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Summary

This article presents new continuity corrections for six tests in Confi gural Frequency 
Analysis (CFA). For each table, the correction is a constant. The magnitude of this constant 
depends on characteristics of the table such as degrees of freedom, size, cell frequency, 
strength of type, and on the nominal level α. Strength of type is a quantitative descriptor 
of types. Simulation results suggest that three tests, specifi cally the test proposed by Perli 
et al., the new test proposed by Lautsch and von Weber, and the χ2-component test, cover 
over 90% of the best solutions.
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1. Introduction

Since the fi rst presentation of the software program SICFA (Simulation Confi gural 
Frequency Analysis; Lautsch & von Weber, 1990, 1995), the speed and memory capacity of 
PCs have dramatically increased. When updating such a program, both old and new issues 
arise that can be addressed using the new technical possibilities. The most important issues 
include that the program should be able to recommend to users which local type test to use in 
a particular application.

For application in CFA, a selection of signifi cance tests and test procedures is most 
popular whose characteristics have been studied extensively and are well known. For example, 
Lehmacher (1981) investigated and proposed exact and approximative hypergeometric tests, 
Herrendörfer et al. (1982) studied 2 x 2 tables (cf. von Eye, 2003a,b; von Eye & Mun, 2003), 
Disconis and Efron (1983) and Kareev (1992) discussed random sampling, Lindner (1984) 
discussed exact tests, Perli (1985) presented test procedures, Küchenhoff (1986) proposed a 
fi rst continuity correction for Lehmacher’s (1981) test, von Eye and Rovine (1988) studied 
the relative power of signifi cance tests (cf. Indurkhya & von Eye, 2000; von Eye, 2002a,b, 
2003b), Krauth (1993) discussed the selection of tests, Lautsch and von Weber (1995) 
discussed splitting of samples and random sampling, and von Weber (2000) discussed 
methods of estimating the β-error in CFA testing.

One result that emerged consistently is that all CFA tests can be both conservative and non-
conservative, depending on the characteristics of the table under study. Early on, researchers 
tried to deal with non-conservative tendencies of tests in small samples, for example, by means 
of continuity corrections (Küchenhoff, 1986; Dunkl & von Eye, 1990). Typically, continuity 
corrections improve test performance substantially (for a counterexample, see von Eye, 
2002b, pp. 71, 76). The increased power of PCs allows program developers to further develop 
methods of test improvement. These developments are needed in CFA applications, because 
preliminary simulation results suggested that one correction constant may not be optimal for 
all tables. Table characteristics and the selected nominal α determine the usefulness of this 
constant.

In this article, we present results from a broad investigation of the effects of continuity 
corrections for a selection of CFA tests. These tests are the χ-component test, the exact 
binomial test, Lehmacher’s (1981) asymptotic hypergeometric test, the asymptotic test of 
Perli, Hommel, and Lehmacher (1984), and Lautsch and von Weber’s (2002) new test. The 
investigation also takes into account two procedures that guarantee that the probability of 
detecting types in CFA is high if the nominal α is close to the factual α. In other words, these 
two procedures guarantee that the probability of committing a β-error is minimal. Here, the β-
error is defi ned as the ratio of the number of missed types to the total number of existing types 
across all tables with the same characteristics (cf. von Weber, 2000). The number of existing 
types can be exactly determined only in a computer simulation.

The simulations that are reported in this article were performed under the following 
conditions:

•  The continuity correction K is a constant for a specifi c table; in other words, there is only 
one K per table;

• The estimation of K is based only on the characteristics of a table and the nominal α;
• Both types and antitypes are considered; and
•  Characteristics of tables are taken into account only if they can be varied independently 

of each other.
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2. Data generation

The characteristics of tables include, for example, the number of variables, d, that span 
the table, the number ZZ of cells, the degrees of freedom, df, and the sample size, N (or the 
average number of cases per cell, mf = N/ZZ). The overall χ2 of a table can be estimated as 
well as the maximum type strength, τ

max
. There exist other table characteristics, for example 

the type of residual distribution (DT), that are hard to estimate, although sampling procedures 
often determine distributional characteristics (von Eye, Schuster, & Gutiérrez-Peña, 2000). 
The following paragraphs provide defi nitions of terms that are key for the following 
considerations.

The type strength, τ, describes the weight of a type or an antitype. τ is the main determinant 
for the estimation of the magnitude K of the continuity correction. The concept of type strength 
can be derived from Lienert’s (1969) defi nition of a contingency type: a cell that constitutes a 
type contains more cases than expected based on the assumption of variable independence. Let 
n

i
 be the observed cell frequency and ê*

i
 the expected cell frequency that was estimated using 

Victor’s log-linear models of quasi-independence (see Kieser and Victor, 1999; Victor 1989; 
cf. Lautsch & von Weber, 2002),  then the ratio n

i
/ê*

i
 is an estimate of τ + 1. The difference n

i
 

- ê*
i
 represents the surplus frequency in Cell i that constitutes a type. A cell with n

i
 = ê*

i
 thus 

carries a type strength of zero, and τ = 0. If n
i
 is twice as large as ê*

i
, we obtain τ = (n

i
 - ê*

i
 )/ 

ê*
i
 = 1, etc. A Cell constitutes an antitype if n

i
 < ê*

i
. The strength τ of an antitype is defi ned by 

τ = (ê*
i
 - n

i
)/n

i
. If the strength of an antitype is τ = 1, the observed frequency of Cell i is half 

the size of the expected frequency. 
The maximum type strength, τ

max
, of a contingency table is estimated by max

i
(n

i
 -eî )/mf, 

where i goes over all cells in the table, n
i
 is the observed cell frequency, eî  is the expected 

cell frequency, estimated under the appropriate CFA base model, and mf is the average cell 
frequency. In simulations, tables with a priori determined type strength can be created. The 
above measures can then be used to estimate the value of τ

max
 for an observed table.

The distribution type, DT, indicates whether the cell-specifi c residuals are normally (DT 
= 0) or binomially (DT = 1 or DT = 2; see below) distributed. Another distribution type that 
can be considered is the hypergeometric distribution. The hypergeometric and the binomial 
distributions approximate each other if the size of the population is much larger than the size 
of the sample. Empirical data, in which the population and the sample are of equal size, are 
extremely rare. However, to be able to accommodate cases in which not the total sample 
size was determined a priori but the marginals of a particular variable (product-multinomial 
sampling; for example, researchers may determine that they wish to examine the same, a priori 
specifi ed number of male and female respondents), two forms of the binomial distributions 
were considered. The fi rst, labeled with DT = 1, uses the sample size N to estimate the 
binomial probability P

n.k
 (see Krauth, 1993). The second form of the binomial distribution 

considered here, labeled with DT = 2, uses the minimum of the marginal frequencies for a 
particular cell. The third of these distributions comes with the largest skewness (cf. von Eye’s, 
2003b, ”CFA conditions”).

The estimation of the residual distribution type from empirical data can be rather involved. 
However, simulation results suggest that the effect of the distribution type is minimal. 
Therefore, there is no need to estimate it.

In general, when data are collected under optimal conditions, the cell frequencies follow 
a hypergeometric distribution (Krauth, 1993; Lindner, 1984). This distribution is very close 
to a binomial distribution. This, however, does not apply to the residuals n

ij
-eiĵ .Whenever the 

expected cell frequencies eiĵ  are estimated from the marginals, Gauß’ limit theorem applies 
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and the residual distribution approximates the normal distribution. When, as is typical, the 
data are collected under suboptimal conditions, situation-specifi c variations of the a priori cell 
probability p can occur. These fl uctuations also shift the a priori cell probabilities towards a 
normal distribution. Therefore, the residuals n

ij
- eiĵ  follow a mixed distribution with varying 

contributions of the normal distribution.
The degrees of freedom, df and the number of cells, N

c
, are highly correlated, in particular 

when one focuses on only one CFA base model. The following simulations used only the 
main effect base model. In this case, the correlation between df and N

c
 is perfect, and using the 

df renders the number of cells redundant, and vice versa. Another preliminary investigation 
concerned the dimension of the table d. We found that d does have an effect, but only a small 
one. Additional important factors include mf, τ

max
, and α.

Data for the following simulations were generated in the following seven steps. 
Step 1. Contingency tables with d = 2, 3, and 4 were created. The four dimensions are 

termed rows, columns, blocks, and pages. The tables had I rows, J columns, K blocks (for d 
> 2), and L pages (for d > 3), each randomly drawn from the interval [2, 6]. Of the resulting 
tables, all those were eliminated that had degrees of freedom outside an a priori-specifi ed 
interval. Intervals for the degrees of freedom were [4, 4], [18, 22], and [80, 90].

Step 2. This step involved the random generation of the probabilities of the marginal 
distributions under the usual constraints that 0 < p < 1 and p = 1. The cell frequencies were 
then estimated under the assumption of independent rows, columns, blocks, and pages, that is 
pijkl = pipjpkpl. Thus far, the data conform exactly to the model of variable independence.

Step 3. This step involves determining the number of types and antitypes, Nt. The upper 
limit of this number is given by 1 ≤ Nt ≤ df and 1 ≤ Nt ≤ int(df1/2/2). The second of these 
conditions was chosen arbitrarily. However, it is conform to Kieser and Victor’s (1999) 
concepts of CFA. The df of a table indicates the maximum number of independent hypotheses 
in a contingency table (see Perli, 1985; Perli et al., 1985).

Step 4. The position of each of the Nt types and antitypes was selected randomly. However, 
one constraint was placed. No marginal sum could contain more than 50% of its cases from 
type cells or antitype cells. Thus, for example, in 2 x 3 tables, no column can contain more 
than one type and antitype.

Step 5. To create types and antitypes, the probabilities pijkl were now multiplied by factors 
of the form (1 + τ). Thereby, the type strength is an even random number between 1 and 
τmax with τmax = {1, 2, 3}. In addition, the value of τmax = 0 was included to also have tables 
with no types or antitypes. Thus, for τ = 1, the observed frequency is twice as large as the 
Victor-estimated expected frequency. As far as types are concerned, this defi nition conforms 
to Victor’s defi nition of types. As far as antitypes are concerned, there is a dispute in the 
literature. However, this dispute focuses more on the interpretation of antitypes than on the 
statistical result that an antitype may exist.

The ratio of thus randomly created types and antitypes was set to be 2 : 1. The fi rst type 
was assigned the value of a maximum type strength, τmax. When there were more types, their 
weights were assigned linearly decreasing values, with the constraint that these values be 
greater than or equal to 1. For example, for a table with 4 types and antitypes and a maximum 
type strength of τmax = 3, the four τ-values are 3, 2, 1, 1. The reason for the lower limit for τ 
lies in the control of ß. When a weight is too small, the chance of reliably identifying a type, 
and - even more so - an antitype, is very small.

Step 6. This step is needed to make sure that the condition Σ = 1 holds. After adding 
a constant to each cell, this condition no longer holds. Therefore, a correction is needed. 
Consider the cell, for which the a priori probability is p = 0.055. When, for this cell, the weight 
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τ = 1 is used, that is, when this cell is randomly selected to constitute a type, its probability 
changes to be p* = 0.055·2 = 0.11, and the sum of all cell probabilities increases from Σp = 1.0 
to Σp = 1.055. Therefore, we reduce the probability for each cell proportionally by the factor 
1/1.055. The type-cell then has the probability of p** = 0.11/1.055 = 0.1043, and the sum of 
all thus corrected cell probabilities is 1 again. This applies accordingly when more than one 
type or antitype exists in a table.

Step 7. The last step of the simulation involves calculating the estimated expected cell 
frequencies. Each cell is multiplied by the a priori determined sample size, N = ZZ·mf. The 
values of mf used in this simulation were mf = 5 for small samples, mf = 15 for medium-size 
samples, and mf = 50 for large samples. The estimated expected cell frequencies were thus 
êi = Npi, where i goes over all cells in the table. A drawing error4 was then added to each cell, 
depending on the distribution type DT. The resulting values were rounded to be integers. 
Negative values were set to zero. It should be noted that this drawing error is the main source 
of errors in weakly frequented contingency tables. It prevents researchers from reliably 
identifying types, in particular types of low strength.

3. The tests and the test procedures

Each test in the simulation was done under the two-sided null hypothesis that Cell i constitutes 
neither a type nor an antitype, with the alternative hypothesis that Cell i does constitute a type 
or an antitype. Holm’s (1979) sequential test procedure was used. However, the fi rst test was 
not performed under the adjusted threshold α*=α/NC, but under α*=α/df (cf. Perli et al., 1985). 
The reason for this further adjusted fi rst α* in the sequence of tests is that the estimation of 
expected cell frequencies decreases the degrees of freedom and, thus, the number of independent 
hypotheses. For instance, in a table that is spanned by three variables, estimating the expected 
cell frequencies using the marginals reduces the degrees of freedom from 

df = IJK   to   df = IJK - (I - 1) - (J - 1) - (K - 1) - 1. 

A 2 x 2 table with df = 1 allows one to test only one independent hypothesis.

A two-stage search (also called hybrid test procedure) was implemented:

(1)  The sample is divided randomly in two parts with each case having a probability of 
p = 0.5 of being placed in either group. Using this sample, the local tests for types and 
antitypes are performed without using the Holm-Perli multiple test procedure described 
above. This exploratory step yields a preliminary selection of type and antitype cells.

(2)  The cells that emerged as possibly constituting types and antitypes in the fi rst step 
are the only cells that are examined in the second step. This step is performed using 
the Holm procedure without the Perli-component. Thus, the adjusted signifi cance 
threshold now is α* = α/N

H
, where N

H
 is the number of prospective type and antitype 

cells identifi ed in the fi rst step of the two-stage search.

4  The term drawing error is used here to denote the discrepancy between observed and expected frequencies 
that can be observed even under optimal sampling conditions. The distribution of this error depends on the 
selected model. The term sampling error denotes additional errors that may be hard to quantify. These errors 
refl ect discrepancies between model and reality.
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The continuity correction constitutes an essential component of the present study. The 
correction factor, K, is selected so that the nominal level α prevails asymptotically, that is, 
for a large number of tables with the same characteristics. Küchenhoff’s (1986) continuity 
correction involves subtracting the constant 0.5 from each difference between observed and 
estimated expected cell frequency. The effect of this correction is minimal for large cell 
frequencies, and large for small cell frequencies. The continuity correction proposed by 
Dunkl and von Eye (1990) increases the estimate of the standard error in the denominator, 
e*ijk, by the factor (e*ijk + 0.5) / (e*ijk - 0.5). Here again, the effect of the correction is stronger 
for small frequencies e*ijk. In both cases, the magnitude of the resulting test statistic is reduced 
(note again, that von Eye, 2002b, showed (pp. 71, 76), that Küchenhoff’s (1986) correction 
has the opposite effect when the difference between the observed and the estimated expected 
cell frequency is less than 0.5).

The exact binomial test (Krauth, 1973) and the exact hypergeometric test (Lindner, 1984; 
Lehmacher, 1981) do not calculate a test statistic. Instead, they calculate the exact probability 
of the observed cell frequency directly. A different correction than subtracting a constant 
is needed for these tests. We performed a number of experiments for the tests of Lienert, 
Krauth, and Lehmacher to study the effects of various correction formulas. The formulas 
presented in the following paragraphs seem to work effi ciently, and, as important for software 
development, are numerically tractable. The constant K denotes the correction term in the 
following equations.

The constant K is estimated iteratively. Let α be the a priori specifi ed, nominal Type I 
error level for the multiple level hypothesis concerning the existence of types and antitypes in 
a contingency table, and α* the estimate of the factual error level for the M contingency tables 
that were created in the simulation. The estimate α* is a function of the parameters d, mfr, τmax, 
etc., but also of the constant K. If the simulation varies K while keeping all other parameters 
constant, the estimate is α*(K)= f(K) + err, where f is an unknown, typically nonlinear (and for 
M → ∞ assumed to be monotonous and differentiable) function, and err is an error of unknown 
distribution. The iteration attempts to estimate the equation α*= f(K) as precisely as possible, 
in spite of the error element.

The algorithm used in the present simulations employs the three α-levels α = 0.01, 
0.05, and 0.1. For each of these levels, the constant K = K(α) is estimated. The estimation 
process itself begins by specifying the boundaries of the search interval [Kmin, Kmax]. The 
lower limit, Kmin, is specifi ed such that the estimate of α will be extremely conservative, that 
is, α*→ 0. The upper limit, Kmax, is specifi ed such that the estimate of α will be extremely 
non-conservative, that is, α*→1. During the iteration, this interval is reduced, and between 10 
and 20 estimates α*(Ki) are identifi ed, each of which is located close to the a priori specifi ed 
nominal level α. Because of computational constraints, the number M of tables that are 
generated in the simulation is M ≤ 1000, and because err > 0, the exact correspondence α = α* 
is extremely unlikely. The estimator of K(α) is the weighted sum of the 10 to 20 Ki identifi ed 
above. A weight of 1 is assigned if α = α*i. Otherwise, the weights shrink exponentially with 
the square of the difference α - α*i .

To be able to specify the K-values for the three α-levels 0.01, 0.05, and 0.1, a linear 
regression is estimated for the three estimates (K(αj), ln(αj)), with j = 1, 2, 3. Negative slopes 
are considered estimation errors, because they would contradict the assumption that large 
α-values imply large K-values. When a slope is negative, the mean of the three K(αj) is used 
for all three α-levels.

The following six tests were examined. Each equation is given for the case of a three-
dimensional table. The presentation for tables with different dimensions is straightforward.
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1. The χ-component test of G. A. Lienert (1969) (in the following tables abbreviated Li)

χ =
−

−
n e

e K
ijk ijk

ijk ( )1

^
.

         

2. The exact Binomial Test of Krauth (1973) (abbreviated with Kr)

b
N

l
p pijk

l n

n

ijk
l

ijk
N l

ijk

=








 −

=

−∑ ( )1  ,    K-corrected: p = exp( ln(b
ijk
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3.  The Hypergeometric Residual Test of Lehmacher (1981) and Krauth (1993; abbreviated 
with LK) 

          with V Np p N p pijk ijk ijk ijk ijk= − − − −( ( )( ))*1 1z
n e

V K
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4. The Asymptotic Test of Perli, Hommel and Lehmacher (1995) (abbreviated with Pe)
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   (The σ² has this simple formula only under simplifying assumptions)

5. The Exact Hypergeometric Test of Lindner (1984) (abbreviated with Ld)
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     The K-correction is the same as for the exact Binomial Test.

6.  The Test of Dunkl and von Eye with Victor-expected values ê*
ijk

 yielded by the new 
procedure of Lautsch and von Weber (2002) (abbreviated with nPr)
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4. Simulation results

Table 1 presents results for tables with df = 88 that are spanned by three variables with 
type/antitype strength values 1, 2, and 3. The information concerning the ß-values is based on 
several thousand contingency tables with the same characteristics. To generate frequencies, 
we used the RANDOM function available in Borland’s Turbo Pascal 6.0. Each simulation 
started with different random seeds. These seeds were created by invoking the function 
RANDOM between 1 and 999 times. As compared to the subroutine RANDOMIZE which 
is also available in Turbo Pascal, this procedure has the advantage of creating reproducible 
quasi-random numbers. Table 1 presents results on the accuracy of the β-estimates in two 
panels. The simulations were run twice with the same parameters but with different seeds of 
the random number generator. The results of the fi rst run appear in the top panel of the table, 
the results of the second run appear in the bottom panel. The comparison of the top with the 
bottom panels of Table 1 shows that the variability of the K-estimates is about 5%, and the 
variability of the β-estimates is about 2%.

Tab. 1:
Variability of K- und β-estimates (trials in top panel, trial two in bottom panel)

The results presented here are more informative than the previous ones presented by von 
Weber (2000), because here, each test keeps the a priori determined nominal α. The correction 
factor, K, is estimated together with ß. In addition, the present simulations process α in a way 
that is closer to real data analysis situations. α is the rate of false multiple hypotheses instead 
of simple hypotheses as simulated earlier (von Weber, 2000).

The following tables present selected results of the larger simulation. Specifi cally, the 
tables present the tests that display the smallest ß-estimates for a simulation condition. Results 
for τ = 2 are omitted5. For Lindner’s test, not all variations of table parameters were evaluated 
because this test can be prohibitively computationally intensive, in particular when there are 
many degrees of freedom or when the table is spanned by more than 3 variables. For the new 
procedure of Lautsch and von Weber (2002), there exists no two-stage search. However, the 
new version of the program SICFA which can also be obtained from the lead author (see 
Footnote 5), generates the complete set of rejected null hypotheses for all nominal α-levels 
between 0.001 and 0.1.

5  The complete results can be obtained from the lead author upon request. Please send an E-Mail to 
webers@fh-furtwangen.de 

d df mf α τ K β

3 88 15 0.01 1 -0.2986 87.39
3 88 15 0.01 2 -1.0842 88.96
3 88 15 0.01 3 -1.9241 88.44

3 88 15 0.01 1 -0.2828 86.62
3 88 15 0.01 2 -1.0409 87.56
3 88 15 0.01 3 -1.8837 87.46
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The following 7 tables use the same abbreviations and labels as before in this article. df 
indicates degrees of freedom, α is the a priori determined multiple type I error, τ is the a priori 
determined maximum type strength. Test indicates the test used, with an * indicating that the 
two-stage procedure was performed. ß is the Type II error (given in percent), and K is the 
estimate of the correction constant for the test that was employed. If K is positive, this test 
suggests conservative decisions about the existence of types or antitypes. Negative values of K 
indicate that a test suggests non-conservative decisions. The fi rst column of the left-most result 
panel in each table presents the test with the smallest ß-error. The fi rst column in the second 
result panel presents the test with the second-smallest ß-error, and the fi rst column in the third 
result panel presents the test with the third-smallest ß-error. Note that, for a successful search 
for types, a ß no larger than 30% is desirable.

Table 2: ß for df = 4 and d = 2

Table 3: ß for df = 4, d = 3

 mf      α        τ Test     ß        K Test     ß        K  Test     ß        K
  5     0.01      1  Pe*   97.9    0.52  nPr   98.4   -0.59  Pe     98.8   -0.03
                      3  Pe*   90.6    0.50        Pe    94.6   -0.12  nPr    98.2   -1.71
         0.05      1  Pe*   94.0    0.69  Pe    95.4   -0.05  nPr    96.3   -0.54
                      3  Pe*   83.1    0.66  Pe    86.3   -0.16  nPr    91.7   -1.17
 15    0.01      1  nPr   96.8   -1.40  Pe*   96.8   0.15  Pe     97.0    -0.26 
                      3  nPr   82.3   -1.97  Pe*   88.3  -0.05  Pe     88.8    -0.55
         0.05      1  nPr   88.7   -1.06  Pe    90.6   -0.31  Pe*   91.1     0.14
                      3  nPr   66.1   -1.55  Pe    74.1   -0.61  Pe*   74.4    -0.10
 50    0.01      1  nPr   94.4   -2.16  Kr    98.4   -1.35  Kr*   99.0    -0.63
                      3  nPr   76.9   -4.21  Pe    94.5   -1.91  Pe*   96.6    -1.29
         0.05      1  nPr   80.7   -1.87  Pe*  88.6   -0.47  Pe     88.7    -0.97
                      3  nPr   59.0   -3.58  Pe    67.2   -1.65  Pe*   69.7    -1.09

 mf      α        τ Test     ß        K  Test     ß        K  Test     ß        K
  5     0.01      1  Pe*   97.6   0.52  Pe     98.3   -0.06  nPr   98.6   -0.64
                      3  Pe*   91.9   0.46  Pe     92.1   -0.15  LK*  97.1    0.38
         0.05      1  Pe     93.8  -0.02  Pe*   94.0    0.66  nPr    94.5   -0.39
                      3  Pe     80.8  -0.14  Pe*   84.9    0.70  nPr    89.9   -1.04
 15    0.01      1  nPr    94.8  -1.72  Pe*   95.4    0.17  Pe     95.5   -0.29
                      3  nPr    80.8  -1.72  Pe*   84.0   -0.06  Pe     89.5   -0.70
         0.05      1  nPr    85.2  -0.73  Pe     87.8   -0.32  Pe*   88.5    0.16
                      3  nPr    60.3  -1.03  Pe*   71.6   -0.12  Pe     74.9   -0.77
 50    0.01      1  nPr    90.8  -1.68  Li      95.5    0.23  Ld     95.6   -2.23
                      3  nPr    53.2  -1.81  Ld     84.1   -6.21  Ld*   87.7   -2.03
         0.05      1  nPr    67.6  -1.18  Ld     86.5   -2.24  LK*  86.6   -0.51
                      3  nPr    40.1  -1.20  LK*  72.6   -1.32  Ld     73.6   -5.54
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Table 4: ß for df = 20, d = 2

Table 5: ß for df = 20, d = 3

Table 6: ß for df = 20, d = 4

 mf      α        τ Test     ß        K  Test     ß        K  Test     ß        K
  5     0.01      1  Pe*   97.4    0.33  Pe     97.6   -0.05  LK    97.9    0.03
                      3  Pe     83.1   -0.09  Pe*   84.6     0.31  LK    86.6   -0.10
         0.05      1  LK    94.3    0.02  Pe*   94.6     0.35  Pe     94.7   -0.03
                      3  Pe     74.0   -0.08  LK    77.2    -0.07  Pe*   78.0    0.37
 15    0.01      1  nPr    88.9   -0.45  Pe*   95.3    -0.03  LK*   96.8   -0.03
                      3  nPr    66.7   -0.95  Pe*   69.1    -0.11  LK*   79.8   -0.30
         0.05      1  nPr    79.2   -0.35  Pe*   83.1     0.08  Pe      87.1   -0.28
                      3  nPr    50.3   -0.40  Pe*   58.3    -0.08  Pe     58.7    -0.40
 50    0.01      1  nPr    47.3   -0.35  Kr     97.5    -1.26  Kr*   99.1    -2.00
                      3  nPr    27.2   -0.39  Kr*   85.1    -2.00  Ld     85.5    -8.72
         0.05      1  nPr    34.9   -0.31  Pe     79.3    -0.94  Pe*   79.4    -0.80
                      3  nPr    18.7   -0.31  Pe*   49.8    -0.79  Pe     51.3    -1.12

 mf      α        τ Test     ß         K  Test     ß       K  Test     ß        K
  5     0.01      1  LK     96.8    0.03  Pe*   97.0   0.32  Pe     97.2    -0.04
                      3  Pe     79.5    -0.10  LK    82.4  -0.09  Li      83.5    0.40
         0.05      1  Pe      92.8   -0.02  LK    92.9   0.05  Pe*   94.2     0.33
                      3  Pe     71.4    -0.06  LK    74.4   -0.08  Li      75.4     0.48
 15    0.01      1  nPr    87.2   -0.40  Pe*    91.1   0.11  LK    91.4    -0.11
                      3  Li      64.0     0.21  Pe      65.4  -0.16  Pe*    67.5    0.02
         0.05      1  nPr    75.4    -0.26  Li       80.6   0.44  Pe      82.0    0.05
                      3  nPr    47.4    -0.31  Pe     55.0   -0.11  Li       55.1    0.32
 50    0.01      1  nPr    42.6    -0.27  Pe*    71.5   0.03  Pe      71.6   -0.24
                      3  nPr    24.7    -0.31  Pe     49.0   -0.48  Pe*    50.1   -0.22
         0.05      1  nPr    31.9    -0.25  Pe     46.9   -0.07  Li       47.8    0.31
                      3  nPr    17.0    -0.26  Pe     42.5   -0.41  Pe*    44.4   -0.26

 mf      α        τ Test     ß        K  Test     ß        K  Test     ß        K
  5     0.01      1  Li      97.4   0.43  Pe*    97.4    0.54  Pe      97.5   0.17
                      3  Li      84.0   0.40  Pe      86.1    0.12  Pe*    87.0   0.52
         0.05      1  Pe     93.7   0.20  Li       93.8    0.52  nPr     94.3  -0.35
                      3  Pe     75.4   0.17  Li       75.9    0.48  Ld      77.4  -0.19
 15    0.01      1  nPr    86.6  -0.39  Li       90.1    0.34  Pe*    91.3    0.30
                      3  Li      65.2    0.20  Pe*    67.6    0.18  Pe      71.1   -0.24 
         0.05      1  nPr    74.8   -0.26  Pe*    80.2    0.30  Li       80.9    0.44
                      3  nPr    48.8   -0.37  Li       56.1    0.32  Pe      57.8   -0.16
 50    0.01      1  nPr    45.0   -0.31  Pe      65.9   -0.16  Li       68.1    0.16
                      3  nPr    24.4   -0.31  Pe*     53.5  -0.30  Pe     53.6    -0.67
         0.05      1  nPr    31.3   -0.22  Li       48.3    0.31  Pe     49.5    -0.09
                      3  nPr    16.2   -0.23  Li       44.8   -0.02  Pe     46.6    -0.59
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Table 7: β for df = 80, d = 3

Table 8: ß for df = 80, d = 4

5. Results, discussion and recommendations

Tables 2 through 8 show that the ß-estimates are often large, in particular for tables with 
small samples (mf = 5). Types are close to impossible to identify if type strength is no larger 
than τ = 1. This is surprising, because a type strength of τ = 1 implies that an expected frequency 
of 5 now is expected to be 10. We now ask what the reasons are for this surprising result.

The main causes for large α- or β-errors include:
•  The drawing error of a cell with assumed normal distribution, σ ijk ijke= ^ , which can be 

substantial when the expected cell frequencies are small. Consider the following example. 
If the estimated expected cell frequency of a type cell is ê = 9, the drawing error is σ = 
3. That is, with probability 95%, we draw a frequency from the interval [e-2σ, e+2σ], or 
between 3 and 15. In this case, the frequency of 3 is already below the mean frequency 
of 5, and thus points in the direction of a possible antitype. There is only one option to 
decrease this source of a large β-error, that is, to increase the total sample size.

 mf      α        τ Test     ß         K  Test     ß        K  Test     ß        K
  5     0.01      1  LK    96.4   -0.01  Li      96.9   0.27  Pe*    97.1   0.18
                      3  Li      77.1    0.26  LK    78.1   -0.04  Pe      78.3  -0.02
         0.05      1  LK    92.3    0.03  Li      92.3    0.39  Pe      94.0   0.02
                      3  Li      71.3    0.37  Pe     72.0    0.01  LK     72.7   0.01
 15    0.01      1  Li      81.7    0.25  Pe     82.2    -0.03  Pe*     85.6  0.14
                      3  Li      52.8    0.20  Pe     53.4   -0.07  Kr       59.3  -0.22
         0.05      1  Pe     71.8    0.01  Li      72.9    0.34  Kr       78.2   0.00
                      3  Li      46.9    0.31  Pe     49.4    -0.06  Kr      50.8   -0.15
 50    0.01      1  Li      39.2    0.23  Pe     44.4    -0.02  Kr      44.5   -0.15
                      3  nPr    34.7   -0.64  Pe     37.2    -0.16  Li       38.2   -0.07
         0.05      1  Li      31.0    0.32  Kr     33.1    -0.12  nPr     35.4   -0.25
                      3  nPr    23.7   -0.41  Li     27.4      0.12  Kr      30.4   -0.89

 mf      α        τ Test     ß        K  Test     ß        K  Test     ß        K
  5     0.01      1  Pe    96.6    0.01  Pe*   96.9    0.27  Li     97.0    0.26
                      3  Li     77.2    0.25  Pe     77.5   -0.01  Kr    80.8     0.10
         0.05      1  Li     92.5    0.38  Pe     92.7    0.04  Pe*   94.7    0.26
                      3  Li     71.3    0.37  Pe     71.6    0.03  Kr     74.9    0.11
 15    0.01      1  Li     80.6    0.25  Pe     81.9   -0.04  Pe*    85.0   0.14
                      3  Li     52.9    0.20  Pe     53.7   -0.07  Kr      60.0  -0.24
         0.05      1  Li     70.9    0.35  Pe     72.6   -0.01  nPr     75.9  -0.19
                      3  Li     46.3    0.30  Pe     49.4   -0.07  Kr      50.2  -0.17
 50    0.01      1  Li     39.4    0.23  Kr     45.1   -0.18  Pe      45.3  -0.03
                      3  nPr   36.6   -0.66  Li      38.3   -0.08  Pe      38.4  -0.20
         0.05      1  Li     30.9    0.32  Kr     33.9   -0.15  nPr     36.8  -0.26
                      3  nPr   24.4   -0.43  Li      27.4    0.12  Kr      30.4  -0.89
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•  The drawing error,         of a row sum. Again, this error can be substantial when the 
sample size or the size of the table is small. The marginal sums are used to estimate 
the a-priori probabilities of the cells. Thus, drawing errors in the marginal sums cause 
errors in the estimates. Here again, the only option to reduce the β-error is to increase 
the sample size.

•  Although antitypes appear more frequently than types when samples are large (von Eye, 
2001a), they are still harder to detect reliably. Lautsch and von Weber (2002) present 
β-estimates that support this result. The present simulations created a proportion of only 
33% antitypes, which contrasts with the expected proportion of 50%. Thus, the resulting 
β-estimates for antitypes are lower. Thus, if researchers focus on the search for types at the 
expense of antitypes, the β-estimates may be much better than indicated in Tables 2 - 8.

One reason for the increased -levels and, consequently, the large correction constants 
K, can be seen in the occurrence of so-called phantom types and phantom antitypes in the 
neighborhood of strong type cells. Phantom types and antitypes result for the following reason. 
Type cells come with large observed cell frequencies. Large individual cell frequencies imply 
that the marginals that describe this cell are also relatively large. The magnitude of these 
marginals may be a result of the existence of the type and thus of a violation of the main 
effect model itself. Now, in tables with more than two dimensions, whenever large marginals 
intersect, the estimated expected cell frequencies are large too. The types and antitypes that 
result for these intersections have been suspected to be phantoms, that is, false types or false 
antitypes. Kieser and Victor (1999) and Lautsch and von Weber (2002) have found satisfactory 
algorithms for the simultaneous identifi cation of all type cells.

Further inspection of Tables 2 through 8 suggests:
•  A large strength τ decreases β. This decrease can be declared by the fact that types are 

easier to identify if a cell frequency is high. The existence of phantom types diminishes 
this effect.

•  Larger samples reduce β because the drawing errors will be relatively smaller and results 
become more reliable.

•  Often, a small α implies a large β, and vice versa. A small number of tested null 
hypotheses (small α) implies that the number of rejected null hypotheses must be small 
(large β). Inversely, many tested hypotheses (large α) implies that many types can be 
detected (small β).

• The errors α and β do not vary greatly with the number of variables, d.

Finally, we ask whether the present simulation results allow us to make recommendations as to 
which test to use. We conclude:

•  Perli, Hommel, and Lehmacher’s test (1995) is obviously most capable, that is, comes with 
small α- and β-errors when the sample size is small. The two-stage procedure improves the 
test’s characteristics even more.

•  Lautsch and von Weber’s new procedure which represents an algorithmic adaptation of 
Victor’s CFA, in combination with Dunkl and von Eye’s test (1990) is most useful for 
df ≤ 20 and mf  ≥15.

•  Lienert’s χ-component test is often viewed as a tool that can be used only in exploratory 
contexts. The results presented here may change this perspective. As Perli et al. (1985) point 
out, the number of independent hypotheses in a table is given by the model’s degrees of 
freedom. Thus, each χ-component of a chosen set of cells carries a full degree of freedom 
(instead of a fraction of a df). In addition, the concern that the χ2-distribution can be used only 

Npi..
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when the drawing errors are normal seems to carry less weight when the present consideration 
concerning mixture distributions is taken into account. A third criticism of Lienert’s test is 
that it may be too conservative. This objection is certainly correct, at least for tables of certain 
sizes (von Eye, 2002), because the present simulations show only positive K-scores for the 
χ-test. However, the presentation of a tailored continuity correction in the present article 
remedies this problem entirely. As a consequence, Lienert’s test moves dramatically up in the 
performance rank order of tests. It is a well-performing test in cases with df > 40.

Future software developments as the anticipated upgrade of SICFA may, based on the present 
results, not only make the proper test available, but also information about which α to select. If 
the user chooses an α that is too small, chances of detecting types and antitypes are diminished 
unnecessarily. In addition, programs may make available estimates of the magnitude of β and 
the maximum type strength, τ. Finally, programs may be able to estimate the optimal continuity 
correction constant K to protect the user against overly conservative or non-conservative behavior 
of a particular test.
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