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Validation of Ultrasonic Image Boundary Recognition
in Abdominal Aortic Aneurysm

R. Ravhon, D. Adam*, Senior Member, and L. Zelmanovitch

Abstract—An aneurysm of the abdominal aorta (AAA) is char-
acterized by modified wall properties, and a balloon-like area usu-
ally filled by a thrombus. A rupture of an aortic aneurysm can
be fatal, yet there is no way to accurately predict such an occur-
rence. The study of the wall and thrombus cross-sectional disten-
sion, due to a pressure wave, is important as a way of assessing
the degradation of the mechanical properties of the vessel wall and
the risk of a rupture. Echo ultrasound transverse cross-sectional
imaging is used here to study the thrombus and the aortic wall dis-
tension, requiring their segmentation within the image. Polar co-
ordinates are defined, and a search is performed for minimizing a
cost function, which includes a description of the boundary (based
on a limited series of sine and cosine functions) and information
from the image intensity gradients along the radii. The method is
based on filtering by a modified Canny–Deriche edge detector and
then on minimization of an energy function based on five parts.
Since echoes from blood in the lumen and the thrombus produce
similar patterns and speckle noise, a modified version for identi-
fying the lumen-thrombus border was developed. The method has
been validated by various ways, including parameter sensitivity
testing and comparison to the performance of an expert. It is robust
enough to track the lumen and total arterial cross-sectional area
changes during the cardiac cycle. In 34 patients where sequences
of images were acquired, the border between the thrombus and
the arterial wall was detected with errors less than 2%, while the
lumen-thrombus border was detected with a mean error of 4%.
Thus, a noninvasive measurement of the AAA cross-sectional area
is presented, which has been validated and found to be accurate.

Index Terms—Aortic aneurysm, echo ultrasound, edge detec-
tion, image processing.

I. INTRODUCTION

A N abdominal aortic aneurysm (AAA) is the 13th major
cause of death in the United States [6], [39] but it has

never attracted as much research as other widespread diseases.
An AAA is diagnosed when an increase of more than 50% of the
aortic diameter is detected relative to a normal healthy diameter.
There is a high probability of a rupture with AAA, with an ex-
tremely high degree of mortality. The risk of fatality in surgery
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to repair an aneurysm is also very high [6], [39]. Thus, the de-
cision whether to operate, with the risks involved, or delaying
the intervention with the danger of a sudden rupture, is crucial.
Unfortunately, in most cases today the decision is based on a
single criterion—the aortic diameter.

Several investigators have reported on their efforts to better
assess the risk of rupture by attempting to measure the aortic
compliance [17], [18], [22], [23], [25], [30], [32], [34], [37],
[38], [40], [41]. The estimation of the aortic compliance enables
assessment of the mechanical properties of the arterial wall and
the stress in the aortic wall. Since in most cases thrombus fills
up the aortic cavity, except for a lumen of a normal size in which
the blood flows, the effects of the thrombus on wall compliance
should also be studied. There are numerous studies that report
on changes of the mechanical properties of the arterial wall in
AAA [6], [30], [34], [39]–[41].

Ultrasound (US) imaging is a common, relatively inexpen-
sive modality [5]. It can provide high-quality images when used
invasively (termed intravascular ultrasound (IVUS) [7], [43]),
but the risks involved significantly limit its usage, specifically
in AAA patients where rupture can abruptly occur [3]. This
imaging modality, when used noninvasively, allows high acqui-
sition rates and provides images in real-time, but the images are
corrupted by a high level of noise. This noise makes it difficult
to accurately identify edges, since in some regions the noise pro-
duces artificial edges, while in other regions there are no echoes
present and the edges seem ambiguous. In such low-quality im-
ages (which are very common in US imaging), generic algo-
rithms do not identify the border accurately.

Several algorithms have been reported, which could help
identify edges in US images [2], [4], [10], [13], [15], [23],
[32], [38]. Studies that are focused on the processing of cardiac
US images [1], [12], [19] are also of value, since many of
the methods are similar. Some of these studies are based on
“temporal active contours” [24] or “deformable contour” [27],
some on the “snakes” algorithm [26], [42] that defines an object
function, also called “energy” function, which is minimized to
obtain the estimated border. This “energy” function is divided
into two distinct parts, internal and external energies: the
internal energy is contour dependent, and it is used to penalize
a contour that is not smooth, or one that deviates froma priori
information [10], [29], [35]. The external energy is a function
of the image, and many such examples have been reported
[21], [26]. The external energy can also integrate directional
information into the edge detection process [9]. The global
minimum of this energy function is supposed to be the desired
border, but there is no guarantee that this is the correct border.
By minimizing this energy function, the authors of many of the
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above reports tried to reach the global minimum: some used
finite elements with finite difference calculations [14], while
others used dynamic programming [2]. Some reports claim that
their methods found the global minimum [20].

The golden standard algorithm for detection of edges in im-
ages was reported several years ago by Canny [9]. In that case,
the edge is defined as a step function embedded in white noise.
But in US images, the data used here, the noise is speckle noise,
which has a high degree of correlation. The edge cannot be de-
scribed by a step function, and the difference in the average gray
levels of the various regions is high. Canny suggested using
an edge detector, a filter with an impulse response of the first
derivative of a Gaussian function, with a given standard de-
viation (SD). The filter design allows a tradeoff between the
signal-to-noise ratio (SNR) and the ability to locate accurately
the edge (i.e., resolution), leading to the use of a filter bank,
each filter in a different resolution, with the final edge located
by some integration of the outputs of these filters (multiresolu-
tion) [8]. The algorithm reported here implements these ideas.
Another important suggestion was made by Canny [9], i.e., to
include information on the edge orientation, which can be ac-
complished by an edge detector, sensitive to the direction of
the edge. Mallat [33] suggested a way to combine multiresolu-
tion approach with the edge direction information, and has also
shown the use of wavelets for the creation of multiresolution
images. These suggestions may well serve as an excellent first
stage in the development of robust detector of the borders of or-
gans or geometrical shapes in ultrasound images and, thus, they
are implemented here as described below.

The purpose of this study is, therefore, twofold: First, design a
robust method for detection of the border between the thrombus
and the arterial wall, and for the detection of the border be-
tween the thrombus and the arterial lumen. Second, study the
changes in arterial lumen area and total arterial cross-sectional
area during the cardiac cycle. The scale of these area changes
may help understand the alteration of the mechanical properties
that the arterial wall undergoes due to AAA, and provide the
basis for the hypothesis that very small area changes during the
cardiac cycle may indicate fibrotic wall and higher probability
of aortic rupture.

II. M ETHODS

The different steps of the algorithm presented here are de-
picted in Fig. 1. The video image data is given in Cartesian co-
ordinates. The first step is the transformation of this coordinate
system to a polar coordinate system, which was found to be sim-
pler [36] for the procedures performed below. The transforma-
tion can be expressed by

(1)

where
and coordinates of the origin of the polar coordi-

nate system;
angle with respect to the positive-axis;

Fig. 1. Flow chart of the main steps of the algorithm. The initial values of all
the parameters are given in Tables I and II. All other parameters are set to zero.

radial distance between the origin and any
given point.

This distance is nonnegative. and are the points in which
the border is defined. Since the border is a one-dimensional en-
tity, it can be represented by a single function , For the case
presented here, an assumption is made: the border must be star
shaped. The function is represented by a Fourier series, as
described in (2), where the angleis the independent variable

(2)

where is the maximal number of harmonics selected,,
are the parameters that represent the

border. This representation was chosen for the following rea-
sons.

• The function is continuous between the angles 0 and
(where the border begins and ends), and also smooth in all
its derivatives, at each point.
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• The series can be expanded by any number of elements,
with a high number for better accuracy, and a small
number (harmonics) for better robustness.

• There is no need to predetermine a limitation on the
smoothness and continuity, as required when a poly-
nomial representation of the border is used. Also, the
condition number of the sensitivity matrix is very low,
while it is high in the polynomial representation.

A. MultiResolution Approach

A multiresolution approach [6], [31] greatly enhances the ca-
pabilities of the algorithm since initially the border is coarsely
approximated, making the algorithm more robust. Near the de-
sired border the smoothing could be relaxed for a more accurate
assessment of the border.

The search for an edge should be in the normal direction of
the perimeter of the estimated organ border. This can be done
by utilizing the information of the edge orientation as part of
the external energy [9], [21], [26]

(3)

with the integration performed along a closed line in the image, a
line that is considered to be the edge.are the image gray level
values, and is a unit-vector in the direction perpendicular to
the border (and line of integration). The integrand here is simply
a directional derivative.

B. Radial Derivative in Polar Coordinates

Two basic assumptions were used here, 1) the border is
roughly circular in shape and 2) the origin is approximately
in the center. Therefore, the unit-vectors perpendicular to the
border orientation are assumed to be radially oriented and the
integrand is the radial derivative of the image intensity in the
polar coordinate system [19], [36].

As a first step (see flow chart depicted in Fig. 1), the inten-
sities of the US image are normalized to the range between the
values zero to one. A discrete grid is defined by the polar coor-
dinate system of (4)

(4)

where is the radial distance from the origin, and and
are the minimal and maximal expected distances from

the origin. Usually, is set to be zero and is the
maximal possible distance within the analyzed image.is the
angle measured counterclockwise from theaxis, and is the
number of the radial lines; in this case, 128.

Two matrices are used to calculate the Cartesian position of
each point on the grid as defined by (5)

(5)

After bilinear interpolation of the gray levels within the image,
the results are given in matrix , which describes the
image in the polar coordinate system.

The image in polar coordinates is derived by convolution with
the first derivative of a Gaussian. Since the image in the polar
representation is not isotropic, the Gaussian SD is different in
the radial and the tangential directions.

The implementation is done by a modified Canny–Deriche
edge detector[16], with the derivative applied in the radial di-
rection and the smoothing operation applied in the tangential
direction. The smoothing operation is applied since the distance
of the border from the origin is known to change gradually, en-
hancing the robustness of the algorithm.

In order to produce a continuous multiresolution scheme, the
kernel must be modified at each iteration (Fig. 1), with a ratio
between the radial smoothing and the tangential smoothing

chosen as

(6)

and the smoothing level changed according to the progress of
the iteration

(7)

where and are parameters. is the degree of fit of the
points (used in the above calculations for describing the edge)
to the imaged border, as described by (8)

(8)

where is the radial distance of pointfrom the origin, and
is the distance from the origin of the estimated border at this

angle . is the angle between the vector to this point (mea-
sured counterclockwise) and theaxis, where , and

is the radial derivative of the image values (i.e., its gray
levels), corresponding to this point. is the number of points
being processed.

C. The Estimation of the Border

In order to save computation time, only the upper 20% of
the gradient values are being processed, with these limits being
recalculated at each iteration, i.e., the points processed (at each
iteration) are at a distance less than SD pixels from the estimated
border. SD is defined by (8). These limits are imposed on the
first iteration, assuming the SD to be 30 pixels in size, with the
border taken as the one estimated at the previous image in that
sequence. At the first iteration of the first image, SD is infinite.
At each iteration, decreases. When the calculated decrease
is less than a pixel in size, the used is one less than the
previous one.

The border could also be defined in a matrix form

(9)

where
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where is the number of the Fourier harmonics used, and the
vector components and are the parameters to be es-
timated. Finally, an energy function (i.e., an object or an error
function) is defined, which should be minimized with respect
to . This energy function is composed of five components, as
shown in (10)

(10)

1) The first energy component [defined by (11)], de-
scribes the match of the border in the image to the
points selected, with the significance (weight) of each
point according to the radial derivative

(11)

where is the number of points processed. This en-
ergy component is actually a weighted least square
(WLS) formulation, calculated for the image points,
which are used as data points, while the border is for-
mulated by (9), with the radial derivative serving as the
weight.

2) The second energy function component is given by

(12)

which is an approximation of
This energy component is similar to the function

termed “Snakes” or “active contours” [19], [24], [26],
which penalizes an irregular boundary, and is com-
monly used to reduce the attraction of the dynamic
curve to noisy areas that contain high-intensity deriva-
tives. Here the smoothness of the boundary is intrinsic,
and this component is used to prevent the boundary
from being attracted to areas within the image with
high intensities, but far away from the real border.

The angle is evenly distributed

(13)

3) The third energy component is defined in a format sim-
ilar to (12), and is also a standard energy component
in the “Snakes” formulation. It provides a smoother
border [19], [26]

(14)

which is an approximation of

4) Because of the high acquisition frame rate of the US
imaging system, it can be assumed that only small
changes occur in between any two consecutive im-
ages within a temporal sequence. This assumption was
found to hold even for mid-range imaging systems with
a relatively slow frame rate. The information that the

borders in consecutive images should be similar can be
integrated into this energy function as

(15)

where is the vector of parameters of the border in
the previously evaluated image within the sequence
and is the number of the Fourier harmonics used.

5) A bias toward inflation of the border is described sim-
ilar to the formulation given in [13]

(16)

All of the energy components described above, may be
rewritten as

(17)

A different, compact formulation of (17) is given by

(18)

and the following description [see (19)–(24)] details the dif-
ferent components of this compact formulation.

1) The terms in [in (18)] that relate to the first energy
component are

(19)

where is the angle of a radial ray with regard to the
positive direction of the axis, corresponding to the
point of index . The values of the radial derivatives are
given by: , with being the
radial distance of point from the origin.

The weights are corrected by the weights of the first
energy term

(20)

The high degree of robustness of the algorithm is
achieved by initially introducing a high degree of reg-
ularization, and later gradually relaxing the regulariza-
tion. This is done by multiplying all energy compo-
nents by .
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2) The terms in [in (18)] that relate to the second en-
ergy component are

(21)

with the coefficient: ; and
also: .

3) Similarly, the terms in [in (18)] that relate to the
third energy component are

(22)

with the coefficient: ; and
also: .

4) The terms in [in (18)] that relate to the fourth energy
component are

(23)

with the coefficient:
; and also:

5) The terms in [in (18)] that relate to the fifth energy
component are

(24)

with the coefficient: ; and
also: 0, with alpha as a parameter.

The sum of all the energy components (see (17)), can then be
rewritten in a standard WLS formulation as given in (18) where
the equation shown at the bottom of the page holds.

Minimization of the total error function with respect to ,
produces the global minimum

(25)

where represents the estimated border.
After the border between the arterial wall and the thrombus

are determined in a certain image, the origin of the polar coor-
dinate system is recalculated, with the integration path in (26)
performed along the whole border

(26)

The process of estimating the thrombus-blood border requires
some modification of the equations above. This is because both
the thrombus region and the blood region are characterized

TABLE I
THE PARAMETERS COMMON TO BOTH BORDERS

by low gray-level values. Therefore, a Gamma correction was
found to be appropriate, which is implemented in the following
manner, as described in (27)–(29):

(27)

(28)

(29)

where “ ” denotes the original image and “ ” denotes the
image after transformation. is the estimated average of pixel
intensities, calculated over a region of interest (ROI) of 1111
pixels around the origin, and is the SD estimation of the
pixel intensities at the same ROI.serves as the lower (inten-
sity) threshold, and “ ” is the image after the subtraction of
this threshold level (for positive values). “ ” of (29)
stretches the linear range of the image intensities. This non-
linear input–output relationship increases significantly the low
gray-level values, and only a bit the high gray-level values.

D. Convergence of the Algorithm

Total error calculations are performed until the SD is found
to be low enough: . The following error criterion is
defined, , the error measured between two contours—the
one calculated by the algorithm and the one drawn by the expert.
It is stated in the polar coordinate system, describing the mean
square error, as shown in (30):

(30)

where is the radial distance of the border from the
origin, depending on the polar angle as calculated from the

-axis, and is that distance, calculated by the algorithm.
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TABLE II
THE PARAMETERS USED FOREACH OF THE BORDERS

The sensitivities of the parameters are estimated, as detailed
in Section III. The processing described above is done off-line.
The algorithm was written in a Matlab environment (Matlab V.
5.2, Mathworks, Inc.). The first image in a sequence requires
about six iterations for the algorithm to converge: for the other
images in the sequence, it takes only 3–4 iterations to converge.
A sequence of 31 images usually requires about 15 min to run
on a Pentium processor (200-MHz).

III. RESULTS

The algorithm requires a set of parameters, which are used
as coefficients in the different equations. Some of these param-
eters were selected by trial and error, some bya priori infor-
mation. The parameters used in the equations, as detailed in the
Methods Section, are listed in Tables I and II. These sets of pa-
rameters were used for generating all the borders in all the image
sequences available in this study, and can be used in any other
similar image sequences. The algorithm was applied to 34 se-
quences of ultrasound images, recorded from 34 patients. For
each of these sequences, an expert traced the last frame. The
results of applying the processing procedure, i.e., the borders
detected by the automatic procedure, were compared with trac-
ings made by the expert. A typical image, with the two borders
marked by dots, is depicted in Fig. 2(a). The other plots in this
figure describe the time sequence changes (during the cardiac
cycle) of the cross-sectional areas of the lumen [Fig. 2(b)], the
aorta [Fig. 2(c)], and the thrombus area [Fig. 2(d)].The tracings
of the borders, made by an expert (a vascular surgeon) on the last
frame of each sequence, are considered as the “gold standard”
in this study. The discrepancies between these manual tracings
and those produced by the algorithm are defined as the error,
described in (30). The errors for each image in the whole set of
34 sequences are displayed as histograms in Fig. 3.

The sensitivities of the parameters of the algorithm were tested
in several ways: First, the algorithm was tested for its sensitivity
to displacement of the origin of the polar coordinate system. The
error between the borders detected by the algorithm when the
origin is misplaced, and the borders detected when the origin is
at the center (which serves as reference), are calculated by (30).
The displacement of the origin is given in pixels, where 27 pixels

1 cm in the tested image sequences. The results are compared
with the tracings made by an expert. The results of this sensitivity

study are depicted in Fig. 4, for the border between the lumen and
the thrombus. In Fig. 4(a), an asterisk marks the location of the
origin used by the algorithm, while a gray rectangle marks the re-
gion through which the origin was displaced. The plot in Fig. 4
depicts the error [in millimeters] of estimating the location of the
lumen-thrombusborder, as the functionof the horizontal and ver-
tical shifts of the origin [in pixels], in relation to the location of
the border when the origin is at the center of the lumen. The sen-
sitivity of detection of the border between the thrombus and the
arterial wall to displacement of the origin, is depicted in Fig. 5. In
Fig. 5(a), an asterisk marks the location of the origin used by the
algorithm,whileagray rectanglemarks the region throughwhich
the origin was displaced. In Fig. 5(b), the plot is of the error [in
millimeters] of estimating the location of the thrombus-arterial
wall border, as the function of the horizontal and vertical shifts of
the origin [in pixels], in relation to the location of the border,
calculated when the origin is at the center of the lumen.

The sensitivity of the algorithm to its parameters was mea-
sured by calculating the error between the border found when
the optimal parameters are used [with results as seen in Fig. 2(a)]
and the border found when modified parameters are used. This
measurement was performed for the last frame in each sequence.
All tested parameters were changed (one at a time) by up to

50%. The errors in estimating the border, when the different
parameters are changed by50%, are calculated separately for
the border between the lumen and the thrombus, and for the
border between the thrombus and the arterial wall, as tabulated
in Table III.

In Fig. 6, the SD of the length is depicted, of the border
along the aortic cross section circumference, versus the diam-
eter of the aorta. It is calculated over the sequence of the image
frames, i.e., during the cardiac cycle, and normalized by the
mean circumference. The maximal pulsatility movement is de-
picted in Fig. 8(a), together with the minimal pulsatility move-
ment [Fig. 8(b)]. These values are calculated by selecting the
maximal (and minimal) ratios over the sequence of the images
along the cardiac cycle. The maximal and minimal values are se-
lected from the SD of the length of the border along the sector
circumference and the mean length.

A. The Pulsatility Movement Measure
The most common clinical measure of AAA severity, which

plays a major role in making the decision on surgical interven-
tion, is the diameter of the aneurysm. Therefore, the results of
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(a) (b)

(c) (d)

Fig. 2. (a) A typical ultrasound image of cross section of the abdominal aorta, with the borders identified by the algorithm marked by dots. (b) A plot describing
the time sequence changes of the lumen cross-sectional area (during the cardiac cycle). (c) A plot describing the time sequence changes of the aorta cross-sectional
area. (d). A plot describing the time sequence changes of the thrombus cross-sectional area.

(a) (b)

Fig. 3. (a) Histogram of the normalized radial error of identifying the border between the thrombus and the arterial wall. (b) Histogram of the normalized radial
error of identifying the border between the thrombus and the blood (lumen).

the present study are compared with this measure (but only for
seven sequences out of the 34 cases, which demonstrated rea-
sonable pulsatility): The SD of the length of the border along

the aortic cross section circumference (calculated over the se-
quence of the image frames, i.e., during the cardiac cycle), nor-
malized by the mean (i.e., the mean aortic cross section circum-
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(a)

(b)

Fig. 4. Sensitivity of the detection of the border between the thrombus and
blood, to movements of the origin. (a) Gray rectangle marks the region in which
the origin was moved, with an asterisk marking the origin used to create the
reference border. (b) Error (in millimeters) of estimating the border between the
thrombus and blood, as calculated by (30), when the origin is being shifted (in
pixels), versus the origin being at the center of the lumen.

ference in that sequence) is compared with the mean diameter
of the aorta. The mean diameter of the aorta is calculated by
dividing the mean aortic cross section circumference by. In
order to reduce the degradation of the results caused by errors
in the SD calculations, an equal number of cardiac cycles is se-
lected. Since no ECG could be measured concurrently with the
ultrasound image acquisition–the cardiac cycle lengths are de-
termined from the changes in the aortic cross section area, as
calculated from the images [e.g., as seen in Fig. 2(b)]. The re-
sults of the pulsatility movement versus the mean aorta diameter
are presented in Fig. 6.

The bulging created by the aneurysm is usually asymmetric,
and clinical experience indicates that the dorsal part of the arte-
rial wall hardly moves during the cardiac cycle. Thus, it is worth
studying theregionaldistension of the wall during the cardiac
cycle. A measure is introduced which identifies the sectors that
elongate most and that elongate minimally. The size of the sector
(angle, in degrees) influences the results (specificity versus sen-
sitivity); a sector of 90 is used as a compromise. The sector
is shifted each time by 2, until a full circle is completed (see
Fig. 7). The sector pulsatility movement is calculated each time

(a)

(b)

Fig. 5. Sensitivity of the detection of the border between the thrombus and the
arterial wall, to movements of the origin. (a) Gray rectangle marks the region in
which the origin was moved, with an asterisk marking the origin used to create
the reference border. (b) Error (in millimeters) of estimating the border between
the thrombus and arterial wall, as calculated by (30), when the origin is being
shifted (in pixels), versus the origin being at the center of the lumen.

(i.e., the ratio between the SD of the length of the border along
the sector circumference and the mean length, calculated over
the sequence of the image frames along the cardiac cycle). The
results of these calculated measures are displayed in Fig. 8(a) for
the maximal pulsatility movement, and Fig. 8(b) for the minimal
pulsatility movement. These two figures demonstrate that some
correlation exists between these measures and the diameter of
the artery—between the maximal pulsatility movement and the
aorta diameter, and between the minimal pulsatility movement
and the aorta diameter.

B. Correction of the Angular Divergence Calculation

It is usually assumed that the vector-normal of the true border
is radially oriented, thus, the algorithm is based on this assump-
tion. However, this is not always the case and though the orien-
tation is close to that of the radii, it causes errors in calculating
the borders. The errors can be reduced by first estimating the
orientation of the border, and then performing the divergence
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TABLE III
THE ERROR OFESTIMATING THE BORDER, WHEN THE DIFFERENTPARAMETERS ARE CHANGED BY �50%. THE ERRORIS CALCULATED IN RELATION TO THE

BORDERCALCULATED BY THE PARAMETERS USED FORPROCESSINGALL THE DATA IN THIS STUDY

Fig. 6. The SD of the length of the border along the aortic cross section
circumference (calculated over the sequence of the image frames, i.e., during
the cardiac cycle), normalized by the mean circumference, versus the diameter
of the aorta. See text.

operation normal to this border. This can be done by calculating
the angle for each radial (see Fig. 9) and then calculating the
normal to the border, using (31):

(31)

where is the resultant of the edge detection (described
in the Section II), and is the resultant of the same edge
detection operation, but applied in the tangential orientation.
The remaining parts of the algorithm remain unchanged, except

—the product of the angular divergence (as given
in (A.1.6), which is replaced by above. The results of
applying the modified algorithm are compared with those of
the original one (see below). An example of the application
of the two methods to the same image is given in Fig. 10.
The errors associated with the calculation of the borders (of
both the border between lumen and thrombus, and the border
between the thrombus and arterial wall), when performed by
the two algorithms, are depicted in Fig. 11(a), while the Bias

Fig. 7. The sector pulsatility movement is calculated for a 90sector, with the
sector shifting each time by 2, until a full circle is completed.

is depicted in Fig. 11(b). The differences between the two
methods are rather small, usually less than one pixel. The
modified algorithm takes into account the cosine of the angle
between the normal to the border and the radial, thus, even
angles of 30 produce only small differences in the results of
the divergence calculations, as performed by the two methods.
The results of applying the two methods to three sequences are
tabulated in Table IV.

IV. DISCUSSION

The application of the algorithm to 34 different image se-
quences proved it to be robust and simple, since the algorithm
has an explicit formula and only one global minimum. The cor-
relation between the radial distance of the two borders, the one
calculated by the original algorithm and the one modified by the
correction of the angular divergence, provides also a measure of
accuracy and robustness of the method. The correlation coeffi-
cient value for the border between the thrombus and the arterial
wall reaches (when calculated for the last frame
in all sequences), and for the border between
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(a)

(b)

Fig. 8. (a) Maximal pulsatility movement, and (b) minimal pulsatility move-
ment, calculated by selecting the maximal (and minimal) ratios (between the SD
of the length of the border along the sector circumference and the mean length),
calculated over the sequence of the image frames along the cardiac cycle.

the lumen and the thrombus. The correlation values for a full
sequence of images are depicted in Fig. 12. The modification
described above changes the border only slightly. These results
are comparable to or better than those found when applying a
similar technique to cardiac images in an attempt to detect the
endocardial boundary [11].

The algorithm has been validated by several tests. It is insen-
sitive to the selection of the coefficients, as demonstrated above:
alterations of 50% of the value of each coefficient (from the
value used for generating all the results above), has no sig-
nificant effect on the end product—the border, as seen from
Table III. The deviations of the calculated borders are small,
even for such large changes in coefficient values. As can be
seen from Table III, the border between the thrombus and the
wall of the artery is the more robust one. The most sensitive pa-
rameter is the increase of the “inflation” parameter, which when
increased by 50% causes a deviation of 0.13 mm at its extreme
value, which is much less than one pixel (as the size of each
pixel represents a distance of 0.37 mm).

Fig. 9. Correction of the angular divergence calculation: instead of assuming
that the normal to this border is performed vector-normal of the true border is
in the radial orientation, the angle� between each radial orientation and that
of the border orientation is estimated, and then the divergence operation.

The detection of the border between the blood lumen and the
thrombus has been also validated. It was found to be more sen-
sitive to perturbation of the coefficients, as can be seen from
Table III. This is due to the fact that both the blood region and the
thrombus region are characterized by low gray—level values,
thus, the SNR of the border is low. There are two moreparame-
ters which are relatively sensitive.

• The first and second derivative coefficients, which are
used to increase the robustness of the algorithm to noise
in the lumen: Changes of these coefficients, in both
directions, cause deviations in estimating the border.

• The increase of the “memory” coefficient also has a signif-
icant effect on the solution, as the changes from frame to
frameof the lumenareaand locationmayberelativelyhigh.

It must be emphasized, however, that even for the worst case
(when the largest border deviation is caused, due to alteration of
the coefficients), the deviation isless than one pixel.

Another way of validation was performed by shifting the
origin of the polar coordinates system, as was demonstrated in
Figs. 4 and 5. The sensitivity is specifically low in the case of
detection of the border between the thrombus and the arterial
wall (Fig. 5), even when the movement of origin shifted it
nearly up to the border itself. In the case of the border between
the lumen and the thrombus (Fig. 4), the error is somewhat
larger, and is not symmetrical. It can be explained by the
asymmetrical (elliptic) shape of the lumen, which brings the
origin very near to the border itself. The larger error is due also
to the high noise levels, especially in the areas near the border.
The errors associated with this measurement and detection
can be appreciated by studying the error depicted in Fig. 3.
The histograms include a large variety of different cases, and
also include measurements made at different times during the
cardiac cycle. As seen from these histograms, the error of
detection of the border between the thrombus and the arterial
wall is in most cases under 2%, which is a very good result
considering the high noise levels. The error of detection of the
border between the lumen and the thrombus is in most cases
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(a)

(b)

Fig. 10. (a) An example of applying the modified algorithm is compared with
(b) the application of the original one on the same frame.

under 4%. This error reached values of 8% due to the sensitivity
of the algorithm to noise, caused by the gray level transform
described in (27)–(29). These error rates are clinically accept-
able since they are lower than those reported for inter-observer
variability [30]. The computational complexity of the algorithm
is not high: the number of iterations required for convergence
of the parameters of the border is much smaller than the number
required for the “snakes” algorithm, although the complexity
of the calculations within each iteration is higher.

The detection of borders in ultrasound images has been ad-
dressed before. An example that succeeds to produce good re-
sults is the effort to produce the inner border of the Follicle
[28]. It poses a similar problem to the problem posed here of
detecting the border between the thrombus and the arterial wall.
But the segmentation of the thrombus—blood is a problem of a
different nature. Also, the images of the Follicle are acquired by

(a)

(b)

Fig. 11. (a) The errors associated with the calculation of the borders (for
both the border between lumen and thrombus, and the border between the
thrombus and arterial wall), when performed by the two algorithms. (b) The
bias associated with the same calculations of the borders.

a vaginal probe, which ensures good image quality, and since the
distance is short, high-frequency probe (with high resolution)
can be used. Patients suffering from Aortic Aneurysm are usu-
ally obese, thus, the distance from the probe to the ROI is long,
and lower frequencies must be used with lower resolution.

The results presented above, of the method that uses an
optimization operation, and the validation of this method,
demonstrate the feasibility of automatic measurements of the
cross-sectional area and diameter of the abdominal aorta. When
AAA exists, the algorithm also allows acceptable measure-
ments of the lumen cross-sectional area and diameter, and the
cross-sectional area, of the thrombus. Thus, the customary
clinical measurements made frequently in AAA patients, can
be made automatically with a high degree of accuracy.

The study of the time dependant changes of these cross-sec-
tional areas during the cardiac cycle is somewhat more lim-
ited, because of the extremely small area changes (sometimes
less than 1%) in the diseased artery (e.g., AAA). Yet the clin-
ical importance of the measurement obtained here is substan-
tial: the pulsation of the arterial cross-sectional area is evident,
even for the severe AAA cases (as those presented here) where
the changes are in same order of magnitude as the measurement
error. For the less severe cases, the quantification of the area
changes is easily measured. Thus, the method can help differ-
entiate between mild AAA cases and severe ones, and possibly
keep track of the deterioration. In normal subjects the strain
( where is the diameter and is the change
of the border) was reported to be in the range 8% in young
adults and down to 3% in elderly (60) subjects [23]. The strain
may be much smaller in the region of aneurysm, since the in-
cremental circumferential Young’s modulus was reported to be
more than 250 times that of normal subjects [17]. The attempt
to measure changes in area, when the expected changes are so
extremely small, is very challenging. It seems, though, that the
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TABLE IV
THE DIFFERENCESBETWEEN THE BORDERS ASCALCULATED BY THE MODIFIED ALGORITHM VERSUS THEORIGINAL ONE, MEASURED AT

THE LAST IMAGE OF A SEQUENCE

Fig. 12. The correlation values between the radial distance of the border, as
calculated by the original algorithm and the modified one for a full sequence of
images. It demonstrates the accuracy and robustness of the method.

errors of detecting the arterial wall borders cannot be expected
to be reduced by additional processing of the image. Thus, a dif-
ferent approach should be used, e.g., by integrating a mechan-
ical model of the arterial wall as part of the processing of the
images. Nevertheless, the method described here provides an
automatic and robust method for detection of the lumen and ar-
terial wall, and when the cross-sectional areas bounded by these
borders change very little during the cardiac cycle, it may indi-
cate fibrotic wall and higher probability of aortic rupture.

APPENDIX

DESCRIPTION OF THEDERIVATIVE FILTER

This addendum describes an implementation of a convolu-
tion with a Gaussian kernel, characterized by a different SD in
each direction. This is an IIR recursive implementation espe-
cially efficient for large kernels. Since the image given in polar
coordinates is described as a nonisotropic field matrix (where
the radial and tangential directions are given by different units)
the operation of the edge detector must be modified, with the
SD of the radial derivative operator different from the SD of
tangential smoothing operator. The modified filter is described
in (A.1.1)–(A.1.7)

(A.1.1)

with all the parameters described in (A.1.7). Similarly

(A.1.2)

and represent filtration in the radial direction for both
clock-wise and counter clock-wise directions. The image data
smoothed radially, by the smoothing operation performed both
from the right-hand side and the left-hand side , is de-
scribed by

(A.1.3)

The next step is given by defining and , which represent
filtration in the radial direction, from the origin outward and
from infinity toward the origin

(A.1.4)

and

(A.1.5)

With all undefined variables set to zero, the resultis given by

(A.1.6)

The constants in these equations are defined, similar to [16]

(A.1.7)

where represents the degree of smoothing of the radial
derivative, and represents the tangential smoothing. The
variables that have not been defined above are set to zero. The
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relationship between the parametersdescribed above and the
SD of the kernel are given by [16]

(A.1.8)

Since the angles 0 and describe the same point, it was
found advantageous to double the angular dimension of the ma-
trix , so that the image is doubled in one orientation
and takes into account the continuity in this orientation.
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