point  
(ε1  = 0) In this case we must choose ε1  = 0 and only the structure (0, 0, 0, 0) is possible.

At fi rst glance it may astonish that only the 3 type structures given in Table 1 should 
be possible for a fourfold scheme. Obviously, it is possible, that, e.g., the confi gurations (1, 
1) and (1, 2) are exhibited by many subjects while the confi gurations (2, 1) and (2, 2) are 
exhibited only by few subjects. Assume for example that the confi gural probabilities are given 
by π π π11 12 2140 50 03= = =. , . , .  and π22 07= . . In this case we might be inclined to identify 
(1, 1) and (1, 2) as obvious types and (2, 1) and (2, 2) as obvious antitypes. However, this 
interpretation is not in accordance with the defi nition of a type by Lienert (1969) because we 
have the marginal probabilities 

 π π π π1 2 1 290 10 43 57⋅ ⋅ ⋅ ⋅= = = =. , . , . , .

and as a consequence

 δ δ11 1240 90 43 013 50 90 57 013= − × = = − × = −. . . . , . . . . ,
 δ δ21 2203 10 43 013 07 10 57 013= − × = − = − × =. . . . , . . . . .

Thus, we fi nd the antitypes (1, 2) and (2, 1) and the types (1, 1) and (2, 2). The confi gura-
tion (1, 2) would constitute an antitype in spite of the high confi gural probability π12 50= .
because π12 is smaller than the probability . . .90 57 513× =  in case of a random combination of 
the categories. By a similar argument we fi nd that (2, 2) is a type in spite of the small confi g-
ural probability ( . )π22 07=  because π22  is larger than the probability . . .10 57 057× =  in case 
of a random combination of the categories. In this example, we get the type structure (T, A, A, 
T) which was shown to be one of the three possible structures.

3. Type Structures in Other Simple Situations

For t r r= = =2 2 31 2, ,  we get r F= =6 2,  and the possible type structures depicted in 
Table 2. Here, the reparameterization ε δ ε δ1 11 2 23= =,  was chosen, and altogether 13 possible 
type structures result compared with a maximal number of M = 729  structures.

Table 2: 
Possible type structures for a 2 3×  scheme.

With the usual procedure 12 simultaneous tests for types and antitypes had to be performed 
in order to identify the structure. However, if one has identifi ed the type structure of the fi rst 3 
confi gurations by means of 6 tests, the total structure is known because the possible structures 

1 1 ε1 T T A T A A 0 0 0 A A T T

1 2 −ε1 +ε2 T A T A T A 0 A T 0 T 0 A

1 3 −ε2 A T T A A T 0 T A T 0 A 0

2 1 −ε1 A A T A T T 0 0 0 T T A A

2 2 ε1 −ε2 A T A T A T 0 T A 0 A 0 T

2 3 ε2 T A A T T A 0 A T A 0 T 0
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of the second 3 confi gurations follow from those of the fi rst 3 by means of the transformation 
T→ A, A →T, 0 → 0. However, in this case we have only a saving of 50% in comparison to 
the fourfold table where we had a saving of 75%.

For t = 2, r1 = 2, r2 = 4, we get r = 8, F = 3. One possible reparameterization is given in 
Table 3. Here, 51 possible type structures result in comparison with the maximal number of  
M = 6561 structures. With the usual procedure 16 simultaneous tests are to be performed to 
identify the type structure. However if the identifi cation has been performed for the fi rst 4 con-
fi gurations by means of 8 tests, the identifi cation for the remaining confi gurations is possible 
via the transformation T→ A, A →T, 0 → 0.

Table 3: 
 Reparameterization for a 2 4×  scheme.

For t = 2, r1 = r2 = 3 we get r = 9, F = 4. A possible reparameterization is given in Table 
4. Here we have 493 possible type structures in comparison with a maximal number of M = 
19683. In this case, no tests are saved in comparison with the usual procedure.

Table 4:
  Reparameterization for a 3 3×  scheme.

For t = 3, r1 = r2 = r3  = 2 we get r = 8, F = 4. A possible reparameterization is given in 
Table 5. Here, we have 985 possible type structures in comparison with a maximal number of 
M = 6561. In this case, again no tests are saved in comparison with the usual procedure.

1 1 ε1

1 2 −ε1 +ε2

1 3 −ε2 +ε3

1 4 −ε3

2 1 −ε1

2 2 ε1 −ε2

2 3 ε2 −ε3

2 4 ε3

1 1 ε1

1 2 −ε1 +ε2

1 3 −ε2

2 1 −ε1 +ε3

2 2 ε1 −ε2 −ε3 +ε4

2 3 ε2 −ε4

3 1 −ε3

3 2 ε3 −ε4

3 3 ε4
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Table 5: 
Reparameterization for a 2 2 2× ×  scheme.

4. Bounds for the Number of Possible Type Structures

Even if the knowledge of the possible type structures in most situations will not have any 
effect on the number of statistical tests which are necessary for identifying a type structure, it 
might be of interest to know how many possible type structures exist in a given situation. For 
a 2 2×  scheme these were 3 out of 81, i.e. 3.7%, for a 2 3×  scheme 13 out of 729, i.e. 1.8%, 
and for a 2 4×  scheme 51 out of 6561, i.e. 0.8%.

We were not able to derive an explicit formula for the number of possible type structures in 
a given situation. However, rather crude upper and lower bounds for this number are derived 
in the following.

We consider the variable Xi  with ri categories. For each category ji with 1 ≤ ji ≤ ri there 
exist

(17) si = r / ri

confi gurations which contain this category. With respect to these si confi gurations we 
can consider 3si  structures (cf. formula (10)). Among these structures is the structure which 
contains only zeros (i.e. neither types nor antitypes) and which is always possible. Of the 
remaining (3si -1) structures all those structures with only T or 0 (altogether (2si -1) structures) 
or those structures with only A or 0 (altogether (2si -1) structures) are no possible type 
structures. The remaining structures with at least one T and one A are possible.

Thus, we get

(18) 3 2 2 1 3 2 21s s s si i i i− − = − ++( )

possible type structures.
If we select from the ri categories (ri - 1) categories with altogether (ri - 1)si confi gurations, 

we can assign to each of these categories an arbitrary possible structure of those which are 
enumerated in formula (18). This yields

(19) ( )3 2 21 1s s ri i i− ++ −

1 1 1 ε1
1 1 2 −ε1 +ε4

1 2 1 −ε1 +ε2 −ε4

1 2 2 ε1 −ε2

2 1 1 −ε2 +ε3

2 1 2 ε2 −ε3 −ε4

2 2 1 −ε3 +ε4

2 2 2 ε3
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possible type structures for (ri -1)si selected confi gurations. For the remaining category 
with si confi gurations it is not possible to assign an arbitrary possible structure of those 
enumerated in (18) because the restrictions (9) must be obeyed. It is even possible that the 
possible structure for the last category is completely fi xed by the preceding assignments. Thus 
we fi nd that by (19) a lower bound for the number (nTS) of possible type structures is given. 
If not all numbers (ri) of categories are identical, we can improve the lower bound (19) by 
selecting the variable Xi in such a way that the bound becomes maximum, i.e. we use the lower 
bound 

(20) LTS i t

s s ri i i= − +
≤ ≤

+ −max( ) .
1

1 13 2 2

For the situations with t = 2 and min { , }r r1 2 2=  the possible structure for the last (here: the 
second) category is completely fi xed by the preceding assignment, i.e. we have nTS = LTS .

In all other cases we have neither a completely fi xed structure for the last category nor is it 
possible to select a structure for the last category without any restriction. A selection without 
any restriction yields the number

(21) ( )3 2 21s s ri i i− ++

of possible structures. Thus we get by (21) an upper bound for nTS. An improved upper 
bound is given by

(22) UTS i t

s s ri i i= − +
≤ ≤

+min( ) .
1

13 2 2

In the special case r1 =... = rt = : r0 we get

(23) L UTS
r r r r

TS
r r rt t t t( ) ( )( ) , (0 0

1
0

1
0 0 0

1
0

1

3 2 2 3 2 21 1 1= − + = − +
− − − −+ − + )) .r0

For r0 = 2 this yields

(24) L UTS TS

t t t t( ) ( )( ), ( ) .2 2 2 1 2 2 2 1 23 2 2 3 2 2
1 1 1 1

= − + = − +
− − − −+ +

By means of the bounds which were derived for nTS we can derive bounds for the 
percentage nTS % of possible structures by dividing the bounds for nTS by the maximal number  
M = 3r (cf. (10)) and multiplying by 100:

(25) 
L
M

n U
M

TS
TS

TS100 100≤ ≤% .

For the case with r1 =...=rt = 2, i.e. for 2t schemes, we can give a slightly improved lower 
bound. To that end we consider only the two fi rst and the two last confi gurations

K j j jt t1 1 11 1 1= = = =−( ,..., , ), K j j jt t2 1 11 1 2= = = =−( ,..., , ),
K j j j K j j jr t t r t t− − −= = = = = = = =1 1 1 1 12 2 1 2 2 2( ,..., , ), ( ,..., , ).
If we set K1 = T, K2 = A, Kr-1 = A, Kr = T, we get a possible structure irrespective of the 

status of the remaining r - 4 = 2t - 4 confi gurations. The same is true if we set K1 = A, K2 = T, 
Kr-1 = T, Kr = A. From this follows that we have for 2t schemes at least

(26) LTS

t∗ −= × +2 3 12 4
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possible structures where the additional possible structure (corresponding to the last term in 
(26)) is that structure where the status 0 is assigned to all confi gurations.

For the 2 2×  scheme we get LTS = 3, i.e. the true value. For the 2 2 2× ×  scheme we get 
LTS  = 163 and for the 2 2 2 2× × ×  scheme LTS = 1062883.

Extending this approach we can successively improve the lower bounds for 2t schemes if t is 
suffi ciently large. Here, we demonstrate only the next stage of the approach: If we have t ≥ 3, we 
get additional possible structures if we consider the 3 fi rst and the 3 last confi gurations. Then, we 
set either K1 = T, K2 = T, K3 = A, Kr-2 = A, Kr-1 = T, Kr = T    or    K1 = A, K2 = A, K3 = T, Kr-2 = 
A, Kr-1 = A, Kr = A. Here, we can choose the status of the remaining r - 6 = 2t - 6  confi gurations 
in an arbitrary way. From this we get the improved lower bound

(27) LTS

t t∗∗ − −= × + × +2 3 2 3 12 4 2 6 .

For the 2 2 2× ×  scheme we get LTS = 181 and for the 2 2 2 2× × ×  scheme LTS = 1180981.

5. Examples

For the examples from sections 2 and 3 we obtain the following bounds for nTS:

1.   t = 2, r1 = r2 = 2 : LTS = LTS = 3, UTS = 9, nTS = 3
2.   t = 2, r1 = 2, r2 = 3 : LTS = 13, UTS = 27, nTS = 13
3.   t = 2, r1 = 2, r2 = 4 : LTS = 51, UTS = 81, nTS = 51
4.   t = 2, r1 = r2 = 3 : LTS = 169, UTS = 2197, nTS = 493
5.   t = 3, r1 = r2 = r3 = 2 : LTS = 51, LTS = 163, LTS = 181, UTS = 2601, nTS = 985

6. Discussion

We have seen that it may be problematical to interpret types and antitypes which 
were identifi ed by means of CFA independently of each other. This is particularly true for 
contingency tables with few variables and few categories. The specifi c defi nition of a type 
which is inherent to CFA may have the consequence that types or antitypes for certain 
confi gurations entail corresponding types and antitypes for other confi gurations. These latter 
types or antitypes might be considered as artifacts which should not be given an empirical 
interpretation.
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