Effectiveness of acoustic power dissipation in lossy layers
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The effect of losses in the dissipative object becomes crucial when maximal power absorption of the
incident wave is of top priority. In order to assess the phenomenon of acoustic power absorption in
finite size dissipative medium, a prototype model of linear pressure waves absorption in dissipative
layer is considered. The conditions, parameters and bounds for the optmagima) incident

power absorption within the layer have been found analytically and explicitly versus its normalized
thickness. These conditions are presented in terms of the basic wave propagation parameters,
namely sound velocity and attenuation constant. It is shown that, for thin lageesms of acoustic
wavelength, the upper bound on the absorptivity tends to the value of 50%, when prescribed
resonant dispersion/absorption conditions, characterized by the so-called Kramers—Kronig relations,
are met within the layer. For sufficiently thick layers absorption of close to 100% of the incident
wave power can be achieved, when specific optimal values are selected for the corresponding real
and imaginary parts of dissipative layer wave number. The model may serve as a canonical
prototype problem for engineered dissipative materials design and optimization of the sound/
ultrasound absorption in lossy targets, e.g., biological tissues20@ Acoustical Society of
America. [DOI: 10.1121/1.1756671

PACS numbers: 43.20.El, 43.35.Bf, 43.80.Sh, 43.55[#8M] Pages: 84-89

I. INTRODUCTION (even lossless liquidthe mixture may give a substantial rise
. ) o to absorptivity and/or reflectivity of the medium by changing
Transmission and reflection of plane longitudinal pres-is pasic wave propagation parameters, namely, acoustic ve-
sure waves in a stratified nondissipative fluid or gaseous Mga ity and dissipation constant. Recently, the optimization of
dia is a well-known phenomenon, e.g., Refs. 1-4. The prin,;asonic power absorption has become of increased interest
ciple of resonant layered structures is also widely used iy,e 1o an extensive research in the area of therapeutic ultra-
electromagnetics and optics, e.g., Fabry—Perot mterferomgound’ where several studies propose the use of free
eters and filters though the losses in the layers have usuallymicrobubble®’ or ultrasound contrast agehtsor the im-

much Igss consideration._The effect of_ losses in th.e diss'paﬁrovement of biological media absorptivity, again, by actu-
tive object becomes crucial when maximal absorption of theyy, synthesizing the medium inside the region of interest in

incident wave power is of top priority, €.9., when designingierms of its acoustic velocity and dissipation constant.

optimal acoustic or elastic wave absorbgfs,noise The main intention here was to obtain a closed-form
msulatorszl(gr optimizing hyperthermia-based  ultrasonic yeqjts and analytical bounds for a general optimal dissipa-
treatments. tive layer in terms of the mentioned above basic linear wave

_ Various effects of acoustic wave transmission throughyonagation parameters, independently of the specific nature
finite-thickness layers were considered by many authorsyt the gissipative medium. Herein, the focus is on the basic
Some of the related studies are discussed below. Various COBqtqtyne model of linear plane acoustic wave absorption in
figurations of acoustic waves interaction with layered media, yjssipative finite thickness layer. The optimal dissipative
are described by Brekhovskﬂ%ﬁ,where no special atteptlon layer parameterémaximal incident power absorption, opti-
is drawn to lossy media. Gramotnev and coworkerSin- 141 acoustic velocity and dissipation consjaate found
vest|gat_ed an anomalous apsorptlon of acoustic and"electr%hawca”y via closed-form explicit expressions and ex-
magnetl'c waves by ultra-thin 'aYEfS of complex r_ne@l!s- pressed versus layer thickndsermalized to the wavelength
cous fluids in the case of acoustic wakekheir studies have ¢ he incident acoustic waye Finally, the asymptotic
an impact on the interaction of longitudinal and shear elasti¢),nds on layer absorptivity are derived in the limits of thick
waves with dissipative fluid surface. Prospeféttand .4 thin layers

otherg®>*® studied extensively linear and nonlinear effects of '

bubbly liquid layers on the propagation of acoustic waves. It

was found that, when gas bubbles are added to the liquil- FORMULATION

A three layers simplified model is considered. This
dElectronic mail: danir@tx.technion.ac.il model is used herein for the absorptivity optimization proce-
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FIG. 1. Physical configuration of linear pressure wave impingement upon
the dissipative layer. 0.01 0.1

(@ u

dure outlined below. It consists of a spatially-infinite dissipa- 100
tive acoustic layer(Fig. 1) of thicknessl characterized by
complex specific acoustic impedanZge=\/p;/K; and the Mabs.opt
corresponding complex acoustic wave numbde;
= w\/p1K;, wherep,; andK; are the medium density and its
complex compressibility, respectively, while it is assumed
that 3{k;}<0 and 3{Z,}=0. The dissipative layer is sur- e
rounded by nondissipative media with appropriate constants¥ 1 \
Zo=+po!Kqy andky= w+/poKg. An incident plane longitudi-
nal acoustic wave, having a pressure amplitudepofind
harmonic time dependenet”!, propagates in the-z direc- 0.1
tion through layer | and impinges normally upon a boundary
between layer | and layer II.

For the above stated problem, the fraction of incident
power absorbed in the dissipative layer, namely, the absorp ~ 0.01 0.1 1 10 100
tion efficiency, is given as (b) u

Nabs= 1= [RI?=|T|?, (1) 100

whereR and T denote global layer reflection and transmis-

sion coefficients, respectively, as depicted in Fig. 1. The so-

lution procedures for obtaining these coefficients are well 10

known'~3°and the resulting expressions, for the present pur- <
0.2

100
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FIG. 2. Equaefficiency contours of,,sin the u—v plane, calculated via
(1)—-(5), for three different values of: (a) 6=10; (b) 6=1; (c) 6=0.1.
where Z=u—jv and §, denoting the normalized complex
impedance ratio and the normalized layer thickness, ar
given via

Eespectively.

Note that the speed of sourgd in the dissipative layer is
now determinedfor low losseg, via (4), by 2R{k,}=w/c,
Z=27y1Z1=K1pg/(Kgp1)=U—jv (4 =kqupyi/po, whereasi{k,}=—kqvp1/pq is the attenuation

coefficient of the layer, directly related to the penetration
depthA,=—1/3{k,}. Thus, when the wave penetration ratio
6=Kkolp1/pg, (5) 1/A4, given via

and
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1/A;=—3{k.} =05, (6) which maximizes the power absorption efficiengy,s. In a
more general way, two-dimensional optimization must be
performed onzn,,sin terms of bothu andwv, i.e., finding the
maximal values ofp,,sfor any givend. In other words, one
seeks fornaps opp Uopt: @aNdvqpi, depending ors. The exis-
tence of the predicted maximal efficiencies can be readily
It should be noted that wheais pure realii.e.,v=0), verified via Fig. 2, where the two-dimensional equaefficiency
for any u and 6, the power of the incident wave will not be contours of7,sin theu—uv plane are calculated vid)—(5)
absorbed in the intermediate lay@yer ll), since it becomes for three different values oé.
nondissipative, namely;,,=0. On the other hand, for While precise optima values could be obtained via the
—oo the incident acoustic wave will be totally reflected at contour maps, as depicted in Fig. 2, an efficient analytical
z=0 boundary, sincgdZ,|—~, thus, again,7.,,<=0. Be-  optimization scheme can be facilitated by expressjgg in
tween these two extreme cases one may expect that, for atgrms of two independent complex variables, namgky,u

is sufficiently large, the dissipative layer behavior ap-
proaches that of a semi-infinite layer.

IIl. OPTIMIZATION PROCEDURE

givenu and 8, there exists at least one optimal valug,,, —juv and its complex conjugaté* =u+juv, leading to
|
in(6Z)sin(6Z* )+ 42z
si si
(1-Z%)(1-Z*?)
Nabs= 1— 1472 %2 « (7)
sin(6Z) — | cog 6Z sin(6Z* ) — | cog 6Z*
52 SN02)—1 5 00887) || o sin(07%) — ] — cog6Z")

The extremum values Ofps= 7aps,opr@r€ Obtained at the set wave to be attenuated while passing through the layer. Thus,
of pointsZ=Z,, andZ* =Z7;, which are solutions of v must meet a compromise—it should be large enough in
_ * order to absorb the great majority of incident wave in the
Iand 02=0, Inaps/ 027 =0. ® dissipative layer, however, it must be also much less than
Due to symmetry of7) with respect taZ andZ*, it can be  unity otherwise the absolute value of the total reflection co-
readily verified that Zop)*=Z5, and (@7asdZ2)* efficient atz=0 will be affected. One would expect that,
=dnas IZ*. Hence, Eqg.(8) can equivalently be repre- given these conditions, the maximal absorption efficiency
sented, aZ=2Z,, as would be close to unity, i.e5as0pe=1 (>1). Indeed, this
_ ~ _ intuition is justified via Fig. 2a), where the contours of
R{dnapddZ}=0,  T{d7apddZ} =0, © power absorption efficiency are depicted for a relatively
whereZg,=(Z,,)* is taken as a parameter. Taking the de-thick layer (6=10). The numerical evaluation of E7)
rivative d7,,d/dZ=0 atZ=2Zy, via (7), i.e., readily shows that maximal efficiency Oaps opks-10
=0.978 is obtained fou,,=1.026 andv ;= 0.256.

*
§2 SIN(8Z o) SIN( 6Z5,) — 40Zopopt For large values ofl and small values af an oscillatory
1—23,32t behavior ofy4,scan be observed. This is due to the fact that,
5 in this region, the exponential terms in E{), which are
% 1+Zoptcos( 5700+ ] 2Z o SIN(6Z,5) proportional tov, approach the unit value, while the argu-
1— ngt o 1— ngt o ments of the sinusoidal functions are lafgeoportionally to
u). Thus, it may be expected that the whole expression would
Zot . ] _ . be very sensitive to changes in
+ msm( 0Zopy) — | 62Z ot SIN(OZ5) =0, (10 Motivated by the above discussion, one should seek for
opt solution of the formZ,,=1+ €y, Where|ey,{<1 is a so-
leads to an implicit representation &f,, dependence on the Ilution of (10). Accounting for the leading terms of the high-
normalized layer thicknes& est exponential and algebraic growite., the terms in the

first square brackets iiL0)], one obtainse,,= —jv o and
an implicit thick layer approximation fof10), i.e.,

IV. EXTREME CASES U op€2 PO~ 46, 1D

A. Thick layer approximation: &1 . . o . .
Upon converting11) into the following iterative expression:

For obtaining maximal power absorption efficiency in
case of a thick dissipative layer it would be reasonable to set ® In(45/vf)‘;,{1))
the real part oZ close to unity, i.e.Z—1—jv, in order to Uopt™ — o5 (12)
obtain minimal wave reflection a&=0. Then, the imaginary
partv must be set to the values that will cause most of thehe solution of(11) can be expressed, after two iterations, as
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In(46) IN[85%/In(46)] For thin layers, all mode&ll values ofm) provide the same
o=l vgE s Uepm 5y - (13) totic value of the optimal bsorption effici
opt— 1 Vopt™ 55 Uopt 25 : asympIJ otic value of the optimal power absorption efficiency,
namely,
Hence, the optimal impedance ratif,,; and the optimal
power absorption efficiencynays opt take the asymptotic Nabs,opt~ 1/2. (21)
forms
Zopt~1—j In[852/In(45)]/25 (14) C. Intermediate range
and The optimization procedure for the normalized imped-
ance ratioZ = Ugy— j U ope @nd the resultant optimal power
2 —250 2rq <2 . pt. op P .
Nabs,opt~ 1 ~Vopfd—e€ “7or=1—{In[857In(4)] absorption efficiencyp,, as well as the wave penetration

ratio vy in (7) and (6), respectively, can be carried out
numerically via(10), recovering various limiting cases, as
respectively. discussed above and depicted in Fig. 3. The exact solutions
of (10), i.e., ugyandv o, are shown in Fig. @), whereas its
substitutions intd7) and(6), namelynps op@ndl/ A4 o, are
depicted in Figs. @) and 3c), respectively.

The basic classification of power absorption mechanism

The behavior of power absorption efficiency for thejs readily obtained via Fig.(®). While the thin layer limit,
cases of thin dissipative layers is much more intriguing. INsupporting the lossy modes of indew=0,1,2,..., extends
this limit, one may expect that the attenuation coefficientapproximately over &v <1, the thick layer limit, in the
must be large enough to produce high absorptivity, howeveigomplementary range <lv <, supports a consecutive
not too |al’ge otherwise |al’ge reﬂeCtiVity will arise &£ 0. continuation of them=1 mode On|y_ It should be noted7
Obviously, the limitd<1 in conjunction with finitelZ| (i.e.,  though, that the pressure distribution within the layer for the
8/Z|—0) is of no interest since in this imR—0 [Ed. (2]  m=1 mode in the range 9vd<1 is basically that of a
andT—1 [Eq. (3)], leading to77,,s—0 [Eq. (1)]. Hence, to  standing wavehalf period field, whereas its continuation in
obtain higher efficiency, the normalized impedance has to bge range Xvé<w decays exponentially. In applications
large (i.e., [Z|>1), so as to provide finité|Z|. In the sub- |ike ultrasonic hyperthermia of living tissue.g., ablation of
sequent analysis it will be shown that the efficiency in thiscancerous tissiet is important to know the actual distribu-
case can be enhanced upgys op= 1/2. tion of wave intensity as it passes through the dissipative

An analytic optimization procedure can be repeatedgpject since it directly affects the level of local energy ab-
similar to that performed for the thick layer’s approximation. sorption of the wave and, consequently, the local temperature
The thin layer limit renders, via(10), sin@@2)—0 and rise within the layer. Considering the<ly <= range for
cos(@Z)—1. Maintaining terms up toO(|sin(62)]) and m=1 mode in Fig. &): the power distribution uniformity
O(sin(62)/2) results in the thin layer approximation for Eq. within the layer is determined in terms of wave penetration

+1n(166°)}/166°~1, (15

B. Thin layer approximation: <1

(10), i.e., depth defined by Ed6). It can be readily evaluated numeri-
S5Zopl SIN 5Z;pt)_ j2 CO% 5Zp) /ngt] +SIN( 6Zpy) cally using Eqs.(4)—_(7) that the penetration depml,qpt of
the optimal absorbing layer becomes less than its actual
X[sirn(éz(’;pt)cos(ézop,)—j2/Z’ng~0. (16)  thicknessl for approx. 5>1. The ratiol/A; o, however,

grows relatively slowly withs, following the logarithmic
gependence of13), thus, allowing for the optimal penetra-
tion depth to be of the order of the layer thickness, over a
wide range of thicknesses. It should also be noted that
0Z gprm— TM~ = | 2/Z opt m (17)  thicker layerss>1 support higher order modes> 1, which,
however, extend over finitérange and eventually terminate.
For a zeroth-order moden(=0), the real part of the
Tm ——a— normalized impedance ratio becomes almost equal to its
Zoptva%[l_" 1-j86/(mm)]. (18) imaginary part(in absolute valugs i.e., Uy,~vqp. This is
the case when the phase between the applied pressure and the
velocity of the particles in the medium reaches the 90° value.
For linear pressure waves, this kind of anomalous behavior is
usually related with an anomalous dispersion/absorption,
well described by the so-called Kramers—Kronig
relationst®!° 1t usually occurs when real part of the medium
complex compressibility becomes zero or very small com-
paratively to its imaginary partequivalently to the negli-
Zopt,m|m:o~(1—j)/\/5- (199 gible real part of the complex permittivity in
electrodynamic®). In this case, a composition of an optimal
thin dissipative layer is set by the dispersive relations, con-
Zopt,m|m#0~77m/5_j2/77m- (20 sequently, having resonant properties with resonance fre-

The solution of(16) for both square brackets, associated with
the leading orders, discussed above, is readily given by th
following quadratic equation:

leading to

Note that the second root ¢17) was ignored since the as-
sociatedZ,,; corresponds to an active media, i.8{Zqp}
=vope> 0. The asymptotic limiZ>1 in (18) can be satisfied
if and only if 6<1, revealing that optimal light mediun¥(
>1) solution in(18) is restricted to thin layers. The substi-
tution of m=0 provides the following approximation for the
zeroth-order mode of the optimal impedance ratio:

For either6<1 or m>1 one obtains
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FIG. 3. Optimal power absorption efficienays o, NOrmalized impedance
ratio Z o= Ugp— jUopt» @and wave penetration ratiq,d, depicted in(a), (b),
and (c), respectively, vs normalized thicknessfor first five lossy modes

(m=0.1,...,5).

10

close to this/these resonance frequency/frequencies. To ob-
tain this kind of resonant behavior in a relatively low fre-
quency rangéKHz or MHZ range resonant elements can be
added to the layer. Good examples are porous media, bubbly
liquid layers® or media containing ultrasound contrast
agents’

The substitution of the approximations fog,; andw
in (18)—(20) into (7) results in approximated values of power
absorption efficiency, which agree very well with the exact
numerically evaluated results, as depicted in Figp).3Both
|Ropt? and |Topf?, the constituents ofaps o are also de-
picted in Fig. 3b) for reference. One notes that the=1
mode establishes an upper bouygtbbal maxima for all the
other modes. It coincides, however, with the other modes as
the values of s o> 1/2 and |Rypl®—| Topd>—1/4 are
reached a$—0.

Finally, to provide some assessment of the applicability
of the derived estimates, one may consider a simple case of
the linearf=10KHz pressure wave, propagating in water
with c,=1500m/s andp,=1000kg/n?, which impinges
normally upon the dissipative layer of air at STP, having
=330m/s andp;=1.2kg/nt. For instance, one may look
for the thickness of this layer, providing the optimal power
absorption efficiency for the dominant mode=1. Given
these values and utilizing definitions and results of E4.

(5), and (20) it is readily obtained thatu=pycqy/piCq
=3787.9, 6=mm/u=8.294<x10 4, and, consequently|
=16.5mm. It should be emphasized that the obtained opti-
mum value ofl is extremely sensitive to changes un as
expected for a lossy mode with very smélat the optimum.
Furthermore, while the value af is approximately constant
for an air layer in water, the value af is determined via
attenuation coefficientr,=—J{k,} of air at f=10KHz,
which is taken as approximatéfyw, = 0.01] Neper/ni, thus,
v=a1pg/kop1~0.2. Substitution of the obtained values into
(1)—(5) rendersz,,—0.3638. Note that the required optimal
value of v must be slightly different, i.e.pqu=2/mm
=0.64, for which the optimal value of,,—~ 0.5 is reached.
For comparison, the intensity of the same pressure wave,
propagating in air, is attenuated by 0.033% only every 16.5
mm.

V. CONCLUSIONS

The phenomenon of acoustic power absorption in a fi-
nite size dissipative medium is analyzed utilizing an elemen-
tary prototype model of plane longitudinal acoustic wave
impingement upon the dissipative finite-thickness layer, sur-
rounded by semi-infinite nondissipative media. It is found
that, for sufficiently thick layergin terms of its thickness
normalized to wavelengihthe absorption of close to 100%
of the incident wave power can be achieved provided that
specific optimal values are selected for the real and the
imaginary parts of the wave number of the dissipative layer.
These values are found analytically and explicitly depending
on the normalized thickness of the layer. It was also found

quency (frequencies Thus, in order to reach the upper that, as the thickness of the optimal absorbing layer becomes
bound on power absorption efficiency by applying the opti-greater, the ratio between layer thickness and wave penetra-

mal absorption conditions in the thin dissipative layes-

tion depth, at the optimum, also grows. For a very thick

sulting in Ug,~vp), the ensonifying frequency must be optimal layer, with absorption close to 100%, most of the
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power is absorbed in the vicinity of its boundary. Anotheroccurs. However, in order for the wavelength to reach these
observation, important for the modeling of realistic media,values, the frequency of insonation must be on the order of
can be made regarding the optimal results for a thick layerGHz for liquids and solids and on the order of MHz for
The acoustic velocity in homogeneous media can be usuallgases. Nevertheless, when the medium is porous or a gaseous
considered as approximately constant over wide range of frésubbles are inserted into it, e.g., ultrasound contrast agents,
guencies, i.e.u is also constant. This rule is also true for the resonance frequencies of the matter can be even within
many macroscopically quasihomogeneous media like livinghe KHz range, providing drastic improvement in absorption
tissues. On the contrary, the normalized attenuation constaefficiency.

v is usually frequency dependent. For instance, the attenua-

tion in living tissues grows? approximately, withf" (1.1 1L M. Brekhovskikh. W oL d Medi@nd ed.. translated
: . . . M. breknovskikn, Vvaves In Layere edl&na ed., translated from
<n<?2), wheref is the frequency of insonation, thus, the Russian by R. T. BeydAcademic, New York, 1980

sii]ce it is normalized t(k0~f,. i§ eXpeCted_ to slowly QrOwW 2L, M. Brekhovskikh and O. A. GodinAcoustics of Layered Media I:
with the frequency. Naturally, ifi is set to unity, the selection  Plane and Quasi-plane wavéSpringer-Verlag, Berlin, 1990
of frequency becomes important since it directly determinessJ- Lekner, “An upper bound on acoustic reflectivity, and the Rayleigh

approximation,” J. Acoust. Soc. An@6, 2359—-23621989.
the value ofv and, Consequemly’ the value of the power 4M. Rousseau, “Floquet wave properties in a periodically layered me-

absorption efficiency. dium,” J. Acoust. Soc. Am86, 2369-23761989.
For thin layers, the upper bour(chaximum on power SM. Born and E. Wolf,Principles of Optics: Electromagnetic Theory of
absorption efficiency tends to the value of 50% as |ayer Propagation, Interference and Diffraction of Lighfth ed.(Cambridge
. . . . ..~.  University Press, Cambridge, 1999
thickness becomes Sm?”er' This maximum occurs for ImclnlteeF.-C. Lee and W.-H. Chen, “Acoustic transmission analysis of multi-layer
number of possible optimal layet®ssy modek whereas all absorbers,” J. Sound Vil248 621—634(2000.
modes, except for the zeroth-order one, are supported b)7/V. V. Tyutekin, “Simulation and synthesis of elastic wave absorbers at the
; ieai ; ; ; boundary of a rigid body: Incidence of longitudinal waves,” Acoust. Phys.
slightly dissipative layers. Th_e important observation 47, 461-467(200).
acutally means that even _Ve':y thin contrast Iay?rs are able ey v, Horoshenkov, K. Sakagami, and M. Morimoto, “On the dissipation
absorb up to 50% of the incident energy, provided that spe- of acoustic energy in a thin, infinite, poroelastic plate,” AcusB8a500—
cific physical parameters of the layer and its surroundings are9506 (2002. _ o
established. Due to this kind of resonant absorption, it is - - Lin, C.T. Liauh, J. Y. Yen, Y. Y. Chen, and M. J. Shieh, "Treatable
. . . omain and optimal frequency for brain tumors during ultrasound hyper-
hypothesized that, in some special cases, the commonly useGhermia,” Int. J. Radiat. Oncol., Biol., Phyd6, 239-247(2000.
definitions in ultrasonic safety assessments, based on bulks. D. Sokka, R. King, and K. Hynynen, “MRI-guided gas bubble en-
attenuation constarits may fail in their ability to predict an gggcezfii f(lggggund heating in-vivo rabbit thigh,” Phys. Med. Biol48,
enhgnceq IOCfil power deposition in thin Iay(sma" site$ 1p. K. Gramotnev and J. A. Ross, “Anomalous absorption of electromag-
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ues of real and imaginary parts of the Iayer wave numberl.ZD- K. Gramotnev and M. L. Mather, “Anomalous absorption of bulk shear
. . acoustic waves by an ultra-thin layer of a non-Newtonian fluid,” J.
Eor linear pressure waves, the latter kind of wave Propaga- acoust. Soc. Am106 2552—25591999.
tion usually corresponds to an anomalous absorption or ar| A, chernozatonskii, D. K. Gramotnev, and M. L. Wukov, “Anomalous
anomalous dispersion propagation regime, which is well de- absorption of longitudinal acoustic waves by a thin layer of viscous fluid,”
scribed by the so-called Kramers—Kronig relations. This be;,Pys: Lett. Al64 126-132(1992. o . .
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consequeritly, resonance frequency/frequemcilasthls case, . 173, Fuijishiroet al, “Increased heating efficiency of hyperthermia using an
the ensonifying frequency must normally be close to this/ ultrasound contrast agent: A phantom study,” Int. J. Hypertherbdia
these resonant frequency/frequencies in order to causgt95-502(1998. _ _

ik, ~|3{k,}| within the dissipative layer. Naturally, as the Jé% %?)Cks,sgggizs'ca' Electrodynamics3rd ed. (Wiley, New York,
wavelength of pressure waves approaches the dimensions of A J. AngelsenUltrasound Imaging Emantec AS, Trondheim, Norway,

the molecular structure of matter, the anomalous absorption2000, pp. 4.31-4.123.

J. Acoust. Soc. Am., Vol. 116, No. 1, July 2004 Razansky et al.: Effectiveness of acoustic power dissipation 89



