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On artifi cial results due to using factor analysis for dichotomous variables

KLAUS D. KUBINGER
1

Summary

This paper serves to remind the reader, that factor analysis in the case of dichotomous 
variables will often lead to artifi cial factors. In other words, the factors correspond pri-
marily to certain levels of item diffi culty. A numerical example will be given in order to 
illustrate this. It is argued that, for instance, factoring tetrachoric correlations instead of 
conventionally used Pearson correlations would lead to more content valid results.
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Introduction

During the last forty years factor analysis has become one of the most used methodical ap-
proaches within psychology, and hundreds of psychological tests have been developed based 
on factor analysis. Yet, the use of dichotomous variables is problematic. As a matter of fact, 
factor analysis applied to dichotomous variables leads to artifi cial results. This paper will, in 
the following, try to remind the reader of this and to illustrate it with a numerical example. Do-
ing so seems necessary, because psychological test constructors still use, almost obligatorily, 
a factor analysis for items that are scored dichotomously. This is true for instance for Jacksons 
world-wide renown test-battery PRF (Personality Research Form). 

The paper will not deal with the problem of using ordinal scaled variables for factor 
analysis. However the reader should bear in mind that a factor analysis does require interval-
scaled variables because of the use of the Pearson correlation; and that psychological data are 
very often simply ratings which are not likely to establish equal distances (see for instance the 
group of studies concerning Osgoods semantic differiential).
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The problem

Now let us turn to dichotomous variables: a prudent user of a factor analysis would have 
realized, for instance, the hints already Torgerson (1958, p. 331) has given: “Factor-analysis 
procedures would probably give a good selection [of dichotomously scored items in order 
to increase a test’s scalability] as long as the coeffi cients that are factored do not depend 
unduly on item marginals. Where chance success is not an element, tetrachoric correlations 
or the ratio of the phi coeffi cient to the maximum possible phi for the item marginals seem 
appropriate.” However, according to Fergerson (1941), Smith (1950), Stouffer, Guttman, 
Suchman and Lazarsfeld (1950), and Guttman (1955) the evidence already existed some years 
ago that by using dichotomous items – as a consequence of which the Pearson correlation 
reduces the φ-coeffi cient – factor analyses will most likely result in as many factors as there 
are items with different item diffi culties (the latter correspond to the item marginals). Sixtl 
(1969) also intensively elaborated on this matter.

 To remind the reader so far! 
We think that, as time goes by, potential users of a factor analysis will still require certain 

illustrations. Let us consider a numerical example for this. 
Figure 1 gives initially the data of n = 100 subjects as they mastered (+) or failed (–) both 

the items 1 and 2 of any item pool (see example 1 in the upper left hand table). The φ-coeffi cient 
amounts to .40. Of course, this correlation is rather small and the explained variance is just 
16%. The application of a factor analysis would most likely not lead to high factor loadings for 
both the items with regard to the same factor. However, this example is conceived as having 
different item marginals, in other words, the diffi culty of the items is different. While item 1 is 
mastered by only 20 out of 100 subjects, item 2 is mastered by 50 out of 100. Therefore, even 
if the item association would have been ideal, given the marginals, the φ-coeffi cient never 
reaches 1. The maximum possible φ-coeffi cient φ

max
 equals .50 here (see ideal association 

in the upper right hand table)! Taking this φ
max

 into consideration, the φ-coeffi cient .40 no 
longer looks so small. Some moderate or high association is therefore obvious. However the 
statistical coeffi cient does not refl ect this. Only if both the item marginals were equal, could 
the φ-coeffi cient possibly be 1 (see example 2 in the lower left hand table). This proves the 
statement made above that only those items which have (exactly) the same item diffi culties 
are likely to create a factor – one should, however, take into account that, of course, two items 
may have no association at all even though they have the same diffi culties. For an even better 
illustration of φ-coeffi cient’s dependency on the equality of the item marginals in Figure 1 
a case will fi nally be given of item marginals which are more similar (see example 3 in the 
lower right hand table): Instead of .50 the maximum possible φ-coeffi cient φ

max
 then amounts 

to .65.  
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Figure 1:
A numerical example and some ideal item associations. The maximum possible φ-coeffi cient 

differs in dependence of the item marginals. It only then reaches 1 if the marginals of two 
items are the same. 

Consequences

As indicated above by Torgerson, the problem might possibly be solved by using a 
tetrachoric correlation instead of a Pearson correlation and φ-coeffi cient, respectively. His 
alternative suggestion, that being to use the ratio of the φ-coeffi cient to φ

max
, does not seem to 

be a proper means, because although this ratio frequently applies in psychological research 
it is nevertheless merely a descriptive statistic; therefore nothing is really known about its 
underlying distribution and so, no signifi cance test exists. The opposite is true with regard to 
the tetrachoric correlation (see for instance Kubinger, 1990/1993). 

The formula for the tetrachoric correlation results if the Pearson correlation is applied 
to dichotomous variables, however these variables are supposed to be normally distributed 
from the start  (Pearson, 1907). Although Kendall and Stuart (1979) give a more detailed 
formalisation for calculating the tetrachoric correlation, the equation system given by Dixon 
(1985) does it here: 

 Φ (u
1
) = (a + c)/ n

 Φ (u
1
) = (a + b)/ n

 
- ∞ 

∫ 
u
1 

-∞ 
∫
  u

2 f (x, y, r
tet

) dxdy = a/n,

Φ (u) is the distribution function of a standard normal distribution at u, with f(x, y, r
tet

) 
being the density of a standardized bivariate normal distribution at (x, y) given the correlation 

Numerical
 example 1

Ideal association,
given the marginals

ITEM 1 ITEM 1
+ - + -

ITEM 2 + 18 32 50 ITEM 2 + 20 30 50

- 2 48 50 - 0 50 50

    20           80     20          80

          φ = .40       φ
max

 = .50

Example 2: 
Ideal association

Example 3:
Ideal association

ITEM 1 ITEM 1
+ - + -

ITEM 2 + 20 0 20 ITEM 2 + 30 20 50

- 0 80 80 - 0 50 50

    20           80     30           70

      φ
max

 = 1.00       φ
max

 = .65
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r
tet

; and a, b, c, (and d) being the frequencies in the contingency table (e.g. a for the counts of 
cell ++, b for – +, c for + –, and d for – –). However, for even more simplicity there is also a 
formula of approximation:

 r
tet

 = cos {180o / [1 + √(bc/ad)]}

– which should be chosen in the case of a, b, c, and d so that a and/or d are not zero.  
Obviously, r

tet
 results in 1 if b times c is zero; this always happens if an ideal association, 

for instance according to Figure 1, occurs.  It does not matter whether the item marginals are 
equal or not. In the numerical example in Figure 1 r

tet
 is approximated as (–).7825. 

Unfortunately, the tetrachoric correlation is not available in the standard software package 
SPSS - neither solely for the purpose of calculations by using “cross tables”, nor by using the 
subroutine “factor analysis”. So far our considerations here run the risk of being useless. For 
this a special SPSS syntax software is currently in preparation which will soon be available to 
everyone on our homepage: www.univie.ac.at/psychologie/diagnostic.

Conclusion

For psychologists who are acquainted with structural equation models (e.g. LISREL, 
“Linear Structural Relationships”) approaches for factoring dichotomous variables that are 
based on these models may  be recommended (c.f. in particular Muthén & Christoffersson, 
1981, Muthén, 1984, 1989). Knol and Berger (1991) and Parry and McArdle (1991) did in 
fact compare such approaches with a factor analysis using the tetrachoric correlation – and 
basically found that factoring tetrachoric correlations worked as well. However the aim of this 
paper is not to disclose any conditions when concurrent algorithms are superior; the purpose of 
this paper is simply to prevent psychologists who do not have thorough knowledge of statistics 
from using conventional (i.e. SPSS-default) factor analysis for dichotomous variables.
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Th. Mußweiler

A Selective Accessibility Model of Anchoring
Linking the Anchoring Heuristic to Hypothesis-Consistent 

Testing and Semantic Priming

Judgmental anchoring - the assimilation of a numeric estimate to a previously considered 
standard of comparison - has proved to be a pervasive phenomenon that infl uences 
judgments in a variety of domains. However, to date the mechanisms underlying this 
ubiquitous phenomenon remain an enigma. The current analysis suggests that linking 
the anchoring phenomenon to two fundamental principles of social cognition research 
- hypothesis-consistent testing and semantic priming - may help to solve this enigma. In 
particular, a Selective Accessibility Model (SAM) is proposed which suggests that judges 
use a hypothesis-consistent test strategy to solve a comparative anchoring task. Applying 
this strategy selectively increases the accessibility of anchor-consistent knowledge which 
is then used to generate the subsequent absolute judgment. Results of 4 studies support 
this assumption. Specifi cally, Studies 1 through 3 demonstrate that limiting the amount 
of knowledge generated for the comparative task retards absolute judgments. This 
suggests that knowledge that is rendered easily accessible in the comparative judgment 
is used for the absolute judgment. Finally, study 4 reveals that solving an anchoring task 
facilitates lexical decisions for anchor-consistent words, indicating a selective increase in 
the accessibility of anchor-consistent knowledge. Implications of the SAM model as well 
as possible applications to organizational and juridical decision making are discussed.
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