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The effect of losses in the dissipative object becomes crucial when maximal power absorption of the
incident wave is of top priority. In order to assess the phenomenon of acoustic power absorption in
finite size dissipative medium, a prototype model of linear pressure waves absorption in dissipative
layer is considered. The conditions, parameters and bounds for the optimal~maximal! incident
power absorption within the layer have been found analytically and explicitly versus its normalized
thickness. These conditions are presented in terms of the basic wave propagation parameters,
namely sound velocity and attenuation constant. It is shown that, for thin layers~in terms of acoustic
wavelength!, the upper bound on the absorptivity tends to the value of 50%, when prescribed
resonant dispersion/absorption conditions, characterized by the so-called Kramers–Kronig relations,
are met within the layer. For sufficiently thick layers absorption of close to 100% of the incident
wave power can be achieved, when specific optimal values are selected for the corresponding real
and imaginary parts of dissipative layer wave number. The model may serve as a canonical
prototype problem for engineered dissipative materials design and optimization of the sound/
ultrasound absorption in lossy targets, e.g., biological tissues. ©2004 Acoustical Society of
America. @DOI: 10.1121/1.1756671#
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I. INTRODUCTION

Transmission and reflection of plane longitudinal pre
sure waves in a stratified nondissipative fluid or gaseous
dia is a well-known phenomenon, e.g., Refs. 1–4. The p
ciple of resonant layered structures is also widely used
electromagnetics and optics, e.g., Fabry–Perot interfer
eters and filters,5 though the losses in the layers have usua
much less consideration. The effect of losses in the diss
tive object becomes crucial when maximal absorption of
incident wave power is of top priority, e.g., when designi
optimal acoustic or elastic wave absorbers,6,7 noise
insulators,8 or optimizing hyperthermia-based ultrason
treatments.9,10

Various effects of acoustic wave transmission throu
finite-thickness layers were considered by many auth
Some of the related studies are discussed below. Various
figurations of acoustic waves interaction with layered me
are described by Brekhovskikh,1,2 where no special attentio
is drawn to lossy media. Gramotnev and coworkers11–13 in-
vestigated an anomalous absorption of acoustic and ele
magnetic waves by ultra-thin layers of complex media~vis-
cous fluids in the case of acoustic waves!. Their studies have
an impact on the interaction of longitudinal and shear ela
waves with dissipative fluid surface. Prosperetti14 and
others15,16 studied extensively linear and nonlinear effects
bubbly liquid layers on the propagation of acoustic waves
was found that, when gas bubbles are added to the liq

a!Electronic mail: danir@tx.technion.ac.il
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~even lossless liquid!, the mixture may give a substantial ris
to absorptivity and/or reflectivity of the medium by changin
its basic wave propagation parameters, namely, acoustic
locity and dissipation constant. Recently, the optimization
ultrasonic power absorption has become of increased inte
due to an extensive research in the area of therapeutic u
sound, where several studies propose the use of
microbubbles10 or ultrasound contrast agents17 for the im-
provement of biological media absorptivity, again, by ac
ally synthesizing the medium inside the region of interest
terms of its acoustic velocity and dissipation constant.

The main intention here was to obtain a closed-fo
results and analytical bounds for a general optimal diss
tive layer in terms of the mentioned above basic linear wa
propagation parameters, independently of the specific na
of the dissipative medium. Herein, the focus is on the ba
prototype model of linear plane acoustic wave absorption
a dissipative finite thickness layer. The optimal dissipat
layer parameters~maximal incident power absorption, opt
mal acoustic velocity and dissipation constant! are found
analytically via closed-form explicit expressions and e
pressed versus layer thickness~normalized to the wavelength
of the incident acoustic wave!. Finally, the asymptotic
bounds on layer absorptivity are derived in the limits of thi
and thin layers.

II. FORMULATION

A three layers simplified model is considered. Th
model is used herein for the absorptivity optimization proc
/116(1)/84/6/$20.00 © 2004 Acoustical Society of America
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po
dure outlined below. It consists of a spatially-infinite dissip
tive acoustic layer~Fig. 1! of thicknessl characterized by
complex specific acoustic impedanceZ15Ar1 /K1 and the
corresponding complex acoustic wave numberk1

5vAr1K1, wherer1 andK1 are the medium density and it
complex compressibility, respectively, while it is assum
that I$k1%<0 and I$Z1%>0. The dissipative layer is sur
rounded by nondissipative media with appropriate consta
Z05Ar0 /K0 andk05vAr0K0. An incident plane longitudi-
nal acoustic wave, having a pressure amplitude ofpi and
harmonic time dependenceej vt, propagates in the2z direc-
tion through layer I and impinges normally upon a bound
between layer I and layer II.

For the above stated problem, the fraction of incide
power absorbed in the dissipative layer, namely, the abs
tion efficiency, is given as

habs512uRu22uTu2, ~1!

whereR and T denote global layer reflection and transm
sion coefficients, respectively, as depicted in Fig. 1. The
lution procedures for obtaining these coefficients are w
known1–3,5and the resulting expressions, for the present p
poses, are

R5

12Z

11Z
~12e2 j 2dZ!

12S 12Z

11ZD 2

e2 j 2dZ

~2!

and

T5

F12S 12Z

11ZD 2Ge2 j dZ

12S 12Z

11ZD 2

e2 j 2dZ

, ~3!

where Z5u2 j v and d, denoting the normalized comple
impedance ratio and the normalized layer thickness,
given via

Z5Z0 /Z15k1r0 /~k0r1!5u2 j v ~4!

and

d5k0lr1 /r0 , ~5!

FIG. 1. Physical configuration of linear pressure wave impingement u
the dissipative layer.
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Note that the speed of soundc1 in the dissipative layer is

now determined~for low losses!, via ~4!, by R$k1%5v/c1

5k0ur1 /r0 , whereasI$k1%52k0vr1 /r0 is the attenuation
coefficient of the layer, directly related to the penetrati
depthD1521/I$k1%. Thus, when the wave penetration rat
l /D1 , given via

FIG. 2. Equaefficiency contours ofhabs in the u2v plane, calculated via
~1!–~5!, for three different values ofd: ~a! d510; ~b! d51; ~c! d50.1.

n
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l /D152I$k1l %5vd, ~6!

is sufficiently large, the dissipative layer behavior a
proaches that of a semi-infinite layer.

III. OPTIMIZATION PROCEDURE

It should be noted that whenZ is pure real~i.e., v50),
for any u andd, the power of the incident wave will not b
absorbed in the intermediate layer~layer II!, since it becomes
nondissipative, namelyhabs50. On the other hand, forv
→` the incident acoustic wave will be totally reflected
z50 boundary, sinceuZ1u→`, thus, again,habs50. Be-
tween these two extreme cases one may expect that, for
given u andd, there exists at least one optimal valuevmax,
t
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which maximizes the power absorption efficiencyhabs. In a
more general way, two-dimensional optimization must
performed onhabs in terms of bothu andv, i.e., finding the
maximal values ofhabs for any givend. In other words, one
seeks forhabs,opt, uopt, andvopt, depending ond. The exis-
tence of the predicted maximal efficiencies can be rea
verified via Fig. 2, where the two-dimensional equaefficien
contours ofhabs in theu2v plane are calculated via~1!–~5!
for three different values ofd.

While precise optima values could be obtained via
contour maps, as depicted in Fig. 2, an efficient analyti
optimization scheme can be facilitated by expressinghabs in
terms of two independent complex variables, namely,Z5u
2 j v and its complex conjugateZ* 5u1 j v, leading to
habs512

sin~dZ!sin~dZ* !1
4ZZ*

~12Z2!~12Z* 2!

F11Z2

12Z2
sin~dZ!2 j

2Z

12Z2
cos~dZ!GF11Z* 2

12Z* 2
sin~dZ* !2 j

2Z*

12Z* 2
cos~dZ* !G . ~7!
hus,
in

he
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co-
t,
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-

:

as
The extremum values ofhabs5habs,optare obtained at the se
of pointsZ5Zopt andZ* 5Zopt* , which are solutions of

]habs/]Z50, ]habs/]Z* 50. ~8!

Due to symmetry of~7! with respect toZ andZ* , it can be
readily verified that (Zopt)* 5Zopt* and (]habs/]Z)*
5]habs/]Z* . Hence, Eq.~8! can equivalently be repre
sented, atZ5Zopt, as

R$dhabs/dZ%50, I$dhabs/dZ%50, ~9!

whereZopt* 5(Zopt)* is taken as a parameter. Taking the d
rivative dhabs/dZ50 at Z5Zopt, via ~7!, i.e.,

F j 2 sin~dZopt!sin~dZopt* !2
4dZoptZopt*

12Zopt* 2 G
3F11Zopt

2

12Zopt
2

cos~dZopt!1 j
2Zopt

12Zopt
2

sin~dZopt!G
1

4Zopt*

12Zopt* 2
sin~dZopt!2 j d2Zoptsin~dZopt* !50, ~10!

leads to an implicit representation ofZopt dependence on th
normalized layer thicknessd.

IV. EXTREME CASES

A. Thick layer approximation: dš1

For obtaining maximal power absorption efficiency
case of a thick dissipative layer it would be reasonable to
the real part ofZ close to unity, i.e.,Z→12 j v, in order to
obtain minimal wave reflection atz50. Then, the imaginary
part v must be set to the values that will cause most of
-

et

e

wave to be attenuated while passing through the layer. T
v must meet a compromise—it should be large enough
order to absorb the great majority of incident wave in t
dissipative layer, however, it must be also much less t
unity otherwise the absolute value of the total reflection
efficient at z50 will be affected. One would expect tha
given these conditions, the maximal absorption efficien
would be close to unity, i.e.,habs,opt'1 ~d@1!. Indeed, this
intuition is justified via Fig. 2~a!, where the contours o
power absorption efficiency are depicted for a relative
thick layer ~d510!. The numerical evaluation of Eq.~7!
readily shows that maximal efficiency ofhabs,optud510

50.978 is obtained foruopt51.026 andvopt50.256.
For large values ofu and small values ofv an oscillatory

behavior ofhabscan be observed. This is due to the fact th
in this region, the exponential terms in Eq.~7!, which are
proportional tov, approach the unit value, while the arg
ments of the sinusoidal functions are large~proportionally to
u!. Thus, it may be expected that the whole expression wo
be very sensitive to changes inu.

Motivated by the above discussion, one should seek
solution of the formZopt511eopt, whereueoptu!1 is a so-
lution of ~10!. Accounting for the leading terms of the high
est exponential and algebraic growth@i.e., the terms in the
first square brackets in~10!#, one obtainseopt52 j vopt and
an implicit thick layer approximation for~10!, i.e.,

vopte
2voptd;4d. ~11!

Upon converting~11! into the following iterative expression

vopt
~p!;

ln~4d/vopt
~p21!!

2d
, ~12!

the solution of~11! can be expressed, after two iterations,
Razansky et al.: Effectiveness of acoustic power dissipation
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~0!51, vopt

~1!5
ln~4d!

2d
, vopt

~2!5
ln@8d2/ln~4d!#

2d
. ~13!

Hence, the optimal impedance ratioZopt and the optimal
power absorption efficiencyhabs,opt take the asymptotic
forms

Zopt;12 j ln@8d2/ln~4d!#/2d ~14!

and

habs,opt;12vopt
2 /42e22dvopt512$ ln2@8d2/ln~4d!#

1 ln~16d2!%/16d2;1, ~15!

respectively.

B. Thin layer approximation: d™1

The behavior of power absorption efficiency for th
cases of thin dissipative layers is much more intriguing.
this limit, one may expect that the attenuation coefficie
must be large enough to produce high absorptivity, howe
not too large otherwise large reflectivity will arise atz50.
Obviously, the limitd!1 in conjunction with finiteuZu ~i.e.,
duZu→0) is of no interest since in this limitR→0 @Eq. ~2!#
andT→1 @Eq. ~3!#, leading tohabs→0 @Eq. ~1!#. Hence, to
obtain higher efficiency, the normalized impedance has to
large ~i.e., uZu@1), so as to provide finiteduZu. In the sub-
sequent analysis it will be shown that the efficiency in t
case can be enhanced up tohabs,opt51/2.

An analytic optimization procedure can be repeat
similar to that performed for the thick layer’s approximatio
The thin layer limit renders, via~10!, sin(dZ)→0 and
cos(dZ)→1. Maintaining terms up toO(usin(dZ)u2) and
O(sin(dZ)/Z) results in the thin layer approximation for Eq
~10!, i.e.,

dZopt@sin~dZopt* !2 j 2 cos~dZopt!/Zopt* #1sin~dZopt!

3@sin~dZopt* !cos~dZopt!2 j 2/Zopt* #;0. ~16!

The solution of~16! for both square brackets, associated w
the leading orders, discussed above, is readily given by
following quadratic equation:

dZopt,m2pm;2 j 2/Zopt,m , ~17!

leading to

Zopt,m;
pm

2d
@11A12 j 8d/~pm!2#. ~18!

Note that the second root of~17! was ignored since the as
sociatedZopt corresponds to an active media, i.e.,I$Zopt%
5vopt.0. The asymptotic limitZ@1 in ~18! can be satisfied
if and only if d!1, revealing that optimal light medium (Z
@1) solution in~18! is restricted to thin layers. The subst
tution of m50 provides the following approximation for th
zeroth-order mode of the optimal impedance ratio:

Zopt,mum50;~12 j !/Ad. ~19!

For eitherd!1 or m@1 one obtains

Zopt,mumÞ0;pm/d2 j 2/pm. ~20!
J. Acoust. Soc. Am., Vol. 116, No. 1, July 2004
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For thin layers, all modes~all values ofm! provide the same
asymptotic value of the optimal power absorption efficien
namely,

habs,opt;1/2. ~21!

C. Intermediate range

The optimization procedure for the normalized impe
ance ratioZopt5uopt2 j vopt and the resultant optimal powe
absorption efficiencyhopt as well as the wave penetratio
ratio voptd in ~7! and ~6!, respectively, can be carried ou
numerically via ~10!, recovering various limiting cases, a
discussed above and depicted in Fig. 3. The exact solut
of ~10!, i.e.,uopt andvopt, are shown in Fig. 3~a!, whereas its
substitutions into~7! and~6!, namelyhabs,optandl /D1,opt, are
depicted in Figs. 3~b! and 3~c!, respectively.

The basic classification of power absorption mechan
is readily obtained via Fig. 3~c!. While the thin layer limit,
supporting the lossy modes of indexm50,1,2,..., extends
approximately over 0<vd<1, the thick layer limit, in the
complementary range 1,vd,`, supports a consecutiv
continuation of them51 mode only. It should be noted
though, that the pressure distribution within the layer for t
m51 mode in the range 0<vd<1 is basically that of a
standing wave~half period! field, whereas its continuation in
the range 1,vd,` decays exponentially. In application
like ultrasonic hyperthermia of living tissue~e.g., ablation of
cancerous tissue! it is important to know the actual distribu
tion of wave intensity as it passes through the dissipa
object since it directly affects the level of local energy a
sorption of the wave and, consequently, the local tempera
rise within the layer. Considering the 1,vd,` range for
m51 mode in Fig. 3~c!: the power distribution uniformity
within the layer is determined in terms of wave penetrat
depth defined by Eq.~6!. It can be readily evaluated numer
cally using Eqs.~4!–~7! that the penetration depthD1,opt of
the optimal absorbing layer becomes less than its ac
thicknessl for approx. d.1. The ratio l /D1,opt, however,
grows relatively slowly withd, following the logarithmic
dependence of~13!, thus, allowing for the optimal penetra
tion depth to be of the order of the layer thickness, ove
wide range of thicknesses. It should also be noted t
thicker layersd@1 support higher order modesm@1, which,
however, extend over finited range and eventually terminate

For a zeroth-order mode (m50), the real part of the
normalized impedance ratio becomes almost equal to
imaginary part~in absolute values!, i.e., uopt'vopt. This is
the case when the phase between the applied pressure an
velocity of the particles in the medium reaches the 90° val
For linear pressure waves, this kind of anomalous behavio
usually related with an anomalous dispersion/absorpt
well described by the so-called Kramers–Kron
relations.18,19 It usually occurs when real part of the mediu
complex compressibility becomes zero or very small co
paratively to its imaginary part~equivalently to the negli-
gible real part of the complex permittivity in
electrodynamics18!. In this case, a composition of an optim
thin dissipative layer is set by the dispersive relations, c
sequently, having resonant properties with resonance
87Razansky et al.: Effectiveness of acoustic power dissipation
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quency ~frequencies!. Thus, in order to reach the uppe
bound on power absorption efficiency by applying the op
mal absorption conditions in the thin dissipative layer~re-
sulting in uopt'vopt), the ensonifying frequency must b

FIG. 3. Optimal power absorption efficiencyhabs,opt, normalized impedance
ratioZopt5uopt2 j vopt , and wave penetration ratiovoptd, depicted in~a!, ~b!,
and ~c!, respectively, vs normalized thicknessd for first five lossy modes
(m50,1,...,5).
88 J. Acoust. Soc. Am., Vol. 116, No. 1, July 2004
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close to this/these resonance frequency/frequencies. To
tain this kind of resonant behavior in a relatively low fr
quency range~KHz or MHZ range! resonant elements can b
added to the layer. Good examples are porous media, bu
liquid layers15 or media containing ultrasound contra
agents.17

The substitution of the approximations foruopt andvopt

in ~18!–~20! into ~7! results in approximated values of pow
absorption efficiency, which agree very well with the exa
numerically evaluated results, as depicted in Fig. 3~b!. Both
uRoptu2 and uToptu2, the constituents ofhabs,opt, are also de-
picted in Fig. 3~b! for reference. One notes that them51
mode establishes an upper bound~global maxima! for all the
other modes. It coincides, however, with the other modes
the values ofhabs,opt→1/2 and uRoptu2→uToptu2→1/4 are
reached asd→0.

Finally, to provide some assessment of the applicabi
of the derived estimates, one may consider a simple cas
the linear f 510 KHz pressure wave, propagating in wat
with c051500 m/s andr051000 kg/m3, which impinges
normally upon the dissipative layer of air at STP, havingc1

5330 m/s andr151.2 kg/m3. For instance, one may loo
for the thicknessl of this layer, providing the optimal powe
absorption efficiency for the dominant modem51. Given
these values and utilizing definitions and results of Eqs.~4!,
~5!, and ~20! it is readily obtained thatu5r0c0 /r1c1

53787.9, d5pm/u58.29431024, and, consequently,l
516.5 mm. It should be emphasized that the obtained o
mum value ofl is extremely sensitive to changes inu, as
expected for a lossy mode with very smalld at the optimum.
Furthermore, while the value ofu is approximately constan
for an air layer in water, the value ofv is determined via
attenuation coefficienta152I$k1% of air at f 510 KHz,
which is taken as approximately19 a150.01@Neper/m#, thus,
v5a1r0 /k0r1'0.2. Substitution of the obtained values in
~1!–~5! rendershabs50.3638. Note that the required optim
value of v must be slightly different, i.e.,vopt52/pm
50.64, for which the optimal value ofhabs50.5 is reached.
For comparison, the intensity of the same pressure wa
propagating in air, is attenuated by 0.033% only every 1
mm.

V. CONCLUSIONS

The phenomenon of acoustic power absorption in a
nite size dissipative medium is analyzed utilizing an elem
tary prototype model of plane longitudinal acoustic wa
impingement upon the dissipative finite-thickness layer, s
rounded by semi-infinite nondissipative media. It is fou
that, for sufficiently thick layers~in terms of its thickness
normalized to wavelength!, the absorption of close to 100%
of the incident wave power can be achieved provided t
specific optimal values are selected for the real and
imaginary parts of the wave number of the dissipative lay
These values are found analytically and explicitly depend
on the normalized thickness of the layer. It was also fou
that, as the thickness of the optimal absorbing layer beco
greater, the ratio between layer thickness and wave pen
tion depth, at the optimum, also grows. For a very thi
optimal layer, with absorption close to 100%, most of t
Razansky et al.: Effectiveness of acoustic power dissipation
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power is absorbed in the vicinity of its boundary. Anoth
observation, important for the modeling of realistic med
can be made regarding the optimal results for a thick la
The acoustic velocity in homogeneous media can be usu
considered as approximately constant over wide range of
quencies, i.e.,u is also constant. This rule is also true f
many macroscopically quasihomogeneous media like liv
tissues. On the contrary, the normalized attenuation cons
v is usually frequency dependent. For instance, the atte
tion in living tissues grows,19 approximately, withf n (1.1
,n,2), where f is the frequency of insonation, thus,v,
since it is normalized tok0; f , is expected to slowly grow
with the frequency. Naturally, ifu is set to unity, the selection
of frequency becomes important since it directly determi
the value ofv and, consequently, the value of the pow
absorption efficiency.

For thin layers, the upper bound~maximum! on power
absorption efficiency tends to the value of 50% as la
thickness becomes smaller. This maximum occurs for infin
number of possible optimal layers~lossy modes!, whereas all
modes, except for the zeroth-order one, are supported
slightly dissipative layers. The important observati
acutally means that even very thin contrast layers are ab
absorb up to 50% of the incident energy, provided that s
cific physical parameters of the layer and its surroundings
established. Due to this kind of resonant absorption, i
hypothesized that, in some special cases, the commonly
definitions in ultrasonic safety assessments, based on
attenuation constants19, may fail in their ability to predict an
enhanced local power deposition in thin layers~small sites!
of biological tissue. The zeroth-order lossy mode occurs
highly losses provided almost equal optimal~absolute! val-
ues of real and imaginary parts of the layer wave numb
For linear pressure waves, the latter kind of wave propa
tion usually corresponds to an anomalous absorption o
anomalous dispersion propagation regime, which is well
scribed by the so-called Kramers–Kronig relations. This
havior, resulting in an almost zero real part of complex co
pressibility of the dissipative layer~equivalently to zero rea
part of complex permittivity in electrodynamics!, may occur
when the dissipative medium has resonant properties~and,
consequently, resonance frequency/frequencies!. In this case,
the ensonifying frequency must normally be close to th
these resonant frequency/frequencies in order to ca
R$k1%'uI$k1%u within the dissipative layer. Naturally, as th
wavelength of pressure waves approaches the dimensio
the molecular structure of matter, the anomalous absorp
J. Acoust. Soc. Am., Vol. 116, No. 1, July 2004
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occurs. However, in order for the wavelength to reach th
values, the frequency of insonation must be on the orde
GHz for liquids and solids and on the order of MHz fo
gases. Nevertheless, when the medium is porous or a gas
bubbles are inserted into it, e.g., ultrasound contrast age
the resonance frequencies of the matter can be even w
the KHz range, providing drastic improvement in absorpti
efficiency.
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